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Abstract:- Applying the momentum equation reveals that there are three key factors that control the hydraulic jump 

in a trapezoidal channel caused by a sill: the inflow Froude number Fr1, the sequence depth ratio Y, which is the 

ratio of the downstream depth h2 to the upstream depth h1, the relative upstream flow depth M, and the relative 

height of the broad-crested sill "S" which is the ratio of the step's geometric height "s" to the height h1 of the jump at 

its upstream section. The aim of this study is to establish the empirical connections governing the broad-crested sill-

induced hydraulic leaps in a trapezoidal channel. The goal is to come up with a concrete representation of the 

theoretical relationship between Fr1, Y, M, and "S". Applying the momentum equation between the upstream and 

downstream parts, which limits the leap, enables this. The resulting connection will be contrasted with the traditional 

hydraulic leap. After that, a comparison with the outcomes of the experiments serves to confirm the theoretical 

method. 
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1. Introduction 

Several works have been presented on hydraulic jumps in rectangular and triangular channels. These studies have 

analyzed the various parameters characterizing the hydraulic jump such as the sequence depths, the jump 

characteristic lengths, and the free surface profile. 

Concerning hydraulic jumps in rectangular channels, a recent experimental contribution was presented by Achour et 

al. [1] on the hydraulic jump controlled by a thin sill. The study was based on the determination of the value of the 

sill position X so that the hydraulic jump is completely formed in the dissipation basin, where Lj is approximately 

equal to X. The jump compactness in the rectangular channels has been studied by Achour et al. [2]. The authors 

also analyzed the effect of the jump compactness by considering the length of the classical jump, Lj*. On the same 

vein, Benmalek et al. [3] analyzed the jump compactness in a compound rectangular channel. This technique offers 

a technical and economic advantage, in particular during periods of low water levels when the flow has largely been 

exploited. 

Hydraulic jumps in a triangular channel have been experimentally examined by Debabeche and Achour [4]. In this 

study, investigations were conducted on the main characteristics of controlled and B-minimum jumps under various 

inflow conditions. A thin-crested or a broad-crested sill was used to ensure jump development. Based on an 

extensive experimental program, relationships were derived by modeling the effect of the inflow Froude number on 

the relative sill height, the sequence depth ratio, and the relative sill position. Other works have been presented by 

Achour and Debabeche [5]. The authors investigated the controlled hydraulic jump by a continuous thin sill in a 

triangular channel with a 90° opening angle. A relation translating the controlled jump under any formation 

conditions is presented in a dimensional form to give it general validity.  
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The hydraulic jump in trapezoidal channels has been widely studied in the past few years. Among the earliest known 

studies in this area are those of Posey and Hsing [6]. The authors applied the momentum equation between the 

upstream and downstream sections of the jump. The results obtained were used to calculate the sequence depth ratio 

as a function of the inflow Froude number. Sandover and Holmes [7], Mohed and Sharp [8], and Ohtsu [9] 

developed the theoretical and experimental analysis for this type of jump as a function of flow conditions. Later, 

Wanoschek and Hager [10] studied the internal flow structure of hydraulic jumps in trapezoidal channels. The 

authors analyzed the main flow parameters such as the sequence depths, the length of the bottom roller, and the 

characteristic lengths of the phenomenon. 

More recently, Afzal and Bushra [11] used Reynolds' equations for the mean turbulent motion in an incompressible 

two-dimensional flow for any section; the authors obtained the free surface profile and the axial length of the 

hydraulic jump in a trapezoidal channel. Kateb et al. [12] experimentally examined the positive step effect on the 

hydraulic jump characteristics in a trapezoidal channel. A comparison study of controlled jump characteristics and 

type A-forced jump by positive step was proposed. The sill effect in trapezoidal channels was examined by 

Benmalek et al. [13]. The authors developed empirical formulas relating the sequence depth ratio and the relative sill 

height as functions of the inflow Froude number. The determination of these parameters allows for sizing the stilling 

basin. 

For this type of channel, the phenomenon of compactness was analyzed by Benmalek et al. [14], and the result 

obtained shows that the jump compactness has a reducing effect on the jump sequence depths and the sill relative 

height. 

The effect of abrupt enlargement on trapezoidal jumps has been studied by Benmalek and Debabeche [15]; the 

authors theoretically and experimentally analyzed the enlargement effect on the jump sequence depths, energy loss, 

and free surface profile. All these studies aim to give an economic dimensioning of trapezoidal stilling basin. The 

hydraulic jump in a sloped trapezoidal channel is theoretically and experimentally examined by Kateb et al. [16]. 

The study aims to propose for different configuration of jump, a theoretical relation Fr1= f (Y, λ, α) expressing the 

inflow Froude number Fr1 as a function of the angle of inclination αof the channel with regard to the horizontal, the 

sequent depth ratio Y = h2/h1) and the relative length (λ = Lj/h1) of the jump.  

A much more compelling substitution relation is thus put forth, demonstrating the detrimental impact of the 

simplifying hypotheses of the Forster and Skrinde approach and the ensuing flaws in the equation, as a result of a 

thorough theoretical development free of any simplifying hypotheses.   

This study concerns the analysis of the broad-crested sill effect on the forced hydraulic jumps, in a trapezoidal 

channel. Functional relations have been developed, and the results obtained have been validated by the experimental 

results. 

2. Theoretical considerations        

The bibliographical review shows that the hydraulic jump is governed by the momentum equation applied between 

its initial and final sections. In this case, it is necessary to use the momentum equation for a type A hydraulic jump 

forced by a broad-crested sill developing in a trapezoidal channel, as shown in Fig. 1.The cross-section of the sill is 

therefore trapezoidal, characterized by its height. The side face of the sill, then, forms an obstacle, which is the seat 

of a reaction opposed to the flow direction. This results from the pressure acting on the side surface of the sill. This 

pressure is studied as pressure acting on a vertical flat surface of a trapezoidal geometric shape. The reaction created 

by the presence of the sill exerts a compressive force Fs on the center of gravity. Using the momentum equation, this 

force is added to the external forces, ensuring a balance between the upstream and downstream parts of the jump. 
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Figure 1: Graphical representation of the different forces acting on the hydraulic jump forced by a broad-

crested sill in a trapezoidal channel 

The momentum equation was applied taking into account the following simplifying assumptions: 

• Pressure distribution in sections 1-1 and 2-2 is hydrostatic. 

• Friction on the walls and the bottom of the channel is negligible compared to the load loss due to turbulence 

created by the jump. 

• The velocities of the various liquid streams in each of sections 1-1 and 2-2 are parallel to the mean velocity V and 

are considered uniform. 

• Resistance of the area is negligible. 

Applying Newton's second law gives: 

1 2 2 1 1 2
ξ ρQV - ξ ρQV = P - P - P

s
                                                                                                                                    (1) 

Where: P1, P2 and Ps: represents the external forces. These strengths are: 
 

• The hydrostatic pressure force P1 applied to section 1-1.[Kg.m.s-2] 

• The hydrostatic pressure force P2 applied above the sill in Section 2-2.[Kg.m.s-2] 

• The reaction Ps generated by the presence of the sill in Section 2-2.[Kg.m.s-2] 

• ζ1 and ζ2 are the momentum correction factors that are considered equal to the unit since the velocity distribution 

is assumed to be uniform. 

• ρ is the density of the moving liquid [Kg.m-3] 

• Q is the volume flow. [m3.s-1] 

• V is the average velocity of the flow. [m.s-1] 

Considering all its forces, Eq. (1) is written; 

1 1 2 2ρQV + P = ρQV + P + Ps                                                                                                                                         (2) 

The point of application of each of these forces coincides with the center of gravity of the section under 

consideration. According to Fig. 1, all forces are applied to trapezoidal profiles. These forces can be expressed by 

applying the laws of hydrostatics: 

1 11P =ωh A , 
2 22

P = ωh A and P = ωsAs s , Where: ω represents the unit weight of the flowing liquid; h1, h2, and s 

respectively represent the distance between the center of gravity of the cross sections 1, 2, and s and the free surface 

of the flow; A1 and A2 are respectively the areas of the wetted sections 1 and 2; and As represents the area of the 

side face of the sill. By replacing the expressions of P1, P2, and Ps in Eq. (2), it gives: 

1 1 2 21 2
ρQV +ωh A = ρQV +ωh A +ωsAs                                                                                                                    (3) 
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Thus, the average flow velocities V1 and V2 at the upstream and downstream sections of the jump, respectively, are 

expressed as: V1 = Q/A1 and V2 = Q/A2. Taking all these considerations into account and knowing that ω = ρ.g, Eq. 

(3) can be written by dividing all its members by ρ.g: 

2 2

1 21 2
1 2

Q Q
h A + = h A + sA +s

gA gA
                                                                                                                              (4) 

Based on Fig. 2, the determination of the expressions A1, A2, As, 1h ,
2

h and s is as follows: 

 

Figure 2: Geometric characteristics of the trapezoidal section 

Figure 2a shows the geometric characteristics of the trapezoidal channel at the toe of the jump, where h1 is the 

upstream depth. The parameter m is defined as the cotangent of the inclination angle θ of the trapezoidal channel 

walls. Geometrically, the section A1 and the distance h1 of the gravity center were given by Eqs. (5) and (6): 

2
1 1 1A = bh + mh                                                                                                                                                            (5) 

2
1 1

1
1

h 3b + 2mh
h =

6 A

 
 
 

                                                                                                                                                 (6) 

Figure 2b shows the trapezoidal section downstream of the forced jump, where the end of the roller is at the 

upstream end of the sill. Downstream of the roller, the liquid crosses the step above. The flowing liquid profile 

above the sill always takes a trapezoidal shape. The area of the section A2 and the distance h2 from the center of 

gravity are given by Eqs. 7 and 8: 
2

2 2 2 2A = bh + 2msh + mh                                                                                                                                            (7) 

2
2 2

2
2

h 3b + 6ms + 2mh
h =

6 A

 
 
 

                                                                                                                                     (8) 
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The same steps are taken for Fig. 2c, but in this case the distance of the center of gravity from the horizontal axis of 

the free surface s is the center of gravity specific to the thick sill by adding the downstream water depth h2. So, the 

area of the trapezoidal section of the sill and the distance s are written as follows: 

2
A = bs + mss                                                                                                                                                              (9) 

2

2

s 3b + 2ms
s = h +

6 As

 
 
 

                                                                                                                                            (10) 

The hydraulic jump in a suddenly varied flow expresses the flow discharge Q and area of the wetted section A by 

the dimensional parameter Fr1 or the inflow Froude number upstream of the jump. This number is given generally 

by the universal relation: 

2
2 1

1 3
11

AQ
Fr =

hgA




                                                                                                                                                         (11) 

Equation (11) shows that the Froude number Fr1 depends on four parameters: Q is the flow discharge through the 

trapezoidal channel. 

G is the acceleration of gravity; 

A1 is the area of the section wet at level h1; 

( A1)/( h1) is the partial derivative of the area of the initial wet section relative to the conjugate depth h1. In 

reality, the ratio ( A1/( h1) = B is simply the width of the surface flow. 

The partial derivative of A1compared to h1 for a trapezoidal section results in: 

21
1 1 1

1 1

A
= (bh + mh ) = b + 2mh

h h

 

 
 

Equation (11) takes the form: 

( )2
12

1 3
1

Q b + 2mh
Fr =

gA
                                                                                                                                                (12) 

When equations (6), (8), (10), and (12) were inserted into Eq. (4), the following result occurs: 

( )

( )

2 3 2 2
1 1 1 1 2 2

1 2

1 1 1 2

3 22
1 1

2

1 2

h 3b + 2mh A Fr h 3b + 6ms + 2mh
A + = A +

6 A b + 2mh A 6 A

A Frs 3b + 2ms
+ h + A +s

6 A b + 2mh As

   
   
   

  
  
   

                                                                  (13) 

After simplifying Eq. (13), it is written: 
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2

2 1
1

2 2 21 2
1 1 2 2

1

3

3 1
1

2 2
1

1 2
2

mh
h 1+

mh mh1 1 1 ms 1 msb
h + + Fr = h + + + h s 1+ +

mh2 3 b 2 b 3 b b
1+ 2

b

mh
h 1+

1 1 ms b
+s + + Fr

mh mhms2 3 b
h 1+ 2 1+ 2 +

b b b

 
 

      
    

      
 
 

 
 

   
 

   
  
  

                                                 (14) 

3. Dimensional analysis  

Equation (13) is obtained by applying the momentum equation between sections (1-1) and (2-2) (Fig. 1) of a type A 

hydraulic jump, forced by broad-crested sill motion in a channel of a trapezoidal section. In practice, the use of 

equation 13 presents a difficulty for the dimensioning of the dissipation basins because of its implicit and 

dimensional form, which makes the projection of the physical model to the real model difficult. So, it is necessary to 

move to the dimensionless form. 

The literature shows that the dimensionless rapports can be expressed by the following relationships: 

• The sequence depth ratio is Y = h2/h1. 

• The relative height of the sill is S = s/h1. 

• The relative upstream flow depth is: M = (mh1)/b. 

Equation (14) is written as follows: 

( )

( )

( )

( )
( )

2

2
2

2
1

2
Y 1+ 2MS + MY + 2SY 1+ MS +

1+ 2M 3

2 22 1+ M
+S 1+ MS - 1+ M

3 3
Fr =

1+ M
1-

Y 1+ 2MS + MY

  
  
  

    
    

    

 
 
 

                                                                                (15) 

The implicit relation Eq. (15) expresses the variation of the sequence depth ratio as a function of the inflow Froude 

number, the relative upstream flow depth M and the relative height of the sill S.  

In the case of the classical jump (S=0), Eq. (15) is written as follows: 

2

2
2

1

(1+ 2M) 2 2
Y (1+ MY) - (1+ M)

2(1+ M) 3 3
Fr =

(1+ M)
1-

Y(1+ MY)

 
  

 
 
                                                                                                          (16) 

In the relation Eq. (15), the determination of Y will go through an iterative process; for this, it is necessary to 

propose an explicit relation which has the form y = f(Fr1, S, M). Simplifying circumstances of flow were considered 

in the theoretical development. For this purpose, the mathematical analysis of the experimental results requires a 

comparison between the theoretical Froude number Eq. (15) and that resulting from the universal relation Eq. (12). 
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4. Comparison of the Froude number resulting from the universal relation with that resulting from the 

theoretical relation  

The relative deviation obtained between the ratio of conjugate depths from Eq. (12) of the theoretical development 

and that of the approximate relation Eq. (15) is due to the relative differences between the Froude numbers (Fr1th and 

Fr1exp). This requires calculating this relative deviation and to propose an adjustment of the theoretical relationship 

by the method of least squares (Fig. 3), based on the experimental results. 

Figure 3 shows the variation of the experimental Froude number Fr1exp as a function of the theoretical Froude 

number Fr1the. This figure denotes a shift of the point cloud with respect to the first bisector, which increases with 

increasing Froude number. This shift is attributed largely to the neglect of the singular head loss due to the widening 

of the channel at the upstream end of the broad-crested sill. 

 

Figure 3: Graphic representation of experimental (Fr1exp) and theoretical (Fr1th) Froude numbers 

To overcome this difference, which is based on the experimental results, an adjustment of the theoretical 

relationship by the least squares method is essential. The adjustment between two parameters resulted in a straight 

line (Fig. 3), which passes through the origin with a slope equal to 1.03. 

1exp 1thFr =1.0015Fr                                                                                                        (17) 

The purpose of this adjustment is to correct the theoretical relation Eq. (15), by the slope coefficient 1.0015. 

( )

( ) ( )

( )
( )

2

2
2

2
1

2
Y 1+ 2MS + MY +

1+ 2M 3

2 21+ M
+2SY 1+ MS + S 1+ MS - 1+ M

3 3
Fr = 0.5

1+ M
1-

Y 1+ 2MS + MY

  
  
  

    
    

    

 
 
 

                                                                        (18) 
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5. The broad-crested sill effect on hydraulic jump  

To facilitate hydraulic calculations and to replace the theoretical development's implicit relationship Eq. (18) with a 

more practical and explicit relationship, In this case, it is preferable to carry out an adjustment of the theoretical 

curves by a mathematical model. 

Figure 4 represents the graphic representation of the theoretical variation of the sequence depth ratio Y as a function 

of the Froude number Fr1 and the relative upstream flow depth M. The curves were drawn according to the 

theoretical relation Eq. (18) of the classical jump (S = 0) and M = (0.04, 0.07, 0.12 and 0.20). 

 

Figure 4: Variation of Y as a function of Fr1and M according to Eq. (18) for a hydraulic jump, forced by 

broad-crested sill for a classical jump S=0. 

Figure 4 shows that the more the relative upstream flow depth M increases, the more the sequence depth ratio Y 

decreases for a fixed Froude number value. Figure 4 shows that the representation of Y = f(Fr1) is of the linear type: 

1Y = aFr - b                                                                                                                                                                (19) 

For each value of S, the variation of Y as a function of Fr1 and M is presented in the first case through an 

analysis of the experimental points. S is equal to (1, 2, 3, and 4). The graphical variation of Y = f(Fr1, M) for 

different S values is shown in (Fig. 5).  

The values of M were determined by entering the experimental data for the initial height at the toe of the jump, more 

precisely h1 = (1.5, 2.5, 4, and 7).  
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Figure 5: For different S values, the variation of Y as a function of Fr1 and M. (A) S = 1, (B) S = 2, (C) S = 3, 

(D) S = 4 

Figure 6 shows that the variation of the coefficients "a" and "b" as a function of M takes the following form: 

2
1

a
a = a M                                                                                                                                                                  (20) 

2
1

b
b = b M                                                                                                                                                                  (21) 

The adjustment of the experimental points of a = f(M) and b = f(M) for a given value of S showed that as M 

increases, the values of "a" and "b" decrease Fig. (6). Table 1 presents the equations that resulted from this 

adjustment. 
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Table 1: Adjustment equations of a and b as a function of M 

Values of S 
Equations 

a b 

1 a=0.71M-0.15 b=0.22M-0.30 

2 a=0.68M-0.16 b=0.95M-0.13 

3 a=0.63M-0.17 b=1.77M-0.09 

4 a=0.59M-0.20 b=2.44M-0.09 
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Figure 6: Variation of the coefficients a = f(M) and b = f(M) for different values of S. (A) S = 1, (B) S = 2, (C) 

S = 3, (D) S = 4 

In a second mathematical adjustment of the experimental data (Fig. 7), the variation of the coefficients "a1," "a2," 

"b1," and "b2" as a function of S was established for a given value of M. The variations of a1 = f(S) for M = 0.04, a2 

= f(S) for M = 0.07, b1 = f(S) for M = 0.12 and b2 = f(S) for M = 0.20 were given by Table 2 as follows: 

Table 2: Adjustment equations of a1, a2, b1 and b2 as a function of M 

Values of M Equations 

0.04 a1=-0.04S+0.75 

0.07 a2=0.01S+0.14 

0.12 b1=0.79S-0.59 

0.20 b2=0.29S(-1.09) 
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Figure 7: Variation of coefficients "a1", "a2", "b1" and "b2" as a function of S. 

Substituting the equations in Table 1 and Table 2 into Eqs (19), (20) and (21) gives the expression for the sequence 

depth ratio as a function of the inflow Froude number Fr1 for a range of relative upstream flow depth: 0.04 ≤ M ≤ 

0.20 and for 2.60 ≤ Fr1 ≤ 14.20. 

1

-1.09(0.01S+0.14) (0.29S )
Y = (-0.04S + 0.75)M Fr - (0.79S - 0.59)M                                                                     (22) 

The explicit relation Eq. (22) is deduced, which gives the possibility of determining the sequence depth ratio Y by 

knowing the value of the inflow Froude number Fr1, the relative height of sill S, and the relative upstream flow 

depth M. 

6. Discussion  

Through this study, a theoretical development was presented in order to establish the relationship between the 

characteristics Fr1, Y, M and S of a hydraulic jump, forced by broad-crested sill evolution in a trapezoidal channel. 

This development led to the proposal of a theoretical relationship Eq. (15) established by applying the momentum 

equation between the upstream and downstream sections of the jump. 

Knowing the Froude number Fr1 and the relative height S of the broad-crested sill, the sequence depth ratio Y=h2/h1 

can be obtained from Eq. (15). Since the depth h1 of the jump at its upstream section and the value of the aspect ratio 

M are known, and from the value of Y, it is possible to determine the depth h2 of the jump at its downstream section. 
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Also, Eq. (15) leads to Eq. (16) of the classical hydraulic jump evolving in a trapezoidal channel for S = 0. This last 

consideration confirms the validity of the theoretical development undertaken. 

However, the comparison of the values of the Froude numbers Fr1, determined from the universal relation Eq. (13), 

using the experimental values with those determined by the application of Eq. (15), shows a more or less significant 

offset. This shift is largely attributed to the singularity at the upstream end of the broad-crested sill. This last 

observation helps to correct Eq. (15) by the experimental measurements and the relation Eq. (18) is then obtained. 

Moreover, the application of the general relation Eq. (18) requires the use of an iterative process since it arises 

analytically in an implicit form with respect to the ratio of the conjugate depths Y. To solve the problem, it has been 

proposed to replace the latter relation by the explicit relation Eq. (22). The latter then allows easy determination of 

the sequence depth ratio Y as a function of the Froude number Fr1 and the relative height S of the sill. 
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