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Abstract 

This paper reports the development of extended forward-backwards difference numerical solution procedures for 

a class of nonlinear systems. The theoretical accuracy analysis revealed a high-order accuracy, with an error of 

order O(∆𝑡7) for displacement, and an error of order O(∆𝑡5) for velocity. This is an improvement over simple 

second-order accurate implicit integration schemes. The Lyapunov stability analysis showed that the algorithm 

developed was unconditionally stable, and values of integration parameters, 𝛾ijk, can be determined from stability 

analyses. A linear system of two-degrees-of-freedom was initially solved to illustrate how to extend the methods 

to deal with multiple-degrees-of-freedom systems using matrices and vectors. The results of Thomson [16] were 

confirmed. Two nonlinear finite element problems were successfully solved. The hundred-degrees-of-freedom 

system confirmed the results of Wang [19]. The graphs of displacement versus time look similar. In addition, 

phase trajectory plots and a velocity versus displacement graph revealed the property of a closed path for the 

nonlinear mass-spring system. The accuracy of the results was not compared because such an exercise would 

require gaining access to the authors’ data. 

Keywords - Nonlinear dynamical systems; forward-backward difference schemes; Lyapunov stability analysis. 

1 Introduction 

The study of natural sciences uses experimentation and observation to understand, describe, and predict the natural 

world. It includes the study of many subjects, such as biology, chemistry, physics, astronomy, and earth science. 

Integral and differential equations are formulated, which are usually nonlinear. Such system equations include the 

van der Pol equation, the Lorenz equations, and the Schroedinger equations in quantum physics. The aims and 

objectives of this study were to accurately solve nonlinear differential equations arising from the mathematical 

theories that describe and predict the natural world, where closed-form solutions are not possible, so linearised 

equations and iterative solution procedures are usually employed. 

This paper provides details of extended forward-backwards difference numerical solution procedures for a class 

of nonlinear systems. A linear system of two-degrees-of-freedom is initially solved to illustrate how to extend the 

methods to deal with multiple-degrees-of-freedom systems using matrices and vectors, which are typically 

obtained in finite element methods. This paper starts by acknowledging the early contributions of the Newmark 

trapezoidal scheme [1] that possessed limited accuracy and stability characteristics, but was used for time-

integration of nonlinear finite element analysis of solids and structures to further improve solution procedures 

such as the improved numerical dissipation of Hilber et al. [2], consistent tangent operators of Simo and Taylor 

[3], time-stepping schemes of Wood [4], simple second order accurate implicit integration schemes of Bathe et al. 

[5], and finite element methods of Zienkiewicz et al. [6]. More contributions on convergence, stability and 

accuracy are contained in subsequent sections and in references [6-19]. 
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1.1 Nonlinear vector-valued oscillatory system 

The differential equation describing a nonlinear vector-valued oscillatory system may have the following general 

form: 

 

𝑥̈ + 𝑓(𝑥̇, 𝑥, 𝑡) = 0; 𝑥(0) = 𝑥0; 𝑥̇(0) = 𝑥̇0; 𝑡 = 𝑡0                                                                                (1) 

The superposed dot on 𝑥 represents differentiation with respect to time, 𝑡, and the double-dot represents the second 

derivative. Closed-form solutions of most nonlinear systems do not exist. Nonlinear mass-spring finite element 

time-dependent systems occurring in science and engineering, which generally do not have closed-form solutions, 

are considered.  

1.2 Implicit schemes of Zienkiewicz 

Zienkiewicz et al. [6] introduced an implicit generalised Newmark integration scheme from the truncated Taylor 

series expansion of the displacement function 𝑢 and its derivatives, repeated here for convenience as follows:  

 

𝑢𝑛+1 = 𝑢𝑛 + ∆𝑡𝑢̇𝑛 +⋯+
∆𝑡𝑝

𝑝!
𝑢𝑛
(𝑝)
+ 𝛽𝑝

∆𝑡𝑝

𝑝!
(𝑢𝑛+1

(𝑝)
− 𝑢𝑛

(𝑝)
) 

𝑢̇𝑛+1 = 𝑢̇𝑛 + ∆𝑡𝑢̈𝑛 +⋯+
∆𝑡𝑝−1

(𝑝 − 1)!
𝑢𝑛
(𝑝)
+ 𝛽𝑝−1

∆𝑡𝑝−1

(𝑝 − 1)!
(𝑢𝑛+1

(𝑝)
− 𝑢𝑛

(𝑝)
) 

     

                           𝑢𝑛+1
(𝑝−1)

= 𝑢𝑛
(𝑝−1)

+ ∆𝑡𝑢𝑛
(𝑝)
+ 𝛽1∆𝑡 (𝑢𝑛+1

(𝑝)
− 𝑢𝑛

(𝑝)
)                                                    (2) 

 

where 𝑢, 𝑢̇, 𝑢̈ are displacement, velocity and acceleration. Setting 𝑝 = 2 forms the equivalent Newmark scheme 

[2] which consists of two recurrence equations of displacement and velocity, which, when combined with the 

governing second-order differential equation (1), gives three simultaneous equations in three unknowns.  

1.3 Forward-backwards implicit scheme 

Carrying on from these contributions, a forward-backwards difference time-integration scheme was developed by 

Kaunda [7], using Taylor series, for solutions of nonlinear oscillatory systems. This scheme allows for more 

accurate implicit generalised one-step multiple-value algorithms [7],[8], repeated here for convenience, and 

summarised in Table 1.  

𝑠𝑛+1 +∑ [
(−1)𝑘

𝑘!
[𝛾1𝑘Δ𝑡

𝑑

𝑑𝑡
]
𝑘

𝑠𝑛+1]
𝑘=𝑝
𝑘=1 = 𝑠∗ = 𝑠𝑛 +∑ [

1

𝑘!
[𝛽1𝑘Δ𝑡

𝑑

𝑑𝑡
]
𝑘

𝑠𝑛]
𝑘=𝑝
𝑘=1                                          (3) 

𝑣𝑛+1 +∑ [
(−1)𝑘

𝑘!
[𝛾2𝑘Δ𝑡

𝑑

𝑑𝑡
]
𝑘

𝑣𝑛+1]
𝑘=𝑝−1
𝑘=1 = 𝑣∗ = 𝑣𝑛 + ∑ [

1

𝑘!
[𝛽2𝑘Δ𝑡

𝑑

𝑑𝑡
]
𝑘

𝑣𝑛]
𝑘=𝑝−1
𝑘=1                      (4) 

Table 1: Forward-backward difference scheme illustration 

 

𝑓𝑜𝑟𝑤𝑎𝑟𝑑 − 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝛽𝑖𝑘∆𝑡 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 − 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝛾𝑖𝑘∆𝑡 1 ∆𝑡 

𝛽𝑖𝑘∆𝑡 = (𝑡∗ − 𝑡𝑛)∆𝑡 𝛾𝑖𝑘∆𝑡 = (𝑡𝑛+1 − 𝑡
∗)∆𝑡 1 ∆𝑡 

 

where 𝑠 = 𝑥 denotes displacement, 𝑣 = 𝑥̇ ̇ denotes velocity and 𝑎 = 𝑥̈ ̈ represents acceleration. Equations (3) and 

(4) provide the necessary extra equations to solve the differential equation (1) such that there are three equations 

in three unknowns. The implicit algorithms presented in [6],[7],[8], permitted to determine and optimise stability 



Tuijin Jishu/Journal of Propulsion Technology 
ISSN: 1001-4055 
Vol. 46 No. 3 (2025) 
________________________________________________________________________________ 

1219 

and accuracy of the recurrence equations by choosing appropriate tuneable integration parameters, 𝛽𝑝, 𝛾𝑖𝑘 , 𝛽𝑖𝑘. 

Numerical dissipation or algorithmic damping, mostly desired in finite element methods, may also be incorporated 

to filter out high frequency responses, as considered in Hilber et al. [2]. 

1.4 Article organisation 

This article is organised as follows: Section 2 develops the solution of nonlinear vector-valued oscillatory systems. 

These are two-degrees-of-freedom system, and extension to multiple-degree-of-freedom systems using mass, 

damping and stiffness matrices such as those obtained from finite element methods. Section 3 presents and 

discusses the results, and Section 4 draws conclusions. 

2. Nonlinear vector-valued oscillatory systems 

2.1 Extended forward-backward implicit schemes 

The displacement is expanded in two forward-backward implicit schemes as shown in equation (5), and 

summarised in Table 2. 

𝑠𝑛+1 +∑[
(−1)𝑘

𝑘!
[𝛾11𝑘Δ𝑡

𝑑

𝑑𝑡
]
𝑘

𝑠𝑛+1]

𝑘=𝑝

𝑘=1

= 𝑠1
∗ = 𝑠𝑛 +∑[

1

𝑘!
[[𝛾12𝑘 + 𝛾13𝑘]Δ𝑡

𝑑

𝑑𝑡
]

𝑘

𝑠𝑛]

𝑘=𝑝

𝑘=1

 

𝑠𝑛+1 +∑ [
(−1)𝑘

𝑘!
[[𝛾11𝑘 + 𝛾12𝑘]Δ𝑡

𝑑

𝑑𝑡
]
𝑘

𝑠𝑛+1]
𝑘=𝑝
𝑘=1 = 𝑠2

∗ = 𝑠𝑛 + ∑ [
1

𝑘!
[𝛾13𝑘Δ𝑡

𝑑

𝑑𝑡
]
𝑘

𝑠𝑛]
𝑘=𝑝
𝑘=1           (5) 

 

Table 2: Extended forward-backward difference scheme illustration 

𝑓𝑜𝑟𝑤𝑎𝑟𝑑 

−𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑡1
∗ − 𝑡𝑛) 

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 − 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑡𝑛+1
− 𝑡1

∗) 

1 ∆𝑡 

(𝛾12𝑘 + 𝛾13𝑘)∆𝑡 = 𝑡1
∗ − 𝑡𝑛 𝛾11𝑘∆𝑡 = 𝑡𝑛+1 − 𝑡1

∗ 1 ∆𝑡 

𝛾13𝑘∆𝑡 = (𝑡2
∗ − 𝑡𝑛)∆𝑡 (𝛾11𝑘 + 𝛾12𝑘)∆𝑡 

= (𝑡𝑛+1 − 𝑡2
∗)∆𝑡 

1 ∆𝑡 

 

Two different expansions are used for displacement with the first expansion using the middle point, 𝑡1
∗ and the 

second expansion using a different middle point, 𝑡2
∗. The last subscript, 𝑘 = 1,2, . . . , 𝑝, is for the summation term. 

The velocity is similarly expanded as shown in equation (6). 

 

𝑣𝑛+1 +∑ [
(−1)𝑘

𝑘!
[𝛾21𝑘Δ𝑡

𝑑

𝑑𝑡
]
𝑘

𝑣𝑛+1]

𝑘=𝑝

𝑘=1

= 𝑣1
∗ = 𝑣𝑛 +∑[

1

𝑘!
[[𝛾22𝑘 + 𝛾23𝑘]Δ𝑡

𝑑

𝑑𝑡
]

𝑘

𝑣𝑛]

𝑘=𝑝

𝑘=1

 

𝑣𝑛+1 +∑ [
(−1)𝑘

𝑘!
[[𝛾21𝑘 + 𝛾22𝑘]Δ𝑡

𝑑

𝑑𝑡
]
𝑘

𝑣𝑛+1]
𝑘=𝑝
𝑘=1 = 𝑣2

∗ = 𝑣𝑛 + ∑ [
1

𝑘!
[𝛾23𝑘Δ𝑡

𝑑

𝑑𝑡
]
𝑘

𝑣𝑛]
𝑘=𝑝
𝑘=1            (6) 

 

Similarly, the acceleration is expanded as shown in equation (7). 

 

𝑎𝑛+1 +∑ [
(−1)𝑘

𝑘!
[𝛾31𝑘Δ𝑡

𝑑

𝑑𝑡
]
𝑘

𝑎𝑛+1]

𝑘=𝑝

𝑘=1

= 𝑎1
∗ = 𝑎𝑛 +∑[

1

𝑘!
[[𝛾32𝑘 + 𝛾33𝑘]Δ𝑡

𝑑

𝑑𝑡
]

𝑘

𝑎𝑛]

𝑘=𝑝

𝑘=1
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      𝑎𝑛+1 +∑ [
(−1)𝑘

𝑘!
[[𝛾31𝑘 + 𝛾32𝑘]Δ𝑡

𝑑

𝑑𝑡
]
𝑘

𝑎𝑛+1]
𝑘=𝑝
𝑘=1 = 𝑎2

∗ = 𝑎𝑛 + ∑ [
1

𝑘!
[𝛾33𝑘Δ𝑡

𝑑

𝑑𝑡
]
𝑘

𝑎𝑛]
𝑘=𝑝
𝑘=1  (7) 

 

The recurrence equations for displacement and velocity are then combined with the governing differential 

equation to form a set of simultaneous equations written in matrix form. 

It may be shown, for example, that for the upper summation limit set to p = 2, the recurrence equations can be 

used in solving a second order differential equation as shown in equation (8). 

 

            [

𝐾 𝐷 𝑀
1 𝑐22 𝑐23
0 1 𝑐33

] {

𝑠𝑛+1
𝑣𝑛+1
𝑎𝑛+1

} = [

0 0 0
1 𝑑22 𝑑23
0 1 𝑑33

] {

𝑠𝑛
𝑣𝑛
𝑎𝑛
} + {

𝐹𝑛+1
0
0
}                                                                                  (8) 

 

Similarly, for the upper summation limit set to p = 3, which includes terms of the first derivative of acceleration, 

𝑎̇, the recurrence equations can be used in solving a second order differential equation as shown in equation (9). 

 

            [

𝐾 𝐷 𝑀 0
0 𝐾 𝐷 𝑀
1
0

𝑒32
1

𝑒33
𝑒43

𝑒34
𝑒44

] {

𝑠𝑛+1
𝑣𝑛+1
𝑎𝑛+1
𝑎̇𝑛+1

} = [

0 0 0 0
0 0 0 0
1
0

𝑓32
1

𝑓33
𝑓43

𝑓34
𝑓44

] {

𝑠𝑛
𝑣𝑛
𝑎𝑛
𝑎̇𝑛

} + {

𝐹𝑛+1
𝐹̇𝑛+1
0
0

}                                     (9) 

 

The second equation results from the derivative of the first equation with respect to time, t, and the last two 

recurrence equations consist of the displacement and velocity, respectively. 

Similarly, for the upper summation limit set to p = 4, which includes terms of the second derivative of acceleration, 

𝑎̈, the recurrence equations can be used in solving a second order differential equation as shown in equation (10). 

 

           

[
 
 
 
 

𝐾 𝐷 𝑀 0 0
0 𝐾 𝐷 𝑀 0
0 0 𝐾 𝐷 𝑀

1 𝑔42 𝑔43 𝑔44 𝑔45
0 1 𝑔53 𝑔54 𝑔55 ]

 
 
 
 

{
 
 

 
 
𝑠𝑛+1
𝑣𝑛+1
𝑎𝑛+1
𝑎̇𝑛+1
𝑎̈𝑛+1}

 
 

 
 

=

[
 
 
 
 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1 ℎ42 ℎ43 ℎ44 ℎ45
0 1 ℎ53 ℎ54 ℎ55 ]

 
 
 
 

{
 
 

 
 
𝑠𝑛
𝑣𝑛
𝑎𝑛
𝑎̇𝑛
𝑎̈𝑛}
 
 

 
 

+

{
 
 

 
 
𝐹𝑛+1̇

𝐹̇𝑛+1
𝐹̈𝑛+1
0
0 }
 
 

 
 

                        (10) 

 

The third equation results from the derivative of the second equation with respect to time, t, and the last two 

recurrence equations consist of the displacement and velocity, respectively. 

The elements of [3x3] matrices C and D, corresponding to setting p = 2, are defined in the set of equations (11). 

𝑐22 = −
1

2
(2𝛾111 + 𝛾121)∆𝑡 

𝑐23 = −
1

4
[𝛾112
2 + (𝛾112 + 𝛾122)

2]∆𝑡2 

𝑐33 = −
1

2
(2𝛾211 + 𝛾221)∆𝑡 

𝑑22 =
1

2
(𝛾121 + 2𝛾131)∆𝑡 
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𝑑23 =
1

4
[𝛾132
2 + (𝛾122 + 𝛾132)

2]∆𝑡2 

                                                                 𝑑33 =
1

2
(2𝛾231 + 𝛾221)∆𝑡                                                           (11) 

 

The elements of [4x4] matrices E and F, corresponding to setting p = 3, are defined in the set of equations (12). 

 

𝑒32 = −
1

2
(2𝛾111 + 𝛾121)∆𝑡 

𝑒33 =
1

4
[𝛾112
2 + (𝛾112 + 𝛾122)

2]∆𝑡2 

𝑒34 = −
1

12
[𝛾113
3 + (𝛾113 + 𝛾123)

3]∆𝑡3 

𝑒43 = −
1

2
(2𝛾211 + 𝛾221)∆𝑡 

𝑒44 =
1

4
[𝛾212
2 + (𝛾212 + 𝛾222)

2]∆𝑡2 

𝑓32 =
1

2
(𝛾121 + 2𝛾131)∆𝑡 

𝑓33 =
1

4
[(𝛾122 + 𝛾132)

2 + 𝛾132
2 ]∆𝑡2 

𝑓34 =
1

12
[(𝛾123 + 𝛾133)

3 + 𝛾133
3 ]∆𝑡3 

𝑓43 =
1

2
(𝛾221 + 2𝛾231)∆𝑡 

                                               𝑓44 =
1

4
[(𝛾222 + 𝛾232)

2 + 𝛾232
2 ]∆𝑡2                                                  (12) 

The elements of [5x5] matrices G and H, corresponding to setting p = 4, are defined in the set of equations (13). 

𝑔42 = −
1

2
(2𝛾111 + 𝛾121)∆𝑡 

𝑔43 =
1

4
[𝛾112
2 + (𝛾112 + 𝛾122)

2]∆𝑡2 

𝑔44 = −
1

12
[𝛾113
3 + (𝛾113 + 𝛾123)

3]∆𝑡3 

𝑔45 =
1

48
[𝛾114
4 + (𝛾114 + 𝛾124)

4]∆𝑡4 

𝑔53 = −
1

2
(2𝛾211 + 𝛾221)∆𝑡 

𝑔54 =
1

4
[𝛾212
2 + (𝛾212 + 𝛾222)

2]∆𝑡2 

𝑔55 = −
1

12
[𝛾213
3 + (𝛾213 + 𝛾223)

3]∆𝑡3 

ℎ42 =
1

2
(𝛾121 + 2𝛾131)∆𝑡 
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ℎ43 =
1

4
[(𝛾122 + 𝛾132)

2 + 𝛾132
2 ]∆𝑡2 

ℎ44 =
1

12
[(𝛾123 + 𝛾133)

3 + 𝛾133
3 ]∆𝑡3 

ℎ45 =
1

48
[(𝛾124 + 𝛾134)

4 + 𝛾134
4 ]∆𝑡4 

ℎ53 =
1

2
(𝛾221 + 2𝛾231)∆𝑡 

ℎ54 =
1

4
[(𝛾222 + 𝛾232)

2 + 𝛾232
2 ]∆𝑡2 

                                                    ℎ55 =
1

12
[(𝛾223 + 𝛾233)

3 + 𝛾233
3 ]∆𝑡3                                           (13) 

 

Values of integration parameters, 𝛾𝑖𝑗𝑘, are determined from stability and accuracy analyses. 

2.2 Determination of integration parameters for implicit schemes 

2.2.1 Lyapunov stability analysis 

Applying Lyapunov stability of system matrix equations for asymptotic stability of the one-step multiple-value 

algorithms [7],[8], or to ensure that the matrix E is non-singular, Sylvester’s theorem is applied (a Hermitian 

matrix, E, is positive-semidefinite if and only if all principal minors of E are non-negative). This enforces the 

positive-semidefinite properties of the dynamics matrices using the theorem given in matrix equations as in the 

set of equations (14). 

 

𝑒11 > 0 

|
𝑒11 𝑒12
𝑒21 𝑒22

| ≥ 0 

                                                        B |

𝑒11 𝑒12 𝑒13
𝑒21 𝑒22 𝑒23
𝑒31 𝑒32 𝑒33

| ≥ 0                                                        (14) 

 

Sylvester’s theorem is also applied to check the positive-semidefinite properties of the dynamics matrices, M, D, 

K, especially those matrices that need an inverse. For the above matrix equations, matrices C, E, and G, 

corresponding to setting p = 2, 3, 4, need to have inverses to compute kinematic variables, 𝑠𝑛+1, 𝑣𝑛+1, 𝑎𝑛+1, 𝑒𝑡𝑐. 

Matrices E and G, by inspection, present better properties of stability by the Lyapunov method. Hence, the values 

of integration parameters, 𝛾ijk, may be determined from stability analyses. 

2.2.2 Accuracy analysis 

The next stage is to compare XXXX with the one-step four-value method of Kaunda [7],[8] that was rigorously 

derived using theoretical accuracy analyses given in Hildebrand [11], with error accuracies of order, Es =

−
∆t7

100800
s(7)(𝜁s) for displacement and Ev =

∆t5

720
v(5)(𝜁v) for velocity. This may be shown in the set of equations 

(15), such that, 

𝛾111 = 𝛾121 = 𝛾131 =
1

3
 

𝛾211 = 𝛾221 = 𝛾231 =
1

3
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                            𝛾311 = 𝛾321 = 𝛾331 =
1

3
𝛾411 = 𝛾421 = 𝛾431 =

1

3
                                                      (15) 

may be suitable in conjunction with the set of equations (16): 

 

𝛾112 = 𝛾122 = 𝛾132 = √
6

35
 

𝛾212 = 𝛾222 = 𝛾232 = √
4

25
 

𝛾312 = 𝛾322 = 𝛾332 = √
2

15
 

𝛾113 = 𝛾123 = 𝛾133 = √
2

21

3

 

𝛾213 = 𝛾223 = 𝛾233 = √
1

15

3

 

                                                                        𝛾114 = 𝛾124 = 𝛾134 = √
24

595

4
                                                        (16) 

   

Hence, the values of integration parameters, 𝛾ijk, may also be determined from accuracy analyses. A compromise 

between the values from stability and accuracy analyses may be necessary for optimal selection of integration 

parameters. 

In addition to checking the determinants and ranks of matrices to ensure that a matrix inverse exists, an eigenvalue 

problem usually needs to be solved for matrices, for example, G and H above, to calculate the eigenvalues, λ, with 

the corresponding natural frequencies, ω, from which the fundamental frequency, f, and period, τ, can be obtained, 

which may then be used to set an appropriate time step. From a calculated period, τ, by a rule of thumb, it is 

recommended to set the time step as Δ𝑡 ≤
𝜏

20
. In addition, an eigenvalue problem needs to be solved for the mass 

and stiffness matrices, M and K. 

3. Results and discussion of results 

3.1 Two-degrees-of-freedom systems (2-dof) 

A linear second-order two-degrees-of-freedom system subjected to a history of loading 𝑓𝑖(𝑡), and the initial 

conditions of displacement 𝑥𝑖(0), and velocity 𝑥̇𝑖(0), forms a vector-valued function, and is shown in Figure 1. 

The differential equation is given in equation (17). 

 

                     [
𝑚11 𝑚12

𝑚21 𝑚22
] {
𝑠̈1
𝑠̈2
} + [

𝑏11 𝑏12
𝑏21 𝑏22

] {
𝑠1̇
𝑠2̇
} + [

𝑘11 𝑘12
𝑘21 𝑘22

] {
𝑠1
𝑠2
} = {

𝑓1
𝑓2
}                                  (17) 
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                                                    Figure 1: 2-dof Mass-spring-damper system 

 A linear two-degrees-of-freedom system was taken from Thomson [16] with:  

𝑚11 = 𝑚1 = 100; 𝑚12 = 𝑚21 = 0; 𝑚22 = 𝑚2 = 25; 𝑏11 = 𝑏12 = 𝑏21 = 𝑏22 = 0; 𝑘11 = 54000 ; 𝑘12 = 𝑘21 =

−18000; 𝑓1 = 0; and 𝑓2 = 400. The eigenvalues were found as, λ1 = 258.9 with the corresponding fundamental 

natural frequency, 𝜔1 = 16.09 rad/s, and λ2 = 1001 with the corresponding natural frequency, 𝜔2 = 31.6 rad/s. 

Figure 2 shows a graph of displacements versus time. The results given in Thomson [16] are confirmed. 

 

Figure 2: Graph of displacements (m) vs time (t) 

3.2 Multiple-degrees-of-freedom systems (m-dof) 

A finite element example was taken from Wang et al. [19], which was a multiple-degree-of-freedom mass-spring 

system with up to 1500 nonlinear springs, whose details are shown in Table 3.  

Table 3: Multiple-degree-of-freedom nonlinear mass-spring system 
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Mass (kg) Spring (N/m) Force (N) 

𝑚1 = 1 𝑘1 = 𝑘 𝑓1 = 𝑠𝑖𝑛(𝑡) 

𝑚2 𝑘2 𝑓2 = 𝑠𝑖𝑛(𝑡) 

𝑚3 𝑘3 𝑓3 = 𝑠𝑖𝑛(𝑡) 

⋯ ⋯ ⋯ 

𝑚𝑛 𝑘𝑛 𝑓𝑛 = 𝑠𝑖𝑛(𝑡) 

 𝑘 = 105 𝑁/𝑚 𝛼 = −2 

𝑚𝑖 = 1 𝑘𝑔; 𝛼 = −2; 𝑘𝑖 = 𝑘[1 + 𝛼(𝜇𝑖 − 𝜇𝑖−1)
2]; 2 ≤ 𝑖 ≤ 𝑛; 𝑛 ≡ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑓 

Figure 3 shows a graph of displacement vs time for a 10-dof system solved using a fixed time step of ∆𝑡0 = 1𝑒 −

03 (s) for the duration of simulation of 10 π(s) or 5 periodic cycles. The corresponding phase trajectory is shown 

in Figure 4 as a closed path (see Jordan et al. [17]), with a duration of 2 π(s). 

 

Figure 3: Displacement vs time 
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Figure 4: Velocity vs displacement 

 

Figure 5 shows a graph of displacement vs time for a 100-dof system for the same duration of simulation of 10 

π(s). The corresponding phase trajectory is shown in Figure 6 as a closed path (see Jordan et al.[17]), with a 

duration of 2 π(s). 

 

Figure 5: Displacement vs time 
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Figure 6: Velocity vs displacement 

The results shown in Figure 5 agree with those of Wang et al. [19]. 

3. Conclusions 

This paper has developed extended forward-backward difference numerical solution procedures for a class of 

nonlinear systems. The theoretical accuracy analysis revealed a high order accuracy, with an error of order O(∆𝑡7) 

for displacement, and an error of order O(∆𝑡5) for velocity. This is an improvement from simple second order 

accurate implicit integration schemes. The Lyapunov stability analysis showed that the algorithm developed was 

unconditionally stable, and values of integration parameters, 𝛾ijk, may be determined from stability analyses. 

A linear system of two-degrees-of-freedom was initially solved to illustrate how to extend the methods to deal 

with multiple-degrees-of-freedom systems using matrices and vectors. The results of Thomson [16] were 

confirmed. 

Two nonlinear finite element problems were successfully solved. The hundred-degrees-of-freedom system 

confirmed the results of Wang [19]. The graphs of displacement versus time look similar. In addition, phase 

trajectory plots and a velocity versus displacement graph revealed the property of a closed path for the nonlinear 

mass-spring system. The accuracy of the results was not compared because such an exercise would have required 

getting access to the authors’ data. 
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