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ABSTRACT: This paper investigating the relationship between the proof of Utumi’s Theorem that a ring R (with
identity) is self-injective if and only if the matrix ring M (R) (for a fixedn €[l ) is self-injective. Throughout

this proof, for convenience, we denote the matrix ring M, (R) by S and the matrix units in M, (R) by e instead

of customary £, .
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1. INTRODUCTION: In all modules are unitary ideal of R respectively. A R— module M is said to be
principally injective or simply P — injective. If for any principal ideal P of R and any R — module homomorphism
f 1P — M can be extended to R . A ring R is said to be P — injective, if R is P — injective as a R — module. A

self-injective ring is clearly P — injective and von Neumann regular ring is also left P — injective. However, in
general the converse does not holds in either case. The connection between von Neumann regular ring and Utumi’s
Theorem, self-injective rings and P — injective rings are studied a several papers, for example Utumi [13], than
Chan Young Hang, Jin Young Kim and Nam Kyun Kim have proved in self —injective rings which are either semi
prime PI or semi prime rings of all essential ideals are two-sided are von Neumann regular [6], However Hirano
[4] showed that there exists a semi prime PI left injective rings but not von Neumann regular. It is well known
that reduces or semi prime left duo injective rings are von Neumann regular [10, 14].

2. MOTIVATION: From these facts, we may ask the following question. In particular question was also raised
by Utumi’s Theorem that a ring R (with identity) is self-injective if and only if the matrix ring M (R) (for a fixed

nell ) is self-injective.. Yue Chi Ming [15, 16]. Is a semi prime injective ring, all of whose essential ideals are
two sided von Neumann regular and is a factor ring module the Jacobson radical of a injective ring over von
Neumann regular.

For most ring R, R, is simply not injective but do exist rings for which R, is injective, we say that such rings are

right self-injective. For example, the ring Z is clearly not self-injective in fact f :2Z — Z defined by f(2n)=n

for every neZ ,clearly we say that it can’t be extended to a homomorphism f* : Z = Z . For example, let R be

the ring of n x n upper triangular matrices over a ring k = 0 where 7= 2 then R is not self —injective. To simplify

0 k
the notation’s , we work in the case n=2. Now we consider the ideal 4= (O OJ and define map f : 4 - Rby

0 a 0 0
I [0 OJ = (0 J , this is easily check to be a right R —homomorphism, if f can extended to R there would
a

. C(x y). 0 a x yY0 a 0 xa . o
exist a matrix in R such that f = = for all a ink, which is clearly
0 z 00 0 zJ\0O O 0 0

impossible. This shows that R, is not injective.
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3. LATTICE ISOMORPHISM OF A SIMPLE MATRIX RINGS

3.1. Definition: i) An R—module M is said to be injective if every R—homomorphism from a sub module
A of an R— module B intoM can be extended to B .

ii) AnR-—module M is said to be quasi-injective if every R — homomorphism from a sub module 4 of M
into M can be extended to M
iii) An R-—module M is said to be continuous if the following conditions are satisfied
(C1): Every sub module of M is essential in a direct summand of M .
(C2): If A4 isasubmodule of M isomorphic to a direct summand of M , A4 itself is a direct summand of
M .

iv) Aring R is said to be right self-(quasi)injective (resp. continuous) , if R , as a right R — module, injective
(resp. continuous). We state the Baer’s criterion of injectivity whose is available in all standard texts in module
theory.

Baer’s criterion of infectivity: An R — module M is injective if and only if every R —homomorphism
from a right ideal of R into M can be extended to M . Equivalently, every R —homomorphism f:/ — M from
aright ideal / of R into M is given by multiplication by an element of M . That is, there exists an element m
in M such that such that f(x)=mx for eachxe M .

We note, by the Baer’s criterion of injectivity, that aring R is right self-injective if and only if R is right quasi-
injective.
Proposition: 3.2. Every quasi-injective module is continuous.
Proof: For the proof we refer to Proposition 2.1 of [19].

Corollary: 3.3. Every right self-injective ring is right continuous.

We now derive a sufficient condition for a right continuous ring to be right self-injective. For this, we prove
some preliminary results.
Lemma: 3.4.Let M be a continuous module and let N,, N, be direct summands of M such that N, (NN, =0,
then N, @ N, is also a direct summand of M .

Proof: Since, by hypothesis, N, is a direct summand of M , M =N, @ K, for some sub module K, of M . Let
7m:M — K, be the canonical projection. Claim: N, @ N,=N, @ 7x(N,). Clearly N, =N, @ x(N,). Let
xeN,cM=N,@®K,. Then x=y+z for some yeN,zeK,, Clearly z=7x(x)en(N,), and hence,
xeN, ®n(N,). So N ®N,c N ®n(N,). For the reverse inclusion, we need only prove that
7(N,)c N,®N,. Let xen(N,)then x=7x(y) for some yeN,. So y=n+x for some neN,. So,
x=-n+yeN,®N,. This proves our claim. Since ( Ker(z)= N, and by hypothesis, N, (1N, =0, it follows
that 7 | N, is a monomorphism . So, by condition (C2) of continuous module, it follows that z(N,) is a direct
summand of M. Since 7(N,)c K,, it follows that z(N,) is a direct summand of K, and hence,

N, ®N, =N, ®r(N,) is a direct summand of N, ® K, =M . This completes the proof of the lemma.
Lemma: 3 .5. Let R be right continuous ring.

Let e, f be idempotent’s in R such that eR(N(1— f)R=0.If eRis an essential extension of a right ideal A in

R . Then feR is generated by an idempotent and is an essential extension of f4.

If e, f idempotent’s in R such thateRN fR =0, then eR+ fR = hR for some idempotent /1 inR .
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If A is right ideal in R contained in eR (for some idempotent € in R ), then there exist an idempotent f € eR,

such that A is essential in fR .

Proof: i) Since, by hypothesis, eR(N(1— /)R =0, the left multiplication by f gives an isomorphism of eR onto
feR . Hence feR is an essential extension of f4. By the condition (C2), feR is generated by an idempotent.

il) Now eRN fR=0= (1— )R contains an isomorphic copy of eR.

(Consider the map ¢:eR— (1— f)R defined by ¢@(x)=(1—f)x for each xeeR . xe Ker(g) implies
(I1- f)x=0, impliesx= freeRN fR=0 => x=0). Since, B = ¢(eR)=eR, B = hR for some idempotent A
inR (by condition (C2)).

Now, fR+B=fR+hR and heBc(l-f)R= fh=0, where e,f are idempotent’s,ef =0.
eR+ fR=(e+ f— fe)R .

Because,(e+ f — feJe=e,(e+ f—fe)f = f,(e+ [ — fe)fe= fe, (e+ f— fe)le+ [ —fe)=e+ [ —¢f )

aceR<>ea=a. So, f+h—hf is an idempotent and fR+hR=(f+h—hf)R implies
ROB=(f+h—hf)R( because fRNhR=0). Now, eR=B=>eR® fR=B® fR=kR, where
k= f+h—hf implies eR® f R is generated by an idempotent.

iii) By condition (C1), there exist an idempotent g in R such that A is essential gR . Since, by hypothesis,
AceR, An(1-e)R=0, and hence, gRN(1—e)R =0 .Now, by (i) above, egR is generated by an idempotent,
say, h and AR is an essential extension of ed=A.

Lemma: 3.6. Let R be a right continuous ring, let 4 be right ideal of R and let eRbe an essential extension of
A where (e=e” € R). .Let vi: A—> R be an R — homomorphism. Suppose, f is an idempotentin R such that
eRN fR=0and v(A) < /R then vV extended to a homomorphism w:eR — fR.

Proof: At the outset, we note that a right ideal / of R isa direct summand of 7 if and only if / =eR, for some
idempotent e in R . By hypothesis, eRM f R=0 and hence, by Lemma 3.4, then eR@® f R is generated by
an idempotent say A in R. We may assume that e, f are orthogonal. (For,
R=hR®(1-h)R=eR® fRO®(1-h)R . Thenl=¢ +e, +¢, for € €eR,e, € fR,e; e 1—-h)R . Clearly, ¢,¢,,e,
are  mutually  orthogonal idempotent’s andeR=¢R,fR=¢,R,(1-h)R=¢e,R). Now  define,
G= {x €R:x=a+v(a), forsomea e A} . Clearly G is a right ideal of R . Claim: G < (e+ f)R . Since e, f
are mutually orthogonal idempotent’s, (e+ f ) is an idempotent. It is enough to prove that (e+ f)g =g for all
geG. Let geGtheng=a+v(a)for some aecAthen (e+f)g=(e+ f)a+v(a))
=ea+ fa+ev(a)+ fv(a)=a+o+efv(a)+ fv(a)=a+o+o+ fv(a)=a+ fv(a)=g.

Hence G c(e+ f)R . Then, by Lemma 3.5, there is an idempotent /4 in (e+ f)R suchthat GE hRC (e+ f)R

.Claim: GN(1-¢)R=0. Letxe GN(l—-e)R=> x=(1—¢e)x thenex=0. Let x=a+v(a) forsomeae A

= ea+ev(a)=0

= ea=0, (. ev(a)=efv(a)=0)
=a=o0
=x=0
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Since, G < AR, it follows that ARN(1—e)R=0. ( by an earlier lemma AC eR, (1-— f)RNeR=0
= feR=hR => feR 2 f A)=> ehR = gR for idempotent g and ehR 2eG=A.

Claim: ehiR =eR Now, ehRceR and ehR = gR, direct summand of R implies eiR is a direct summand of
eR. Also, AcehR ceR and AC eR=>ehRC eR = ehR=eR. Let, e=echxfor some xe&Rand
t= fhixe fR . Consider the map, w:eR — f R defined by w(y)=1¢y for all yeeR. Now, ye fRimplies
tye fR forall yeeR.So, W is a well- defined map and is clearly R — isomorphism.

Claim: v=w|4d.Let aeAthen a+ta=ea+ta=ehxa+ fhxa=(e+ f)hxa =hxaehRand
a+v(a)e GChR implies v(a)—ta=v(a)+a—(a+ta) ehRNfRChRN(1—e)R=0 because
(I-e)f=f, fe(l—e)R implies V(a)—ta =0 .Hence, V(a)=ta.

Consider the following condition for a sub module N of an R— module M .

(*) Every homomorphism from a sub module K of N intoM can be extended to N .

Lemma: 3.7. If N,, N, are sub modules of an R — module M , satisfying the condition (*) above, and if
N, "N, =0 then N, + N, also satisfies (%)

Proof: Let f : K — M be a homomorphism from a sub module K of N, + N, intoM .Letg=f|(KNN,)
By hypothesis, there exists a homomorphism /:N, — M extending ‘g’. Define a map
a:(K+N,)NN, > M as follows. Let x € (K + N,)NN,then x=k+yeN, for somekeK,yeN,.
Define a(x) = f(k)+ h(n,). Claim: a is well-defined map. Suppose, x=k+y=4k'+)" for some
kk'eK,y,y' e Nthenk—k'=)y'—ye KN N, implies hk—k"=gk—k" = f(k—k")= f(k)— f (k") .Also,
h(y' = y)=h(y")—h(y) implies f'(k)— f (k') = h(y") — h(y) therefore
f)+h(y)=f(k")+h()') . Thus & is a well-defined map. Clearly, it is an R — homomorphism. Then, by
hypothesis, there exists #: N, — M , extending . Let p: N, ®N, > N,, g: N, ®N, > N, be
projection maps and let N=/hop+fog: N, +N, >M . Claim: 8|K=f. Letxe K < N, + N, then
x=p(x)+q(x) So, g(x)=x-p(x) in (K+N)NN, So, B(q(x))=p(x— p(x)) =a(x— p(x))
= f(x)=h(p(x)) . by definition of . So, f(x)=h(p(x))+S(q(x))=(hep)x)+(L°g)(x)
=((hop)+(Boq))(x) =R(x). So, yextends [, and hence, N, + N, satisfies (*).

We now derive sufficient conditions for a right continuous ring to be right self-injective.

Theorem: 3.8. Let R be a right continuous ring and let 1 =€, +e, +...+e, ( for some n>1) for some

mutually orthogonal idempotent €,é, ...... €,in R. Suppose further that for each i=1,..,n, (1—e,)R contains an

isomorphic copy of e R then R is a right self- injective ring.

Proof: By hypothesis, R=eR®e,R®...... ®@e,R .So, by Lemma 3.7 and induction, we need only prove the
following, If 1 <i <nandif : A— R is an R—homomorphism from a right ideal A of R contained in ¢ R
into R, then « extends to an R —homomorphism S:eR—>R.Letl <i<n andlet : A—> R be an R—
homomorphism from a right ideal A of R contained ine R into R. Since, by hypothesis, R is right
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continuous, then by Lemma 3.5(iii), there exists an idempotent € in R such that A c'eR < ¢,R .Clearly, €¢,e =€
Let € = ee,. We note the following,
. 7\2 rr ’
iy (€) =ee =eeee =eee =ee =é
.. ’ ’
i) ee =eee =ee =e
e ’ ’
i) ee =eee =ee =e
iv) AcéeRceR, (for,let, aec AceR=>a=ea=cea=e'aece’R (- AceR).so, AcC'¢'R).

Because (i) to (iv) we may assume thate’ = ¢ and hence € = ee, By hypothesis (1 — e, )R contains an isomorphic

copy ofeR . Clearly (1—e)R2>(1—¢,)R and e.R D eR hence (1—¢,)R contains an isomorphic copy of eR.

Let ¢:eR—>(1—e)R be a monomorphism from eR into (1—e)R . So, ¢ induces an isomorphism
@=¢ :eR— B, from eR onto a right ideal B of R. So, by condition (C2) of right continuous ring, B = fR , for
some idempotent f in R. So, &:eR — fRis an R—homomorphism. Then, there exist p,qe R such that
p=fp and qp =e because(e=¢’€R andaeR,ae=ea =a, where e is idempotent in R implies

pf = fp=p,where f isidempotent in R).
Let p =0(e), ¢ =6"(f)implies f = O(q) , because @is isomorphic. Consider the map, :eR — fR.
Let p=0(e) = fp=0(e), (- p=/p)

= 0(q)p=0(e)

= H(gp)=06(e), " 0 is module isomorphism.

= gp=e *+ @ is one-one

Defineamap f: A— fR by f(a)= pa(a) forallae A.eRN fRceRN(1—e)R =0 because A < 'eR implies
their exist B :eR—> fR extending . Next define N(a)=(l-e)a(a) for allac A implies their exist
7 :eR — (1—e)R extending to ¥ . Define a :eR—>R by o (x)=(qB (e)+(1-e)y (e))(x) for all xe eR.

Clearly " is R- homomorphism.
Claim: o*| A=a Let a € A then o (a)=(gf () +(1-e)N'(¢))a
=qf (e)a+(1-e)N (e)a
=qp (ea)+(1-e)N" (ea)
=qf (ea)+(1-e)N’ (ea)
=qpf (@) +(1-e)N (a)
=gpa(a)+(1-e)(a(a))
=(gp)a(a)+(1-e)a(a)

=ea(a)+(1-e)a(a)
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=ea(a)+a(a)—ea(a)
=a (a) . Hence, the proof of right self -continuity of R.

A ring R is said to be of order 7 ( for some 7> 1) if the identity element 1 of R is the sum of mutually

orthogonal idempotent’s €;,...,€, suchthat ¢ R =e R (as R—modules) for eachi,j=1,..,n.

Corollary: 3.9. A ring R of order #n>1 is right continuous if and only if it is right self-injective.

Proof: Let R is a self-injective. Claim; R, is right continuous. Since ¢,R ¢, ®# R, ¢,R ¢, is a right self-injective.

Claim (Rne“) is an injective. Claim R e, =¢,R,e, ®(1—€)R e, is a right ¢, R ¢, -modules.so it clearly

eaiRen
say that R e, =e“Rne“+(1—e“)Rne“. Now let xee“Rne“ﬁ(l—e“)Rne“. So x=e“x=(1—e“)ximplies
x=0. So ¢Re, N(l-¢,)Re, =0. Claim (l-e,)Re, ~¢,Re, as right ¢ R e, —modules. Let
e R e, ={ae” /aeR}.

Let A= Zn:zn:aijeij in R then (l—en)Aell =(zn:e,.[](zn:ﬁ:amemjen = n e, En:a,»leﬂ) = » a”(eﬁerl)=zn:arle,.l .

i=1 j=1

0 0 0)fa
(because Re, = ¢, R, @e,Re, @e R, =|0 1 0fd
0 0 0)\g

Map @:ae,, = ae,, defined by #(ae,, ) = ae,, . So ¢((ae11 )(be“ )) = ¢5((ab) e“) = (ab) e, and
(¢(ae“))be11 =(c1€21)be11 =(ab)e, e, =(ab)e,). So Re, = iﬂaeﬁRne” as ¢,Re,—module and
i=1

e,Re,~e Re, foralli=1,23,...,nas ¢,R e, — module implies (Rne”)

i~ 'n

is an injective.
1

ke

Claim: R, is right continuous

Case(i) : Let A be any right ideal of R then y(A4)= Ae, is an ¢,R e, sub-module of R e, . Since (Rne“)e e

is injective then there exist a direct summand say G of R e, such that Ae,, is essentially in G. let 7: R e, > G

is the projection map, clearly 7 € End, ; , (Rne“)is idempotent. Since End, , , (Rne” ) = R, , there exist an
idempotent say e in R, such that G=eR e, Now Ae, = G = ¢(4e,) < ¢(G)but ¢(Aeu) = ¢((//(A))= A
and ¢(G) = ¢(eRne“) = ¢(1//(eRn )) =gy (eR,)=eR, implies A< eR, .

Case(ii) : Let e=¢”in R, and let A be any right idempotent of R, is isomorphism toeR, . Claim A= /R, f = f?
. Let ¢:eR — Abe an R, is isomorphism. Let ¢(e)=x in A then x=¢(e)=g(ee)=g(e)e=xeand
A=g¢(eR,)=¢(e)R, =xeR implies Ae, = xeR e, then the map 6 eR ¢, — Ae,, defined by 6(y) = xy forally
ineR e, is an e, R, is isomorphism now we have seen above that R e, is injective right ¢, R ¢, — module. Hence
Ae,, is also injective as right ¢, R ¢, —module.. So Ae,, is direct sub-module of R e, as ¢,R ¢, — module. Then
@(4e,) is summand of @(Re,). But @(A4e,)=@¥(4)=Aand®(R.e,)=R,e,R,. Clearly eRe,is

summand of the injective module(Rne”) . Hence eR e, is injective as right e,R e, — module. So Ae,is

enR,en

injective as right ¢,Re,—module of Re,. Let P:Re, — Ae,be the projection map, so
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PeEnd, , (Re,)~R, and P(R,e,) = Ae, . So there exist an idempotent fin R, such that de,, = fR e, and

A= CDY’(A) = CD(&”(A)) = (D(Ae” ) = d)(ﬂene” ) = /R, . So R, is right continuous.

Proposition: 3.11. If R is a ring with identity and # > 1, the matrix ring M, (R)=S is of ordern .

Proof: Clearly the matrix units €; 's M, (R) are mutually orthogonal idempotent’s and add upto the identity

matrix. We need only prove thate,S = e, S (‘as §— modules) for eachi, j=1,2,3,---,n . For this, we first note

>pp > Tpp 124

that, if 1<p<n,A=((q;)) €S e, A= emzz ae; = Zam e, .Thus, e S={e, A/ AeS}= {Za,ep/./a/.eR,ISan}
j:

i=l j=1
. Thus elements of e, S has all rows, except p", are zero. So, there is a canonical S— isomorphism from e,,S

onto e, S forany p,g=1,2,3,---,n . Thus S is a ring of order ‘7 ’. So, we have the following result.

Proposition: 3.12. If R is a ring with identity and n > 1, the matrix ring M, (R)=S is right continuous if and

only if it is right self-injective.

UTUMI’S THEOREM: A ring R (with identity) is self-injective if and only if the matrix ring M, (R)=.S ( for

a fixed nel! ) is self-injective

Proof: We first prove the “If” part which is fairly simple. By hypothesis, S is right self-injective. Since
eS¢, = R . We need only prove that e, Se,,is right self-injective. Let 2 be any right ideal of e,,Se,, and let

f:92->e¢,Se, be an e, Se, —homomorphism. Define a map f :402S—S as follows. Letxe£2S then

k
xX= Za,S, fora, € 2,5, € S,k ell .We define £ (x) = Zf(a )s; . Claim f is a well-defined map: Suppose,

i= i=1

k !
x= Zall’;ZZb/S for some a,,b, €Q,r, s, €S,k,lell . Claim: Zf(ai)l”iZZf(bj)Sj.
= i1 =1

i=

k !
Enough to prove that: Z f(a)r,— Z f(b ; )s ; =0. Our problem is reduced to the following:
i1 =l

k
if 3 a7, =0, then Zf(a)r—O So, let Zar =0 and let] £ p <7 then [Zar]e =0.
i=1

i=1 i=1
=>Za“m—

= Za enhe,e, =0

= f[zk:aien (r;'epl)ellj =0

k
= Z f(al.)e“(rl. epl) e, =0 ,because f: L2—>¢,Se, isin ¢,Se,;- map
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rp

k
= [Zf(a.)r,]e =0 ,because this is true for each p € {l,...,n}

k n
= Z f(al. )7’,' =0 ,Because, Zepp =1.
i=1 p=1

Thus f " is well defined map. Clearly f Tis S— homomorphism. Since by hypothesis S is right self-injective,

there exist x, € S such that £ (x) = x,x for all x € £2S .

Now, lety, =e,x,¢, €¢,Se, . Claim: f(a)=y,aforallae Q2.Let ae Q2 then f(a)=¢, f(a) =¢, f (a)

=eX,e,a = (en X, en)a = ), a . This proves that e, Se,, and hence, R is right self- injective.

Before proving the “Only if” part, we prove the following results.

Proposition: 3.13. If S is isomorphic to the endomorphism ring of the right e,,Se;, —-module Se,,.

Proof: Define a map ¢:S—> End(Se,) as Let AeS. Consider the map ¢(A4): Se, = Se, defined by

@5

#(A)B)=AB,VB € Se,,. Note that AeS,BeSe, = ABe€ Se,,. Thus ¢(A) is a well-defined map. Clearly
#(A) isa e, Se,—map and ¢(A) € End (R e,,) .Thus ¢:S— End(Se,) is a well-defined map. ¢ is a

e R,en e Se

ring homomorphism:

Clearly ¢ is additive. Now let 4,Be S and let C € Se;,. Claim: ¢(AB)C = (¢(A) o p(B))(C) .

Now, ¢(AB)(C) = ¢(4B)(C) = ¢(A)(BC) = p(ANHB)(C)) = (¢(A) > p(B))(C) . Thus
H(AB)(C) = (#(A) o #(B))(C) for each C € Se,,. Hence, J(AB)=@(A)o@(B). ¢ is one-one : it is enough to
prove ker¢g = {0} . Let Ackerp implies ¢(4)=0 => ¢(A)(B)=0 for all B e Se;,, = AB=0for all Be Se,, .

Claim: 4 =0 it is enough to prove that: a, =0 for all i, j=12,....,n. Letl <r, s <n. Since, ¢, € Se,,
Ae, =0 implies (de,),, =0. But (de,), =3 a,(e,), =4

p=l

proving that 4=0. So, ker¢={0} and ¢ is one-one. Claim ¢ is onto: Leta € End(Se,,) . It is easy to check

15

Hence a,=0for all r,s=12,...,n, thus

rs °

that Se, is generated by €, €5, €5,,...,€,, over ¢,Se, (as a right module). For 1< p<n,

ale,)=K" €S, Let K =(k"). So k(" =0 for j>1. Define, K =(k,) in'S, byk, = k(j) for all
kl(ll) kl(]z) cee kl(fl)
kD k@ e fm
i,j=12,...,n .So K = i]l) ?12) kflz)
k"l krl A
k(l) k(z) ___k:]2)

nl nl

Claim: a(A4)= KA for all 4€ Se,,. Let A=(a;)in Se, then.q; =0 for all j>1. So, A= Z:ar”e,.1 = Za”e“e”
i=1 i=1

n n n
=Y e,(a,e,) , where ¢, € Se,,,a,e, €¢,Se,.S0,a(4d) =Y ale,)Na,e,) =) K" (a,e,). Since a(4)e Se,
i=1 p=1 p=1
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,a(4), =0 for j>1. Now for 1<r<n ,a(4), = (ZK(")ap,e”] = K (a,e), =2.K{a,
rl

p=1 p=l1

p=l q=

implies Z . =(K4),,

p=1
Also, (KA), =0 forall j>1 because K4 € R ¢,. Thus (a A),, =(KA), forallr=1,2,...,n implies (a 4)=KA
.Hence, a=¢(K).Hence ¢:S — End(Se,,) is a ring isomorphism.

Sy

Proposition:3.14. The lattice I of all sub modules the right ¢,,Se;, — module Se;, and the lattice R of all right

ideals of S are isomorphic under the following mutually reciprocal  mappings:
p:A(€3J)—> AS(eR) and q:B(e R) > Be, (€ J)

Proof: Define map p: 3 — R by p(N)= NS for all N € I and define a map q: R — 3 by q(A) = Ae,, for all
A€R. Clearly p and q are well defined maps. Claim: (i) go p =1Idy, (i) pog=1d,

(i) Let N € 3.We need only prove that N = NSe,,. Now N is a sub module of the unitary right e,Se;, — module
Se,, So

N = N(¢,Se,) = Ne,,Se,, = NSe,, implies (g p)(N)=q(p(N))=q(NS)= NS¢, =N . Hence g° p = IdS
(ii) let A e R.Claim: (Ae,)S=A.Clearly Ae,Sc A because A is right ideal of S. For the reverse inclusion

we note that A=Al = A(e,, +(I —¢,,)) < Ae, + A —¢,) = Ae,, +A(Zeﬁj c Ae, +2Aeﬁ = Ae,, +ZAe“e”e”

i=2 i=2 i=2
c Ae S+ 4e,S. Thus, Ac Ae,S and hence A= AeS. So, (pog)A4)= p(q(A)=p(4e,)=A4e,S=4 .
Hence, pog=1d,

Proposition: 3.15. Se,, = ¢,S¢, @e,,S¢,, ®------ ®e, Se, as ¢,S¢, —module and ¢,Se,, = e ,Se, (as ¢,S¢, —
module) for eachi =1,2,3,---,n

Proof: We first note If A=((q;)) in S thenAe, = ZZaveue}] Z:at,]e,1 SoSe, ={Ade, /A€ S}

i=l j=1

non

—{Za, e,/a, eR, forl<i<ny.Andif 1< p<n and 4=((a;)) €S then eppAe“=ZZeppaij ee, = Ze a,e,

pp il i1 = pl pl
i=1 j=I

So,for 1< p<n,e,Se, ={e,Ae,/ A€ S}={ae, /aeR}. Thus the map ¢:Se, — ¢,Se, De,Se, -+ De,Se,

defined by ¢(Zaieil) =(a,¢,,a,e,, ,a, ) for Zal e, € Se,is clearly a well-defined bijective map and is
i=1

additive, we need only prove that it is an e,Se, —map. Let A=z:al.el.l € Se,,,B=be, €e,Se,. Then

i=1
P$(AB) = zaibeil = (a\be,,,..,a,be,) = ((a,e,)be,),....(a,e, )be,))) = (a€,,...,a,e,)be, = p(A)B . Thus ¢ is an
i=1
e,,Se,, —map and hence an e, Se,, —isomorphism.

We next prove that e,Se,, = e,Se, (as e,Se,, —module) for eachi=1,2,3,---,n. So, let1< p<n
. Consider the map 0:e, Se, = ¢,Se, defined by O(ae, )= ae, for each ae€R. Clearly 0 is a well-defined
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bisection and is additive. We now prove that it is an ¢,Se, —map. Let ae, €e¢, Se, ,be, €¢ Se, then
O((ae, )be,)) = O(abe, )= abe,, = (ae,)(be,)=0(ae,)be, . Thus O:e,Se, —>¢,Se, is an e Se, —
isomorphism.

We now prove the “Only if” part of Utumi’ theorem. Because of Proposition 3.11, we need
only prove that S is right continuous. For this, we need to prove that S satisfies both the conditions (C1) and (C2)
of a continuous module.

(C1): By hypothesis, ¢,Se,, = R is right self-injective. So, by Proposition 3.14, the right e,,Se,, —module Se,,
is injective. Now, let B be any right ideal of S. Then Be,, has an essential extension, say, G which is a direct
summand of Se;, . Now, by Proposition 4.11, there is an idempotent ‘ € * such that G =eSe,, . Then, by
Proposition 3.13, eS(= p(G)) is an essential extension of B(= pg(B)= p(Be,,)) . This proves the condition

(C1).

(C2): Let C be a right ideal of .S isomorphic to fR for some idempotent /* in S. Then there exists x €.S such
that C = xfS and r(x)( /S = 0.Thus, the left multiplication of X gives an isomorphism of fSe,, onto Ce,, .Since
fSe,, is a direct summand of the injective module Se,, , it is also injective which implies that Ce,, is also injective.

Therefore Ce,, is a direct summand of Se,, , whence, Ce, = gSe,, for some idempotent g in S. It then follows

1
that C = pg(C) = p(Ce,,) = p(gSe,,) = g5 . Thus S satisfies the condition (C2). Hence S is right continuous, and

hence, right self-injective.

Conclusion: we investigating the relationship between continuous matrix rings and the proof of Utumi’s
Theorem that a ring R (with identity) is self-injective if and only if the matrix ring M (R) (fora fixednell )is

self-injective.
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