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Abstract:- Intuitionistic Multi L-Fuzzy Sets (IMLFS) offer a powerful framework for handling uncertainty and 

hesitation in decision-making. They incorporate degrees of membership, non-membership, and hesitation over a 

multi-level lattice structure. This paper explores the application of IMLFS in multi-criteria decision-making 

(MCDM) problems, offering a flexible and comprehensive framework for evaluating alternatives under 

uncertainty. To measure the similarity or dissimilarity between different alternatives in the IMLFS context, 

distance measures play a pivotal role. We examine four commonly used distance metrics: Hamming distance, 

Euclidean distance, Normalized Hamming distance, and Normalized Euclidean distance. Among these, the 

Normalized Euclidean distance emerges as the most effective in decision-making scenarios due to its ability to 

account for relative deviations while mitigating the impact of scale differences. It maintains sensitivity to changes 

in fuzzy values and supports a balanced evaluation in ranking alternatives. Thus, the integration of IMLFS with 

Normalized Euclidean distance provides a robust decision-making tool, enabling improved handling of 

uncertainty, ambiguity, and linguistic variability. 

Keywords: Intuitionistic Multi L-Fuzzy Sets (IMLFS) – Multi-Criteria Decision-Making (MCDM) – Hamming 

Distance – Euclidean Distance – Normalized Hamming Distance - Normalized Euclidean Distance. 

 

1. Introduction 

Decision-making problems often involve uncertainty, vagueness, and imprecision, which traditional crisp models 

fail to handle effectively. Intuitionistic Multi L-Fuzzy Sets (IMLFS) provide a flexible mathematical framework 

to represent and process such imprecise information by incorporating degrees of membership, non-membership, 

and hesitation in a multi-level structure. This makes them particularly suitable for multi-criteria decision-making 

(MCDM) problems [1-8], where decisions depend on evaluating various conflicting attributes under uncertain 

conditions. They allow decision-makers to express not just how much an alternative satisfies a criterion, but also 

how much it does not and how uncertain they are about the evaluation. To evaluate and rank alternatives in 

decision-making [9,10], distance measures play a crucial role in comparing fuzzy information.  

This study applies four prominent techniques: Hamming Distance, Euclidean Distance, Normalized Hamming 

Distance, and Normalized Euclidean Distance [11,12,13] for measuring the similarity between alternatives and 

ideal solutions. While all four methods offer insights, the normalized Euclidean distance measure proves to be the 

most effective, as it maintains proportionality across different scales and yields more accurate and consistent 
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rankings in diverse decision-making scenarios. These tools collectively enhance the decision-making process by 

offering a richer and more flexible representation of human reasoning under uncertainty. 

This approach has been successfully applied across various domains such as engineering, economics, medical 

diagnosis, supplier selection and expert systems, where nuanced judgment is crucial [14,15]. 

2. Objectives 

In this section, we site the fundamental definitions that will be used in the sequel. 

2.1 Definition (L.A. Zadeh [16], 1965) 

Let X be a non-empty set. A fuzzy set A drawn from X is defined as 𝐴 = {〈𝑥, 𝜇𝐴(𝑥)〉: 𝑥𝜖𝑋}, where 𝜇𝐴(𝑥): 𝑋 →

[0,1] is the membership function of the fuzzy set 𝐴, and also which is a collection of objects with graded 

membership, which means degrees of membership. 

2.2 Definition (K.T. Atanassov [17,18], 1983) 

Let X be a non-empty set. An Intuitionistic fuzzy set (IFS) 𝐴 in X is an object having the form  𝐴 =

{〈𝑥, 𝜇𝐴(𝑥), 𝛾𝐴(𝑥)〉: 𝑥𝜖𝑋}, where the functions 𝜇𝐴(𝑥), 𝛾𝐴(𝑥): 𝑋 → [0,1] define respectively, the degree of 

membership and non-membership of the element 𝑥 ∈ 𝑋 to the set 𝐴, which is a subset of 𝑋, and for every element 

𝑥 ∈ 𝑋 such that 0 ≤ 𝜇𝐴(𝑥) + 𝛾𝐴(𝑥) ≤ 1. 

Furthermore, we have 𝜋𝐴(𝑥) = 1 − 𝜇𝐴(𝑥) − 𝛾𝐴(𝑥) called the intuitionistic fuzzy set index (or) hesitation margin 

(or) degree of indeterminacy of 𝑥 in 𝐴. For, if 𝜋𝐴(𝑥): 𝑋 → [0,1] and 0 ≤ 𝜋𝐴(𝑥) ≤ 1 for every 𝑥 ∈ 𝑋, which 

expresses the lack of knowledge of whether 𝑥 belongs to intuitionistic fuzzy set 𝐴 or not. 

2.3 Definition 

Let 𝐴 = {〈𝑥, 𝜇𝐴𝑖
(𝑥), 𝛾𝐴𝑖

(𝑥)〉: 𝑥𝜖𝑋} where 𝜇𝐴𝑖
(𝑥) = (𝜇𝐴1

(𝑥), 𝜇𝐴2
(𝑥), … . . . , 𝜇𝐴𝑘

(𝑥)) and 𝛾𝐴𝑖
(𝑥) =

(𝛾𝐴1
(𝑥), 𝛾𝐴2

(𝑥), . . … . , 𝛾𝐴𝑘
(𝑥)) such that  0 ≤ 𝜇𝐴𝑖

(𝑥) + 𝛾𝐴𝑖
(𝑥) ≤ 1, for all 𝑖, ∀ 𝑥𝜖𝑋. Also for each 𝑖 = 1,2, … . , 𝑘,  

𝜇𝐴𝑖
(𝑥): 𝑋 → [0,1],  𝛾𝐴𝑖

(𝑥): 𝑋 → [0,1]. 

Here, 𝜇𝐴1
(𝑥) ≥ 𝜇𝐴2

(𝑥) ≥. … . ≥ 𝜇𝐴𝑘
(𝑥), for all 𝑥𝜖𝑋. That is, 𝜇𝐴𝑖

′𝑠 are decreasingly ordered sequence, the 

corresponding non-membership sequence 𝛾𝐴𝑖
′𝑠 are may not be in decreasing or increasing order. 

i.e., 0 ≤ 𝜇𝐴𝑖
(𝑥) + 𝛾𝐴𝑖

(𝑥) ≤ 1, ∀ 𝑥𝜖𝑋, for all 𝑖 = 1,2, … . , 𝑘. Then the set 𝐴 is said to be an intuitionistic multi L-

fuzzy set (IMLFS) with dimension k of X. 

Furthermore, we have 𝜋𝐴𝑖
(𝑥) = (1 − 𝜇𝐴𝑖

(𝑥) − 𝛾𝐴𝑖
(𝑥)) is called the index of intuitionistic multi L-fuzzy set (or) 

hesitation margin (or) degree of indeterminacy of 𝑥 in A. 

For if  𝜋𝐴𝑖
(𝑥): 𝑋 → [0,1] and  0 ≤ 𝜋𝐴𝑖

(𝑥) ≤ 1, ∀ 𝑖 = 1,2, … . , 𝑘 for every 𝑥𝜖𝑋, which expresses the lack of 

knowledge of whether 𝑥 belongs to intuitionistic fuzzy set A or not. 
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We use the notation  (𝜇𝐴𝑖
(𝑥), 𝛾𝐴𝑖

(𝑥), 𝜋𝐴𝑖
(𝑥)) to represent an intuitionistic multi L-fuzzy set. 

2.4 Examples to define membership values and linguistic terms 

In the context of fuzzy set theory, linguistic terms such as “Excellent”, “Good”, “Average”, and “Poor” are 

commonly used to represent qualitative assessments of quantitative data, such as student marks. These linguistic 

terms are mapped to numerical values using membership functions, which assign a degree of membership ranging 

from 0 to 1. This approach enables the modeling of uncertainty and subjectivity inherent in human judgment.  

The following examples illustrate how membership values can be defined for various linguistic terms based on 

student’s marks, providing a foundation for more nuanced and flexible evaluation in decision-making processes. 

Marks Linguistic Terms Membership Values 

0 

1-10 

11-20 

21-30 

31-40 

41-50 

51-60 

61-70 

71-80 

81-90 

91-100 

         Absent Performance 

         Very Very Poor 

         Very Poor 

          Poor 

          Below Average 

          Average 

          Above Average 

          Good 

          Very Good 

          Excellent 

          Outstanding / Perfect 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

 

2.5 Example 

Let A be an IMLFS of dimension two with 𝜇𝐴(𝑥) = (0.3,0.5) and 𝛾𝐴(𝑥) = (0.6,0.2). 

Then     𝜋𝐴(𝑥) = (1 − 𝜇𝐴1
(𝑥) − 𝛾𝐴1

(𝑥), 1 − 𝜇𝐴2
(𝑥) − 𝛾𝐴2

(𝑥)) 

                        = (1 − 0.3 − 0.6,1 − 0.5 − 0.2)   = (0.1,0.3) 

It can be interpreted as “the degree that the object 𝑥 belongs to IMLFS A is (0.3,0.5), the degree that the object 𝑥 

does not belongs to IMLFS A is (0.6,0.2) and the degree of hesitancy is (0.1,0.3)". 

3. Methods 

3.1 Definition 

Let X be non-empty set. An intuitionistic multi L-fuzzy subsets 𝐴, 𝐵, 𝐶 ∈ 𝑋 then the distance measured is a 

mapping 𝑑: 𝑋 × 𝑋 → [0,1], if 𝑑(𝐴, 𝐵) satisfies the following axioms: 

(i)   0 ≤ 𝑑(𝐴, 𝐵) ≤ 1 
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(ii)  𝑑(𝐴, 𝐵) = 0 ⇔ 𝐴 = 𝐵 

(iii)  𝑑(𝐴, 𝐵) = 𝑑(𝐵, 𝐴) 

(iv)  𝑑(𝐴, 𝐶) + 𝑑(𝐶, 𝐵) ≥ 𝑑(𝐴, 𝐵) 

(v)  If 𝐴 ⊆ 𝐵 ⊆ 𝐶, then  𝑑(𝐴, 𝐶) ≥ 𝑑(𝐴, 𝐵) and  𝑑(𝐴, 𝐶) ≥ 𝑑(𝐶, 𝐵). 

Then 𝑑(𝐴, 𝐵) is a distance measure between IMLFS’s of A and B. 

3.2 Definition 

The Cardinality of the membership function 𝜇𝐴𝑖
(𝑥) and the non-membership function 𝛾𝐴𝑖

(𝑥) is the length of an 

element 𝑥 is an IMLFS of A denoted as 𝑛(𝐴) and it is defined as 

               𝑛(𝐴) = |𝜇𝐴𝑖
(𝑥)| = |𝛾𝐴𝑖

(𝑥)|. 

If A,B,C are the IMLFS’s defined on X, then their Cardinality 𝑛 = 𝑚𝑎𝑥{𝑛(𝐴), 𝑛(𝐵), 𝑛(𝐶)}. 

3.3 Definition 

Let, 𝐴 = {〈𝑥𝑗 , 𝜇𝐴𝑖
(𝑥𝑗), 𝛾𝐴𝑖

(𝑥𝑗), 𝜋𝐴𝑖
(𝑥𝑗)〉: 𝑥𝑗𝜖𝑋} and 𝐵 = {〈𝑥𝑗 , 𝜇𝐵𝑖

(𝑥𝑗), 𝛾𝐵𝑖
(𝑥𝑗), 𝜋𝐵𝑖

(𝑥𝑗)〉: 𝑥𝑗𝜖𝑋} be two IMFS’s in 

𝑋 = {𝑥1, 𝑥2, … … . , 𝑥𝑘}, 𝑗 = 1,2, … . . , 𝑘 based on the geometric interpretation of IMFS Szmidt and Kacprzyk 

proposed [19]. 

1. The Hamming Distance 

𝑑𝐻(𝐴, 𝐵) =
1

2
∑ ∑(|𝜇𝐴𝑖

(𝑥𝑗) − 𝜇𝐵𝑖
(𝑥𝑗)| + |𝛾𝐴𝑖

(𝑥𝑗) − 𝛾𝐵𝑖
(𝑥𝑗)| + |𝜋𝐴𝑖

(𝑥𝑗) − 𝜋𝐵𝑖
(𝑥𝑗)|)

𝑘

𝑗=1

𝑛

𝑖=1

 

2. The Euclidean Distance 

𝑑𝐸(𝐴, 𝐵) = √
1

2
∑ ∑ [(𝜇𝐴𝑖

(𝑥𝑗) − 𝜇𝐵𝑖
(𝑥𝑗))

2

+ (𝛾𝐴𝑖
(𝑥𝑗) − 𝛾𝐵𝑖

(𝑥𝑗))
2

+ (𝜋𝐴𝑖
(𝑥𝑗) − 𝜋𝐵𝑖

(𝑥𝑗))
2

]

𝑘

𝑗=1

𝑛

𝑖=1

 

3. The Normalized Hamming Distance 

𝑑𝑁−𝐻(𝐴, 𝐵) =
1

2𝑛
∑ ∑(|𝜇𝐴𝑖

(𝑥𝑗) − 𝜇𝐵𝑖
(𝑥𝑗)| + |𝛾𝐴𝑖

(𝑥𝑗) − 𝛾𝐵𝑖
(𝑥𝑗)| + |𝜋𝐴𝑖

(𝑥𝑗) − 𝜋𝐵𝑖
(𝑥𝑗)|)

𝑘

𝑗=1

𝑛

𝑖=1

 

4. The Normalized Euclidean Distance 

𝑑𝑁−𝐸(𝐴, 𝐵) = √
1

2𝑛𝑘
∑ ∑ [(𝜇𝐴𝑖

(𝑥𝑗) − 𝜇𝐵𝑖
(𝑥𝑗))

2

+ (𝛾𝐴𝑖
(𝑥𝑗) − 𝛾𝐵𝑖

(𝑥𝑗))
2

+ (𝜋𝐴𝑖
(𝑥𝑗) − 𝜋𝐵𝑖

(𝑥𝑗))
2

]

𝑘

𝑗=1

𝑛

𝑖=1
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Where,  𝑛 = 𝑚𝑎𝑥{𝑛(𝐴𝑖), 𝑛(𝐵𝑖)}  and  𝑋 = {𝑥1, 𝑥2, … … . , 𝑥𝑘}. 

Remark 

Here X denotes the set of all multi-criterias and n represents the cardinality of the IMLFS. 

Example 

Let 𝐴 = {〈0.5,0.3,0.2〉〈0.6,0.2,0.2〉} and 𝐵 = {〈0.4,0.5,0.1〉〈1.0,0.0,0.0〉} be intuitionistic fuzzy sets in X. If 𝑋 =

{𝑥1, 𝑥2} we use the above distance measures to calculate the distance between A and B. 

(i) Hamming Distance of A and B 

𝑑𝐻(𝐴, 𝐵) =
1

2
(|0.5 − 0.4| + |0.3 − 0.5| + |0.2 − 0.1| + |0.6 − 1.0| + |0.2 − 0.0| + |0.2 − 0.0|) 

               =
1

2
(0.1 + 0.2 + 0.1 + 0.4 + 0.2 + 0.2) =

1

2
(1.2) = 𝟎. 𝟔𝟎𝟎𝟎 

(ii) Euclidean Distance of A and B 

𝑑𝐸(𝐴, 𝐵) = √
1

2
[(0.1)2 + (0.2)2 + (0.1)2 + (0.4)2 + (0.2)2 + (0.2)2] 

                = √
1

2
[0.01 + 0.04 + 0.01 + 0.16 + 0.04 + 0.04] = √

1

2
[0.30] = √0.15 = 𝟎. 𝟑𝟖𝟕𝟑 

(iii) Normalized Hamming Distance of A and B 

 𝑑𝑁−𝐻(𝐴, 𝐵) =
1

2(2)
(0.1 + 0.2 + 0.1 + 0.4 + 0.2 + 0.2) =

1

4
(1.2) = 𝟎. 𝟑𝟎𝟎𝟎 

(iv) Normalized Euclidean Distance of A and B 

𝑑𝑁−𝐸(𝐴, 𝐵) = √
1

2(2)(1)
[(0.1)2 + (0.2)2 + (0.1)2 + (0.4)2 + (0.2)2 + (0.2)2] 

                  = √
1

4
[0.01 + 0.04 + 0.01 + 0.16 + 0.04 + 0.04] = √

1

4
[0.30] = √0.075 = 𝟎. 𝟐𝟕𝟑𝟗 

These findings demonstrated that the Normalized Euclidean distance provides the most accurate measure of the 

distance between points A and B. We will therefore utilize the Normalized Euclidean distance in the applications 

due to its high accuracy confidence rate. 

3.4 Application of Intuitionistic Multi L-Fuzzy Sets in College Student Determination 

Let 𝐶 = {𝐶1, 𝐶2,  𝐶3} be a set of colleges, 𝐴 = { 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑀𝑎𝑟𝑘𝑠, 𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙 𝐼𝑛𝑡𝑒𝑟𝑣𝑖𝑒𝑤, 𝑆𝑝𝑜𝑟𝑡𝑠, 

𝑁𝐶𝐶 𝑁𝑆𝑆⁄ 𝑜𝑡ℎ𝑒𝑟𝑠, 𝐶𝑜 − 𝐶𝑢𝑟𝑟𝑖𝑐𝑢𝑙𝑎𝑟 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠} be the set of students’ abilities, and let 𝑆 = {𝑆1, 𝑆2, 𝑆3, 𝑆4} be a 

set of students. 
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Structure for Student Selection Committee Evaluation 

For a college student selection committee, a structured and fair evaluation system is essential. This system ensures 

that all applicants are assessed consistently and impartially, ultimately leading to the selection of the most suitable 

candidates. It should outline clear criteria, evaluation methods, and a transparent process. The following tables 

illustrate how these elements can be effectively addressed in this section. 

Table 1: Arts College Committee Vs Criteria’s 

 Criteria’s 

A
rt

s 
C

o
ll

eg
e 

C
o

m
m

it
te

e
 

 Subject Marks 

(Academics) 

Personal  
Interview 

Sports NCC NSS ⁄  

Others 

𝐶𝑜 − 𝐶𝑢𝑟𝑟𝑖𝑐𝑢𝑙𝑎𝑟  
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 

 

𝐶1 

((0.7,0.5,0.8) 

(0.2,0.3,0.1) 

(0.1,0.2,0.1)) 

((0.6,0.7,0.5) 

(0.3,0.1,0.2) 

(0.1,0.2,0.3)) 

((0.8,0.7,0.5) 

(0.0,0.1,0.2) 

(0.2,0.2,0.3)) 

((0.5,0.6,0.8) 

(0.1,0.3,0.0) 

(0.4,0.1,0.2)) 

((0.4,0.5,0.7) 

(0.3,0.2,0.2) 

(0.3,0.3,0.1)) 

 

𝐶2 

((0.8,0.7,0.5) 

(0.1,0.1,0.3) 

(0.1,0.2,0.2)) 

((0.8,0.6,0.7) 

(0.0,0.2,0.1) 

(0.2,0.2,0.2)) 

((0.5,0.7,0.9) 

(0.0,0.1,0.1) 

(0.5,0.2,0.0)) 

((0.6,0.5,0.4) 

(0.1,0.1,0.3) 

(0.3,0.4,0.3)) 

((0.8,0.7,0.7) 

(0.1,0.0,0.1) 

(0.1,0.3,0.2)) 

 

 𝐶3 

((0.9,0.7,0.8) 

(0.1,0.1,0.2) 

(0.0,0.2,0.0)) 

((0.5,0.5,0.6) 

(0.2,0.1,0.0) 

(0.3,0.4,0.4)) 

((0.7,0.4,0.5) 

(0.1,0.3,0.2) 

(0.2,0.3,0.3)) 

((0.6,0.7,0.7) 

(0.2,0.0,0.1) 

(0.2,0.3,0.2)) 

((0.6,0.5,0.4) 

(0.1,0.1,0.2) 

(0.3,0.4,0.4)) 

 

Table 2: Students Abilities Vs Criteria’s 

 Criteria’s 

S
tu

d
en

t 
A

b
il

it
ie

s 

 Subject Marks 

(Academics) 

Personal  
Interview 

Sports NCC NSS ⁄  

Others 

𝐶𝑜
− 𝐶𝑢𝑟𝑟𝑖𝑐𝑢𝑙𝑎𝑟  

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 

 

𝑆1 

((0.4,0.6,0.7) 

(0.4,0.3,0.2) 

(0.2,0.1,0.1)) 

((0.5,0.7,0.4) 

(0.2,0.1,0.3) 

(0.3,0.2,0.3)) 

((0.6,0.8,0.4) 

(0.2,0.0,0.3) 

(0.2,0.2,0.3)) 

((0.5,0.5,0.6) 

(0.2,0.3,0.1) 

(0.3,0.2,0.3)) 

((0.6,0.5,0.6) 

(0.3,0.2,0.1) 

(0.1,0.3,0.3)) 

 

𝑆2 

((0.2,0.2,0.4) 

(0.0,0.2,0.1) 

(0.8,0.6,0.5)) 

((0.4,0.5,0.7) 

(0.3,0.4,0.2) 

(0.3,0.1,0.1)) 

((0.1,0.2,0.1) 

(0.9,0.8,0.6) 

(0.0,0.0,0.3)) 

((0.7,0.5,0.7) 

(0.1,0.2,0.1) 

(0.2,0.3,0.2)) 

((0.2,0.0,0.4) 

(0.0,0.2,0.2) 

(0.8,0.8,0.4)) 

 

 𝑆3 

((0.6,0.3,0.5) 

(0.2,0.5,0.2) 

(0.2,0.2,0.3)) 

((0.4,0.3,0.1) 

(0.5,0.5,0.9) 

(0.1,0.2,0.0)) 

((0.5,0.2,0.2) 

(0.1,0.3,0.1) 

(0.4,0.5,0.7)) 

((0.0,0.1,0.1) 

(0.2,0.1,0.0) 

(0.8,0.8,0.9)) 

((0.7,0.6,0.3) 

(0.1,0.2,0.1) 

(0.2,0.2,0.6)) 

 

 𝑆4 

((0.3,0.4,0.3) 

(0.5,0.1,0.4) 

(0.2,0.5,0.3)) 

((0.5,0.4,0.6) 

(0.2,0.4,0.1) 

(0.3,0.2,0.3)) 

((0.2,0.0,0.3) 

(0.6,0.4,0.2) 

(0.2,0.6,0.5)) 

((0.1,0.4,0.3) 

(0.7,0.5,0.6) 

(0.2,0.1,0.1)) 

((0.6,0.5,0.7) 

(0.0,0.2,0.1) 

(0.4,0.3,0.2)) 
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Table 3: Arts College Committee Vs Students Abilities 

𝑛 = max{𝑛(𝐴), 𝑛(𝐵)} = max{3,4} = 4    and    𝑘 = 5 (i.e., Criteria’s) 

The Normalized Euclidean shortest distance gives: 

 Arts College Committee 

S
tu

d
en

t 
A

b
il

it
ie

s 

 𝐶1 𝐶2 𝐶3 

𝑆1 0.1245 0.1987 0.1817 

𝑆2 0.3647 0.4093 0.3536 

 𝑆3 0.3507 0.3286 0.3536 

 𝑆4 0.3162 0.3178 0.3000 

 

Example Calculation: 

 College C1 

Student S1       = [
1

2(4)(5)
((0.3)2 + (−0.1)2 + (0.1)2 + (−0.2)2 + 02 + (−0.1)2 + (−0.1)2 +  (0.1)2 + 02 +

                                (0.1)2 + 02 + (0.1)2 + (0.1)2 + 02 + (−0.1)2 + (−0.2)2 + 02 + 02 + (0.2)2 + (−0.1)2 +

                                (0.1)2 + (−0.2)2 + (0.1)2 + (−0.1)2 +  02 + 02 + 02 + 02 + (0.1)2 + (0.2)2 + (−0.1)2 +

                                 02 + (−0.1)2 + (0.1)2 + (−0.1)2 + (−0.1)2 + (−0.2)2 + 02 + (0.1)2 + 02 + 02 +

                                 (0.1)2 + (−0.2)2 + 02 + (−0.2)2)]

𝟏

𝟐
  

                         = [
1

40
((0.09 × 1) + (0.01 × 21) + (0.04 × 8))]

𝟏

𝟐
= 0.1245 

Results: Table 3 depicts that the Normalized Euclidean shortest distance between each student and each college 

is given that the student will enroll in the college. According to Table 3, the student  𝑆1 is to enroll in 𝐶1 college, 

the student  𝑆2 is to enroll in  𝐶3 college, the student  𝑆3 is to enroll in 𝐶2 college, the student  𝑆4 is to enroll in 

𝐶3 college. 

3.5 Application of Intuitionistic Multi L-Fuzzy Sets to Determine the Performance of the Students in TNPSC  

      Group 4 Exam Preparation 

This study explores the use of Intuitionistic Multi L-Fuzzy Sets (IMLFS) to assess the performance of students 

preparing for the TNPSC Group 4 examination. Traditional evaluation methods often lack the capacity to handle 

uncertainty and hesitation inherent in human assessments. IMLFS integrates membership, non-membership, and 

hesitation degrees along with linguistic terms (e.g., Good, Average, Poor) to better reflect real-world judgments. 

Performance indicators such as test scores, mock test consistency, time management, and subject-wise strength 

are mapped into multi-level linguistic variables. By applying normalized distance measures, such as normalized 

Euclidean distance, the closeness of each student’s performance to an ideal benchmark is evaluated. This method 
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provides a more nuanced and flexible approach to ranking and guiding students, especially in large-scale 

competitive exam settings like TNPSC. 

Table 1: Benchmark for each subject and each model test 

Criteria’s 

General 

(𝑇𝑎𝑚𝑖𝑙/ 

English) 

General 

Studies 

Aptitude & 

Mental Ability 

𝐼𝑛𝑑𝑖𝑎𝑛 − 

(𝑃𝑜𝑙𝑖𝑡𝑦 & 

𝐸𝑐𝑜𝑛𝑜𝑚𝑦) 

𝐺𝑒𝑛𝑒𝑟𝑎𝑙  

𝑆𝑐𝑖𝑒𝑛𝑐𝑒 

History &  

Geography 

((0.8,1.0,0.9) 

(0.1,0.0,0.1) 

(0.1,0.0,0.0)) 

((0.6,0.7,0.5) 

(0.2,0.2,0.1) 

(0.2,0.1,0.4)) 

((0.9,0.7,0.8) 

(0.1,0.2,0.2) 

(0.0,0.1,0.0)) 

((0.8,0.6,0.6) 

(0.1,0.1,0.3) 

(0.1,0.3,0.1)) 

((0.5,0.6,0.5) 

(0.2,0.1,0.3) 

(0.3,0.3,0.2)) 

((0.7,0.6,0.7) 

(0.2,0.2,0.1) 

(0.1,0.2,0.2)) 

 

Table 2: Each student’s marks in each subject 

 Criteria’s 

 General 
(𝑇𝑎𝑚𝑖𝑙/ 

English) 

General 
Studies 

Aptitude & 

Mental Ability 

𝐼𝑛𝑑𝑖𝑎𝑛 − 

(𝑃𝑜𝑙𝑖𝑡𝑦 & 

𝐸𝑐𝑜𝑛𝑜𝑚𝑦) 

𝐺𝑒𝑛𝑒𝑟𝑎𝑙  
𝑆𝑐𝑖𝑒𝑛𝑐𝑒 

History &  
Geography 

 

𝑆1 

((0.5,0.5,0.6) 

(0.3,0.2,0.3) 

(0.2,0.3,0.1)) 

((0.7,0.5,0.6) 

(0.1,0.3,0.1) 

(0.2,0.2,0.3)) 

((0.8,0.6,0.8) 

(0.2,0.1,0.1) 

(0.0,0.3,0.1)) 

((0.7,0.9,0.5) 

(0.2,0.0,0.2) 

(0.1,0.1,0.3)) 

((0.6,0.6,0.7) 

(0.0,0.2,0.1) 

(0.4,0.2,0.2)) 

((0.4,0.6,0.5) 

(0.4,0.2,0.2) 

(0.2,0.2,0.3)) 

 

𝑆2 

((0.8,0.9,0.8) 

(0.1,0.0,0.2) 

(0.1,0.1,0.0)) 

((0.7,0.6,0.7) 

(0.1,0.4,0.2) 

(0.2,0.0,0.1)) 

((0.5,0.5,0.6) 

(0.2,0.3,0.1) 

(0.3,0.2,0.3)) 

((0.4,0.7,0.8) 

(0.3,0.2,0.1) 

(0.3,0.1,0.1)) 

((0.6,0.8,0.4) 

(0.1,0.2,0.5) 

(0.3,0.0,0.1)) 

((0.7,0.5,0.5) 

(0.1,0.4,0.3) 

(0.2,0.1,0.2)) 

 

 𝑆3 

((0.7,0.8,1.0) 

(0.2,0.1,0.0) 

(0.1,0.1,0.0)) 

((0.6,0.7,0.7) 

(0.3,0.1,0.2) 

(0.1,0.2,0.1)) 

((0.9,0.9,0.8) 

(0.1,0.0,0.1) 

(0.0,0.1,0.1)) 

((0.6,0.8,0.7) 

(0.2,0.1,0.2) 

(0.2,0.1,0.1)) 

((0.5,0.4,0.4) 

(0.1,0.5,0.3) 

(0.4,0.1,0.3)) 

((0.8,0.5,0.8) 

(0.1,0.2,0.2) 

(0.1,0.3,0.0)) 

 

𝑆4 

((0.9,0.5,0.6) 

(0.0,0.4,0.2) 

(0.1,0.1,0.2)) 

((0.9,0.6,0.8) 

(0.1,0.4,0.1) 

(0.0,0.0,0.1)) 

((0.5,0.7,0.6) 

(0.1,0.2,0.1) 

(0.4,0.1,0.3)) 

((0.8,0.7,0.8) 

(0.2,0.2,0.1) 

(0.0,0.1,0.1)) 

((0.6,1.0,0.7) 

(0.1,0.0,0.2) 

(0.3,0.0,0.1)) 

((0.8,0.8,0.6) 

(0.0,0.0,0.3) 

(0.2,0.2,0.1)) 

 

𝑆5 

((0.6,0.4,0.5) 

(0.2,0.3,0.2) 

(0.2,0.3,0.3)) 

((0.7,0.5,0.7) 

(0.2,0.1,0.1) 

(0.1,0.4,0.2)) 

((0.4,0.4,0.8) 

(0.1,0.2,0.1) 

(0.5,0.4,0.1)) 

((0.9,0.6,0.7) 

(0.0,0.3,0.1) 

(0.1,0.1,0.2)) 

((0.6,0.2,0.3) 

(0.1,0.3,0.1) 

(0.3,0.5,0.6)) 

((0.5,0.7,0.4) 

(0.3,0.3,0.2) 

(0.2,0.0,0.4)) 

 

Table 3: The Normalized Euclidean distance between the benchmark and each student’s mark 

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 

0.1549 0.1572 0.1237 0.1879 0.2128 
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Results: From the above table, the minimum distance gives the optimal solution to the given intuitionistic 

multi-criteria decision-making problem. The Normalized Euclidean distance between the benchmark given by 

the coaching centre and the marks obtained by the student 𝑆3 is minimum. Hence, it is identified that the student 

𝑆3 performs well in the model examinations. Also, the student 𝑆5 is maximum. Hence, it is identified that for the 

student 𝑆5, more attention is needed. 

And the students 𝑆1, 𝑆2 and 𝑆4 is study average performance of the others. 

4. Discussions 

This study explores the use of intuitionistic multi L-fuzzy sets in solving complex decision-making problems. By 

incorporating uncertainty and hesitation values, these sets provide a more flexible framework than traditional 

fuzzy models. The research applies the Normalized Euclidean distance approach to evaluate and compare 

alternatives effectively. This method enhances accuracy in decision-making where multiple-criteria and vague 

information are involved. 

Atanassov KT introduced the theory of intuitionistic fuzzy sets in 1986, extending classical fuzzy sets by 

incorporating both membership and non-membership degrees, along with a hesitation margin. In 2016, 

Ananthakanagajothi and others wrote an article titled “On Some Distance Measures in Intuitionistic Fuzzy Sets.” 

The authors explore distance measures in intuitionistic fuzzy set (IFS) theory—tools essential for quantifying 

dissimilarities in systems characterized by uncertainty. The paper surveys selected models and applications, such 

as career determination and pattern recognition, demonstrating how these measures function in real-life decision-

making scenarios. A focus is placed on the Normalized Euclidean distance, highlighting its efficacy in capturing 

nuanced differences between IFSs in applied contexts. By presenting these models, the study provides a lucid and 

comprehensive understanding of distance-based approaches within the IFS framework. 

Ejegwa PA, Akubo AJ, and Joshua OM present the theory of intuitionistic fuzzy sets (IFS), which extend 

traditional fuzzy sets by incorporating degrees of membership, non-membership, and hesitation. They apply IFS 

to career determination, providing a more nuanced decision-making framework uncertainty in high. The method 

uses Normalized Euclidean distance measures to compare a candidate’s attributes with career profiles. This 

approach enhances accuracy in matching individuals to suitable careers under vague or incomplete information.    

Next, “MCDM by Normalized Euclidean Distance in Intuitionistic Multi-Fuzzy Sets” by Muthuraj R and others 

introduces intuitionistic multi-fuzzy sets (IMFS)—an extension of intuitionistic fuzzy sets, where each element 

has multiple membership and non-membership values across dimensions—enabling richer modeling of 

uncertainty. They apply this IMFS framework to a multi-criteria decision-making (MCDM) problem—

specifically choosing the best heavy motor vehicle mechanism aligned with rider aptitude across various criteria. 

The core method uses the normalized Euclidean distance, computing the distance between each HMV's 

mechanism profile and each rider’s aptitude profile to quantify closeness. The optimal choice emerges as the 

mechanism with the smallest normalized Euclidean distance—i.e., the shortest "gap" between the IMFS 

representations of the rider’s aptitude and the alternative. 
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Finally in this study, the applications of Intuitionistic Multi L-Fuzzy Sets (IMLFS) have been explored in real-

life decision-making scenarios using the Normalized Euclidean Distance measure. Specifically, Section 3.4 

demonstrates how IMLFS can be effectively applied in a college student selection committee evaluation, 

providing a systematic and objective framework for ranking candidates based on multiple qualitative and 

quantitative criteria. Section 3.5 further extends the approach to assess student performance in the context of 

TNPSC Group 4 examination preparation, offering clear examples and step-by-step solutions to illustrate the 

method’s practicality. These applications highlight the versatility and robustness of IMLFS in handling 

uncertainty, hesitation, and vagueness inherent in human judgment, ultimately supporting fair and transparent 

decision-making processes.  

5. Conclusions 

In this study, four distance measures – Hamming distance, Euclidean distance, Normalized Hamming distance, 

and Normalized Euclidean distance – were analyzed and compared in the context of decision-making and 

similarity evaluation. However, among these techniques, the Normalized Euclidean distance measure emerged as 

the most effective and reliable. 

Also, we explored the application of intuitionistic multi L-fuzzy sets in decision-making problems using the 

Normalized Euclidean distance approach. By incorporating multiple degrees of membership, non-membership, 

and hesitation values across lattice structures (L), IMLFS allows for a richer and more comprehensive modeling 

of real-world decision parameters. 

The use of the Normalized Euclidean distance enables a consistent and quantifiable comparison of alternatives by 

measuring their closeness to ideal solutions. This method effectively ranks alternatives even in the presence of 

conflicting or incomplete information. It also enhances the objectivity of the decision-making process by 

standardizing the influence of diverse criteria through normalization. 

Therefore, the Normalized Euclidean distance approach under the intuitionistic multi L-fuzzy environment 

provides a powerful and reliable tool for solving a wide range of decision-making problems in fields such as 

engineering, management, healthcare, and finance. 

Future research can explore hybrid models combining IMLFS with other distance measures or optimization 

techniques to further strengthen its practical applications. 
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