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Abstract - A quickly developing machine learning paradigm called federated learning (FL) allows for cooperative 

model training while protecting data privacy. Massive amounts of sensitive data are produced by digital systems 

in healthcare, the Internet of Things, and smart environments. FL has become significant because of its 

decentralized methodology, which forbids the sharing of raw data. The applications, difficulties, and developments 

in FL are examined in this review article, with an emphasis on privacy-preserving techniques in a variety of fields. 

Classifying and evaluating FL frameworks according to their architecture, learning models, aggregation methods, 

and privacy-preserving tactics is the main goal of this evaluation. The chosen studies include cybersecurity, smart 

city infrastructure, healthcare diagnostics, and customized IoT solutions. Relevance to FL privacy preservation 

and practical use was guaranteed by the inclusion criteria. The results show that although FL successfully 

improves data security, issues with data heterogeneity, model convergence, communication cost, and adversarial 

attack susceptibility still exist. To improve privacy guarantees, methods like clustered FL, secure multi-party 

computing, homomorphic encryption, and differential privacy are frequently used. In order to increase FL systems' 

scalability, resilience, and security, this paper identifies these developments and suggests future research avenues. 

This study contributes to the developing subject of privacy-preserving AI by offering a systematic taxonomy and 

analysis of current federated learning algorithms suited to privacy-sensitive situations. 
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1. INTRODUCTION 

1.1 Overview of Privacy Challenges in Data-Driven AI 

Unprecedented amounts of data collection, storage, and use have resulted from the digital growth of businesses, 

which is being propelled by the quick development of artificial intelligence (AI) and machine learning (ML). In 

order to provide insights, streamline choices, enhance user experiences, industries including healthcare, smart 

cities, finance, autonomous systems, and the Internet of Things (IoT) increasingly significantly rely on large-scale 

data-driven AI models. The development of real-time data streams, including personal health records, has been 

further expedited by the increasing number of smart devices, sensors, and mobile applications linking monetary 

exchanges to biometric, behavioral, and geographical information [1][2]. 

However, there are serious privacy issues with this increase in data availability. Large datasets are compiled and 

kept on cloud servers or centralized data centers as part of the centralized training paradigm used by traditional 

AI models. This combination poses a number of dangers, such as: 

• Data breaches: Malevolent attackers find centralized storage to be a valuable target. Millions of private 

documents might 

            be  made public in a single breach. 

• Unauthorized Access: Data abuse may result from insider threats or inadequate authentication 

procedures. 

•  Data Misuse and Secondary Use: Information gathered for one reason could be used for another without 

user authorization, which is against privacy laws and standards. 
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Furthermore, a number of extremely sensitive personal data types are gathered in the fields of healthcare (genomic 

data, medical history), finance (transaction records), and smart environments (home monitoring systems). Identity 

theft, financial fraud, discrimination, and physical injury can result from the improper use or disclosure of such 

information. 

Centralized data processing is made more difficult by regulatory frameworks like the bill on personal data 

protection (PDP) in nations like India, the Health Insurance Portability and Accountability Act (HIPAA) in the 

United States, and the GDPR, or the General Data Protection Regulation, in Europe. Traditional data-driven AI 

models that rely on access to enormous, and centralized datasets are put to the test by these restrictions, which 

enforce the rules of data reduction, purpose limitation, and user permission.Furthermore, even in situations where 

raw data is not easily obtainable, attackers can recreate training data from the model's outputs or gradients owing 

to the growing danger of model inverted attacks. Serious privacy violations can also result from membership 

inference acts of violence, which can ascertain if a particular data piece was included in the model's training 

dataset [3][4].  

Privacy-preserving machine learning (PPML) techniques are becoming essential due to these threats. In addition 

to accuracy and performance, systems have to have built with privacy requirements, data loss prevention, and 

adversarial assault resistance in mind. 

In this regard, Federated Learning (FL) shows promise as a solution to these problems. FL enables a paradigm 

shift toward decentralized AI models that naturally emphasize data privacy by facilitating model training across 

dispersed data sources without sending raw data. 

1.2 Role of Federated Learning (FL) in Privacy Preservation 

A paradigm change in machine learning, federated learning (FL) was created to address the escalating worries 

about data security, privacy, and compliance in data-driven AI systems. With FL, which was first presented by 

Google in 2016, several clients, such edge devices, smartphones, medical facilities, or Internet of Things sensors, 

may work together to train a common global model while maintaining the locality of their raw data [5]. FL 

guarantees that data stays decentralized throughout the learning process, in contrast to standard centralized 

learning, which requires data to be uploaded to a central server for model training.Each participating client trains 

a local model on its own private dataset in a typical FL process, communicating only model changes (such as 

weights or gradients) to the central aggregation server. The global model is then updated by aggregating these 

local alterations, sometimes with the use of techniques such as Federated Averaging (FedAvg) [6]. By design, this 

minimizes exposure risks and complies with privacy standards like GDPR, HIPAA, and other information 

protection legislation by preventing the central server from getting hold of sensitive data.FL is especially well-

suited for diverse and privacy-sensitive areas like healthcare, where ethical, legal, and regulatory restrictions 

prevent the centralization of patient data. Without jeopardizing patient privacy, hospitals, clinics, or research 

institutes can work in combination to jointly develop strong AI models for medical image analysis or illness 

prediction [7]. Similar to this, FL allows dispersed sensors and devices to take part in model training in IoT 

ecosystems and smart city infrastructure without disclosing potentially private user data to other parties (such as 

location or activity patterns). 

In addition to its privacy advantages, FL promotes system resilience and scalability. As a reflection of the diversity 

of data found in daily life across devices, users, and surroundings, it enables learning from Non-Independent and 

Identically Distributed (Non-IID) data sources [8]. This increases FL's adaptability for implementation in a variety 

of contexts, from smart grids and industrial systems to wearables and smartphones. 

Nevertheless, FL is not impervious to privacy threats in spite of these benefits. In order to breach the global model 

or get private information, attackers may use membership inference attacks, model inversion attacks, or malicious 

update injections, even while the raw data is still local. In order to increase the durability of FL systems, further 

privacy-preserving methods including homomorphic encryption, differential privacy, secure multiparty 

computing, and blockchain-based aggregation are frequently incorporated.In conclusion, by removing the 

requirement for centralized data gathering and facilitating collaborative model creation, Federated Learning 

tackles important privacy issues.FL is positioned as a crucial enabler for safe, scalable, and moral AI applications 

across privacy-sensitive areas thanks to its integration with privacy-enhancing technologies. 

1.3 Motivation Behind This Review 

Despite Federated Learning's potential across domains, a number of issues still need to be addressed, including as 

communication overhead, system scalability, data heterogeneity, and adversarial attack susceptibility. A thorough 
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review is required due to the increasing amount of research examining various FL topologies, aggregation 

algorithms, and privacy-enhancing strategies. Consolidating existing information, offering a structured taxonomy, 

and identifying research needs and opportunities in privacy-preserving FL frameworks are the objectives of this 

assessment. Given FL's quick acceptance in vital fields including cybersecurity, smart cities, healthcare, and the 

Internet of Things, it is crucial for both academics and business to comprehend its advantages and disadvantages. 

1.4 Research Methodology 

A thorough literature study of current research publications released between 2022 and 2024 is used in this 

review. Based on their applicability to privacy-preserving Federated Learning frameworks, innovative FL 

architectures, and their uses in cybersecurity, smart environments, IoT, and healthcare, a total of 17 peer-

reviewed publications were chosen. 

The methodology followed these steps: 

• Literature Search: Making use of scholarly resources including Elsevier, Springer, IEEE Xplore, and the 

ACM Digital  

           Library. 

• Papers on FL that included real-world datasets, realistic implementations, and explicit privacy-preserving 

techniques met the  

            inclusion criteria. 

• Exclusion Criteria: Only theoretical works without experimental evaluation or privacy concerns. 

• Classification: The chosen articles were arranged according to the system architecture, privacy strategies 

(such as Secure Aggregation and Differential Privacy), and application domain.Metrics like accuracy, scalability, 

communication cost, and attack resilience are used to compare the models in the review. 

1.5 Related Reviews, Differences, and Our Contribution 

1.5.1 Related Reviews in Federated Learning 

The potential of Federated Learning (FL) to strike a compromise between collaborative model training and privacy 

preservation has garnered a lot of interest from the academic community. FL architectures, system designs, and 

general applications have been thoroughly examined in a number of studies. For example, scalability issues and 

algorithmic improvements are examined in studies on FL for edge computing and mobile contexts [1]. Other 

surveys concentrate on the implementation of FL in IoT or healthcare AI ecosystems, highlighting real-world 

applications and system-level difficulties [2][3].A number of scholars have also examined the security flaws of 

FL systems, describing dangers like poisoning, membership inference, and model inversion attacks [4]. As 

countermeasures, these studies usually suggest incorporating secure multiparty computation (SMPC), 

homomorphic encryption (HE), and differential privacy (DP) into FL systems [5][6]. Nevertheless, a large number 

of these assessments are either out-of-date or domain-specific, and therefore do not take into account the most 

recent developments in privacy-preserving methods inside FL frameworks. 

1.5.2 Differences from Existing Reviews 

Although the current surveys offer insightful information, there are still a number of important holes that need to 

be filled, which this study aims to fill: 

Limited Application Scope: The majority of previous studies focus on specific industries, such as IoT settings [9], 

smart cities [8], or healthcare [7]. This study, on the other hand, offers a cross-domain analysis by methodically 

contrasting privacy-preserving FL frameworks used in smart environments [13], cybersecurity [12], IoT [11], and 

healthcare [10].Restricted Discussion of Current Works: Previous surveys have not fully examined recent ground-

breaking research from 2022–2024 on multi-party safe aggregation [16], blockchain-based FL [15], and clustered 

FL [14]. These recent developments are specifically incorporated within this assessment Absence of Comparative 

Study of Privacy Methods .There aren't many surveys that provide a thorough side-by-side comparison of privacy-

preserving methods like DP [6], HE [11], and SMPC [16] in FL systems. By connecting each research to its 

privacy enhancing strategy, our evaluation fills this gap.Lack of a Complete Taxonomy: Although generic 

taxonomies for FL architectures are available, little research has been done on privacy-centric taxonomies that 

categorize FL techniques according to threat models, system architecture, dataset kinds, and aggregation 

procedures. We provide this new privacy-oriented taxonomy in our evaluation. 
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1.5.3 Our Contribution 

This work makes the following original contributions by providing a thorough analysis of 17 current peer-

reviewed research studies on privacy-preserving FL systems: 

Analysis Across Domains: 

The review covers a wide range of topics, such as cybersecurity (intrusion detection [14]), IoT (smart parking 

[13]), healthcare (COVID-19 detection [10], skin disease categorization [11]), and smart settings (activity 

monitoring [15], adaptive learning [16]). 

Taxonomy of Privacy-Preserving FL Techniques: 

We classify FL frameworks based on: 

• System architectures: Centralized, decentralized, hierarchical [1][2] 

• Aggregation strategies: FedAvg, FedProx, Secure Aggregation [3][4] 

• Privacy-preserving techniques: DP [5], HE [6], Blockchain [7], SMPC [8] 

Identification of Research Gaps and difficulties: The study identifies many important research gaps and 

difficulties, including scalability of FL frameworks [14], communication efficiency [13], adversarial robustness 

[12], and managing extremely Non-IID data [11]. To solve these problems, further research avenues are 

suggested.For academics and practitioners looking to create federated learning systems that are reliable, scalable, 

and privacy-preserving for a variety of real-world applications, this survey offers a timely, thorough, and 

organized reference. 

1.6 Research Questions 

The review is guided by the following key research questions: 

• Research Question 1: What are the most commonly used FL algorithms and architectures in privacy-

sensitive applications? 

• Research Question 2: Which datasets and domains are predominantly used to evaluate privacy-preserving 

FL models? 

• Research Question 3: What privacy-enhancing technologies (PETs) are integrated with FL to mitigate 

security threats? 

• Research Question 4: What are the key challenges, limitations, and open research problems in current 

FL systems? 

   1.7 Contributions of This Review 

Finding Research Gaps and Challenges: The study finds several significant research gaps and challenges, such 

as managing highly Non-IID data [11], communication efficiency [13], adversarial robustness [12], and the 

scalability of FL frameworks [14]. Additional research directions are proposed to address these issues.  

This study provides a recent, comprehensive, and well-structured reference for researchers and practitioners 

seeking to develop federated learning systems that are dependable, scalable, and privacy-preserving for a range 

of real-world applications. 

Challenges and Future Directions: The paper identifies unresolved research issues include managing highly Non-

IID data, cutting down on communication overhead, protecting FL against hostile assaults, and attaining 

scalability in sizable heterogeneous networks. We suggest further lines of inquiry to create FL systems that are 

reliable, effective, and privacy-preserving. 

1.8 Structure of The Paper 

The present investigation is divided into seven distinct segments, each with its own specific focus. The initial 

portion is dedicated to the Introduction, which provides an in-depth explanation of the motivation and background 

of the research. This section also presents the research questions, methodology, and the unique contributions of 

this review. 
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The following section, titled Preliminaries, delves into the essential concepts and terminology related to Federated 

Learning (FL). It introduces different FL architectures, privacy-preserving techniques, and presents a taxonomy 

framework that guides the classification of existing approaches. 

The third section, Applications of Privacy-Preserving Federated Learning, illustrates the implementation of FL in 

diverse domains such as healthcare, IoT, smart environments, and cybersecurity. This section provides a 

comprehensive analysis of 17 research papers, focusing on key parameters: the algorithms used to train models, 

the datasets applied, aggregation strategies, privacy-enhancing mechanisms, and system architectures. It also 

examines existing security and privacy concerns associated with FL in these real-world applications. 

The fourth section, titled Taxonomy of Federated Learning Frameworks, provides a structured classification of 

FL models based on their system architecture, aggregation methods, privacy-preserving techniques, and datasets. 

This section helps readers understand the strengths and limitations of various approaches. 

The fifth section, Security Threats and Countermeasures, investigates the significant challenges related to data 

leakage, model inversion, poisoning attacks, and other adversarial threats in FL. It also reviews the proposed 

defensive techniques designed to enhance privacy and robustness in FL systems. 

The sixth section, Challenges and Future Research Directions, explores the potential benefits, difficulties, and 

future prospects of privacy-preserving FL. It identifies open research problems and emerging trends that require 

further investigation. 

Finally, the review concludes with a summary of key findings and reflections on the role of privacy-preserving 

Federated Learning as a crucial enabler for secure, scalable, and ethical AI systems in sensitive data environments. 

2. Preliminaries 

Federated Learning (FL), which enables distant devices or organizations to jointly train machine learning models 

while maintaining local data, has become an important privacy-preserving machine learning paradigm. 

Understanding the fundamental ideas, structures, and privacy-preserving strategies related to FL is crucial before 

exploring applications and difficulties. 

2.1 Federated Learning Fundamentals 

Multiple clients (such as mobile devices, hospitals, and IoT sensors) may calculate model modifications locally 

on their own data according to FL's fundamental concept of decentralizing model training. Clients provide just 

model parameters or elevations to a central server for aggregation, rather than raw data [1]. In addition to 

complying with privacy laws like GDPR and HIPAA, this greatly lowers the chance of data leaking [2]. 

The general FL process consists of the following steps: 

• The server initializes a global model. 

• After downloading the global model, each client uses private data to train it locally. 

• Updated model parameters are sent to the server by clients. 

• To update the global model, the server carries out aggregation (e.g., FedAvg) [3]. 

Until convergence is reached, this process is repeated several times. By design, FL facilitates cooperative learning 

on dispersed datasets and lessens the need to send sensitive data. 

2.2 Types of Federated Learning Architectures 

A number of architectural variants of federated learning (FL) are intended to help cooperative model training in 

various data distribution circumstances. In order to solve the privacy, efficiency, and scalability issues that arise 

in real-life applications, the architectural selection is essential. Below is a description of the main categories of 

FL architectures: 

2.2.1 Horizontal Federated Learning (HFL) 

The most popular type of FL is horizontal federate learning, which is sometimes referred to as sample-based FL. 

Devices, institutions, or organizations that participate in HFL have databases with the same feature space but 

distinct user samples. When several entities carry out the same operation while gathering data from various user 

bases, this design is perfect.  
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In instance, many hospitals may work together to use patient data to train a disease detection algorithm. Although 

the patient samples fluctuate, each hospital records comparable characteristics, such as age, blood pressure, and 

cholesterol levels. These hospitals may create a strong worldwide model by using HFL without releasing private 

patient data or breaking data protection laws [4]. 

Applications where the feature space is constant among clients, such as wearable device cooperation, smart health 

monitoring, and mobile keyboard predictions, make extensive use of HFL. 

2.2.2 Vertical Federated Learning (VFL) 

Situations when clients have distinct feature sets but the same user base are addressed by vertical federated 

learning. When two organizations collaborate and each side has complementary knowledge on the same entities, 

VFL is very helpful.  

For example, a bank could save information on financial transactions, whereas an e-commerce platform might 

keep track of the same users' past purchases. Without disclosing their private datasets to one another, these two 

firms can work together to build a fraud detection model [5]. 

In order to maintain privacy during feature-level integration, VFL sometimes calls for secure multiparty 

computation (SMPC) or homomorphic encryption (HE), which adds complexity by needing entity alignment and 

encrypted computations. 

2.2.3 Federated Transfer Learning (FTL) 

Federated Transfer Learning is intended for use in scenarios when participant characteristics and sample data 

overlap is little or nonexistent. FTL is appropriate for cases where direct FL is impractical because of substantial 

data disparities since it uses transfer learning techniques to facilitate knowledge exchange between heterogeneous 

datasets. For instance, a healthcare facility that tracks patient vitals may work with an IoT company that gathers 

device usage patterns. FTL approaches aid in the transfer of pertinent knowledge between different domains to 

enhance model performance, despite the enormous differences in their datasets [6].In cross-domain applications, 

FTL is becoming more and more popular, particularly where data heterogeneity or unavailability is a significant 

obstacle. 

2.2.4 Clustered and Hierarchical Federated Learning 

Clustered Federated Learning (CFL): 

CFL is a more sophisticated variant in which clients are categorized into groups according to application domain, 

behavior patterns, or data similarities. A local model is created by each cluster and subsequently included into the 

global model. This method improves model accuracy, especially in cases involving Non-IID (Non-Independent 

and Identically Distributed) data, which are prevalent in smart environments, healthcare, and the Internet of Things 

[7]. Before being aggregated into the global model, individuals with comparable problems may be pooled in 

mental health monitoring, for example, to create a specialized sub-model [8]. 

Hierarchical Federated Learning (HFL): 

A multi-level aggregation structure is introduced by hierarchical FL, in which local updates are delivered to a 

central cloud server after first being aggregated at the edge level (such as edge servers or regional nodes). For 

large-scale FL installations, this design enhances scalability and lowers communication overhead [9]. With 

hundreds of edge devices operating concurrently, hierarchical FL is especially useful in energy grids, smart cities, 

and industrial IoT systems. 

2.2.5 Split Federated Learning (SplitFL) 

Due to its ability to lessen the computational load on client devices, Split Federated Learning (SplitFL) is perfect 

for contexts with limited resources, such as mobile devices or Internet of Things sensors. The model in SplitFL is 

separated into two parts: 

• Data is processed by the client-side model up to a certain "cut layer." 

• The server then completes the forward and backward pass after receiving the intermediate outputs, or 

activations [10]. 

since of this design, FL is more practical in contexts like as low-power IoT systems or smart healthcare devices 

since it minimizes client-side processing and data transmission. Because only intermediate activations—not raw 
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data—are exchanged, SplitFL also creates chances for privacy improvements by lowering the possibility of 

information leakage.These FL designs balance trade-offs between communication cost, computational efficiency, 

and privacy protection, providing flexibility to serve a range of collaborative situations. The data distribution, 

application domain, and privacy needs of the collaborating organizations all influence the choice of FL type. 

2.3 Privacy-Preserving Techniques in Federated Learning 

Federated Learning (FL) is susceptible to inference assaults, gradient leakage, and model inversion risks that 

might jeopardize client data privacy, despite the fact that FL naturally lessens the need to share raw data. A number 

of privacy-preserving strategies are included into FL workflows to improve the privacy guarantees of FL systems. 

These methods preserve model value while bolstering protections against hostile attacks. 

2.3.1 Differential Privacy (DP) 

One of the most popular privacy-preserving techniques in FL is Differential Privacy (DP). By mathematically 

ensuring that the addition or deletion of a single data point from the dataset has no discernible impact on the 

learning model's output, DP makes it challenging for attackers to draw conclusions about specific participants 

[11]. To accomplish DP in practice, calibrated noise is added to either the aggregated global model or the local 

model updates prior to sharing. A privacy budget parameter ε (epsilon) carefully regulates the noise, balancing the 

trade-off between privacy protection and model accuracy. 

In FL, where data sensitivity is quite high, DP is particularly helpful for IoT and healthcare applications. For 

example, DP has been effectively implemented into COVID-19 detection models [12] and IoT-based activity 

monitoring systems [13] to prevent leaking of sensor data and patient records, respectively, during model 

aggregation. 

Nevertheless, using DP has drawbacks, including: 

• Decreased model accuracy as a result of more noise 

• More client-side computational cost; 

• Difficulty in adjusting the privacy budget 

Notwithstanding these difficulties, DP is still a fundamental method for federated systems that protect privacy. 

2.3.2 Homomorphic Encryption (HE) 

Secure processing is made possible by homomorphic encryption (HE), which enables calculations to be carried 

out directly on encrypted data without requiring decryption at any stage of the computation [14]. Because of this 

feature, HE is especially useful in FL, where client model changes may be collected and encrypted without 

revealing gradients or raw data.  

By preventing the aggregation server from ever learning individual model updates, HE considerably lowers the 

possibility of reconstruction or gradient leaking attacks. Smart grid systems, financial institutions, and healthcare 

infrastructures—where data privacy and regulatory compliance are crucial—benefit from HE-based 

aggregation.For example, HE is used to safely sum encrypted gradients or weights from many clients before to 

applying model updates in smart healthcare systems or power theft detection applications [14]. 

HE's primary drawback, meanwhile, is its substantial computational expense, particularly when working with 

intricate deep learning models.  Performance constraints are frequently addressed by hybrid techniques or efficient 

implementations. 

2.3.3 Secure Multi-Party Computation (SMPC) 

A cryptographic approach called Secure Multi-Party Computation (SMPC) allows several clients to 

collaboratively compute a function over their inputs while maintaining the privacy of those inputs. Without the 

need for a reliable server, SMPC is used in FL to carry out safe model aggregation [15]. To guarantee that no one 

party has access to the entire dataset or model changes, each client shares encrypted data fragments (secret shares) 

with other clients. The complete aggregated model can only be recreated when all participants compute together. 

SMPC works very well in the following situations: 

• Vertical Federated Learning (VFL) scenarios with several feature owners 

• Partnerships between entities with stringent privacy regulations 
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For instance, SMPC in FL is used by financial organizations and healthcare systems to safely calculate global 

models without exchanging private information [15]. For large-scale systems, SMPC necessitates careful 

optimization since it may be computationally and communication-intensive. 

 

2.3.4 Blockchain and Distributed Ledger Technologies (DLT) 

To improve security, traceability, and credibility in dispersed situations, FL frameworks are progressively using 

blockchain and distributed ledger technologies (DLT) [16]. Every transaction or model update in the FL process 

is recorded in an unchangeable, tamper-resistant ledger provided by blockchain.  

 

The following are advantages of combining FL with Blockchain/DLT: 

• Transparency-ensuring auditable model training records 

• Elimination of single-point-of-failure threats from central servers 

• Tamper-proof aggregation results 

 

Blockchain guarantees that participating clients adhere to the protocol and that model changes are not altered 

during transmission in IoT networks or urban parking systems [16]. Smart contracts provide the ability to identify 

harmful activity, reward honest participation, and automate aggregation procedures. 

Blockchain increases confidence, but it also adds storage overheads and latency, particularly in big networks. 

Research is being done on hybrid models that integrate FL with lightweight ledgers to strike a compromise 

between efficiency and security. 

Table 1 . Summary of Privacy-Preserving Techniques 

Technique Purpose Benefits Challenges 

Differential Privacy (DP) Adds noise to prevent 

data leakage 

Strong mathematical 

privacy guarantee 

Accuracy loss, tuning ε 

Homomorphic 

Encryption (HE) 

Compute on encrypted 

data 

Protects model updates 

during aggregation 

High computational 

overhead 

Secure Multi-Party 

Computation (SMPC) 

Secure joint 

computation 

No trusted aggregator 

required 

Communication cost, 

scalability 

Blockchain / DLT Tamper-proof record of 

FL processes 

Trustless, auditable 

system 

Latency, energy 

consumption 

 

2.4 Communication Efficiency and Optimization 

The communication overhead brought on by clients and the central server exchanging huge model parameters 

repeatedly over several training rounds is one of the biggest problems with Federated Learning (FL). Frequent 

communication becomes expensive in terms of bandwidth, energy consumption, and latency in places with limited 

resources, such as edge computer nodes, mobile phones, and Internet of Things devices. For FL systems to be 

practical and scalable, communication efficiency must be guaranteed. To reduce communication costs without 

materially sacrificing model accuracy or performance, a number of optimization strategies have been put forth 

and implemented. Among the primary tactics are: 

2.4.1 Model Compression and Quantization 

The size of model updates sent by clients is decreased using model compression techniques. Typical techniques 

consist of: 

• Gradient sparsification: Transmitting only the most significant gradients. 

• Weight pruning: Removing less important model parameters. 

• Quantization: Representing model weights and updates with fewer bits (e.g., 8-bit or binary 

representations). 
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By significantly lowering the volume of data transferred in each communication cycle, these techniques make FL 

more practical for low-bandwidth settings such as mobile devices and IoT sensor networks [17]. Excessive 

compression, however, might cause problems with convergence and accuracy loss. 

2.4.2 Client Sampling 

To cut down on communication frequency and expense, random or selective client sampling is utilized rather than 

mandating that every customer attend every training session. In each loop, the system chooses a subset of the 

accessible clients to accomplish: 

• Lower communication overhead 

• Reduced client-side computation load 

• Improved scalability to large client populations 

In order to prevent biased data selection from impairing model performance, careful sampling techniques make 

sure that statistical heterogeneity is taken into account. 

2.4.3 Adaptive Aggregation Techniques 

Advanced aggregation algorithms have been developed to improve communication efficiency while addressing 

data heterogeneity challenges. These include: 

• FedAvg: A simple weighted average of local models, widely used in FL. 

• FedProx: An extension of FedAvg that adds regularization to handle system and data heterogeneity. 

• FedNova: Normalizes local updates based on local steps, improving performance in non-IID settings. 

Adaptive aggregation reduces the number of communication rounds required for convergence and ensures fairness 

in federated systems where clients differ in computing power and data volume. 

Importance in the Resource-Constrained Environments 

Communication optimization techniques are especially vital for deploying FL in: 

• IoT networks with limited connectivity 

• Battery-operated mobile devices 

• Edge computing environments 

These strategies help minimize energy consumption, prolong device life, and enable real-world deployment of 

privacy-preserving FL frameworks. 

3. Applications of Privacy-Preserving Federated Learning 

In many fields where data security, privacy, and conformity to regulations are crucial, federated learning, or FL, 

has become a game-changing framework for collaborative machine learning. Because of its modular architecture, 

which allows model training without transferring sensitive data, it is ideal for privacy-sensitive industries 

including cybersecurity, IoT systems, healthcare, and smart environments. This section examines 17 recent studies 

that illustrate the results, difficulties, and application scenarios of privacy-preserving FL frameworks in different 

fields. 

3.1 Healthcare Applications 

Because medical data is extremely sensitive and subject to strict data protection laws, the healthcare industry 

continues to lead the way in FL adoption. Multiple healthcare facilities and medical equipment can work together 

to train models using privacy-preserving FL approaches without jeopardizing patient confidentiality. For example, 

[1] proposes a privacy-preserving FL system for the Internet of Medical Things (IoMT), emphasizing safe 

aggregation and authentication methods. This system protects patient data from potential adversarial assaults and 

unlawful access while allowing remote healthcare equipment to take part in model training. 

FL was useful in speeding up diagnosis while preserving anonymity during the COVID-19 epidemic. Researchers 

created a COVID-19 detection model in [7] that combines FL and Differential Privacy (DP). Using networked 

chest imaging datasets, the architecture effectively increased diagnosis accuracy while maintaining the security 
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of private patient data.  

The categorization of skin diseases has also benefitted from FL frameworks that use DP and Convolutional Neural 

Networks (CNNs). This method addresses privacy and security concerns by enabling training on sensitive skin 

lesion photos from many sources without data centralization, as explained in [9]. 

FL protects privacy while enabling wearable devices to sense stress in the context of mental health monitoring. 

In order to protect sensitive physiological data acquired from users from being exposed, Study [12] uses a 

hierarchical FL design in conjunction with local DP.  

For healthcare applications, strong FL frameworks that incorporate Secure Multi-Party Computation (SMPC) 

have also been suggested. These techniques, as described in [14], improve model resistance to poisoning 

assaults while preserving anonymity throughout the model aggregation stage, which makes them ideal for 

delicate healthcare settings. 

3.2 IoT and Smart Environments 

Data privacy and resource limitations in distributed systems are two issues that are addressed by integrating FL 

into IoT networks and smart environments. Large volumes of decentralized data produced by devices with 

constrained processing power are frequently involved in these applications. For instance, the Edge-Intelligence 

FL framework for smart healthcare systems, which was unveiled in [5], uses lightweight encryption methods to 

protect private medical information while lessening the strain on IoT devices' communication capabilities. In 

settings with limited resources, this method improves efficiency and protects privacy. 

Additionally, customized FL models have been investigated to enhance privacy and flexibility in IoT 

environments. In [8], researchers created a FL framework with user feedback loops that minimizes data transfer 

and enables IoT devices to improve their local models according to user preferences. Without compromising 

model performance, this tailored learning guarantees the protection of individual privacy. FL has also been used 

in the educational sector to safeguard the privacy of students. FL is used to track and categorize e-learning actions 

without sending sensitive user data in [13], an on-screen activity tracking system. The approach demonstrates FL's 

adaptability in a variety of contexts by guaranteeing that individual learning styles stay confidential. 

Smart parking systems and other urban infrastructures have also made use of FL in conjunction with blockchain 

and distributed ledger technologies (DLT). A blockchain-enabled FL framework for predicting urban parking slots 

is shown in [15], guaranteeing auditable and impenetrable model changes while protecting user location 

information. Similar to this, clustered FL techniques have been used in wellness detection and tailored healthcare 

applications [17], where clients are grouped according to similarity to increase model accuracy and protect 

anonymity. 

3.3 Cybersecurity and Intrusion Detection Systems (IDS) 

FL frameworks provide notable benefits in the fields of anomaly detection and cybersecurity by facilitating 

collaborative learning without direct access to private datasets or sensitive system logs. For example, in a FL 

framework for IoT resource allocation, study [2] combines local DP with Reinforcement Learning (RL). In IoT 

situations, this method minimizes the chance of critical data loss while optimizing resource utilization.FL has been 

used in critical infrastructure to identify power theft in smart grids. By utilizing model compression approaches, 

the system suggested in [6] guarantees safe and effective data exchange, enabling utility providers to work together 

to identify fraudulent activity without jeopardizing consumer privacy. 

Furthermore, in [10], a collaborative FL model for intrusion detection systems (IDS) on the cloud edge is 

introduced. While protecting the privacy of individual system logs and avoiding data loss during training, this 

framework uses safe aggregation techniques to analyze distributed log data, allowing efficient anomaly and cyber 

threat detection. 

3.4 Cross-Domain and Reinforcement Learning Applications 

FL's versatility and scalability have been demonstrated by its successful extension outside typical domains to 

accommodate cross-domain collaborations and reinforcement learning (RL) activities. In [3], a multimodal data 

analysis framework based on FL is presented in the context of disaster management. In order to enable quick 

catastrophe response without jeopardizing sensitive data, this system combines textual, visual, and geographic 

data while using privacy-preserving strategies.As shown in [11], where a cooperative maze-solving system is 

created, reinforcement learning tasks have also been combined with FL. FL's promise in multi-agent and decision-
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making contexts is demonstrated by the fact that several agents may train their rules locally while maintaining 

privacy. 

Lastly, the difficulties of cross-device learning in resource-constrained contexts are addressed by the U-shaped 

Split Federated Learning (SplitFL) system introduced in [16]. SplitFL greatly minimizes computation on client 

devices while maintaining privacy by providing just intermediate activations rather than raw data. Because of this, 

it is ideal for applications involving mobile platforms and low-power IoT devices. 

3.5 Comparative Insights 

A thorough examination of the papers that were examined shows that privacy-preserving Federated Learning (FL) 

is being used more and more in important fields including cybersecurity, IoT, healthcare, and smart environments. 

Due to stringent legal requirements and the sensitive nature of patient data, the healthcare industry emerges as the 

top application sector. Methods such as Secure Multi-Party Computation (SMPC) [14] and Differential Privacy 

(DP) [7][9][12] are frequently used to safeguard medical information while permitting cooperative model training. 

According to studies [1][7][9][12][14], edge-based and hierarchical FL designs are popular because they strike a 

balance between robust privacy assurances and computational performance. In the meanwhile, applications for 

the Internet of Things and smart environments concentrate on communication effectiveness, lightweight models, 

and blockchain integration [5][8][13][15][17]. To function well in resource-constrained environments, these 

applications make use of model compression, client sampling, and adaptive aggregation. 

FL's expanding importance in privacy-preserving anomaly detection, intrusion detection, and electricity theft 

detection [2][6][10] is demonstrated by cybersecurity-related applications, where safeguarding sensitive records 

and real-time data is crucial. Cross-domain FL and reinforcement learning (RL) [3][11][16] are being further 

investigated in emerging research, which applies FL to dynamic and cooperative tasks such cross-device learning, 

disaster response, and labyrinth solving. Due to its formal privacy guarantees, DP is still the most widely used 

privacy-preserving technology [7][9][12], although other methods like Homomorphic Encryption (HE) [14], 

Blockchain/DLT [15], and Clustered FL models [17] are becoming more popular. The necessity for more research 

on scalable and resilient FL frameworks is highlighted by the persistence of important issues including Non-IID 

data handling, communication overhead, adversarial robustness, and preserving model correctness in spite of 

recent developments. 

4. Taxonomy and Comparative Analysis of Privacy-Preserving Federated Learning 

Approaches 

Rapid developments in privacy-preserving Federated Learning (FL) have produced a wide variety of topologies, 

privacy methods, and aggregation methodologies that are suited to different application domains' unique needs. 

This section provides a thorough taxonomy of FL frameworks based on architectural design, privacy-preserving 

mechanisms, aggregation techniques, and application areas in order to methodically comprehend and compare 

various approaches. In order to highlight new developments, areas of strength, and significant obstacles that 

continue to influence the researchenvironment, it also offers a comparative analysis of the 17 examined 

publications. 

4.1 Taxonomy of Federated Learning Frameworks 

When evaluating FL systems' viability for certain applications, their architectural design is crucial, particularly 

when taking resource limitations, privacy considerations, and data dissemination patterns into account. Horizontal 

Federated Learning (HFL), in which participating clients have different data samples but share the same feature 

space, is the most popular architecture. HFL is widely used in healthcare applications, including skin disease 

categorization, COVID-19 detection, and IoMT frameworks [1][7][9][14]. It allows collaborative model training 

while protecting patient privacy. 

   Vertical Federated Learning (VFL), on the other hand, focuses on situations when clients have diverse feature 

sets but the same user base, despite being less studied in the reviewed articles. Federated Transfer Learning (FTL), 

another new architectural approach, allows clients to share knowledge with no overlap in features or data, as seen 

in cross-domain catastrophe analysis systems [3]. Clustered and Hierarchical FL designs have been proposed to 

address the difficulties associated with Non-IID data distributions and large-scale deployments. These methods, 

which add multi-level aggregation layers or group clients based on data similarity, are especially useful in 

wearable technology, healthcare, and smart settings [12][17]. 
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   Another innovative architecture created for resource-constrained contexts, such as the Internet of Things and 

mobile devices, is Split Federated Learning (SplitFL). SplitFL transmits just intermediate activations instead of 

raw data, hence reducing the computational load on clients while preserving privacy by splitting the model 

between client and server [16]. 

Furthermore, FL frameworks based on Reinforcement Learning (RL) have been created for dynamic decision-

making tasks in settings like multi-agent systems and IoT resource allocation [2][11]. 

A number of privacy-related strategies have been incorporated into FL systems to protect private information. The 

most used approach, Differential Privacy (DP), adds calibrated noise to model updates to provide mathematical 

assurances. Applications where data sensitivity is high, including healthcare and IoT, frequently employ DP 

[7][9][12]. Another reliable method that increases resistance to poisoning assaults is Secure Multi-Party 

Computation (SMPC), which enables several parties to collaboratively calculate model parameters without 

disclosing personal information [14]. To further protect privacy, certain healthcare systems have contemplated 

using Homomorphic Encryption (HE), albeit less frequently, to perform calculations on encrypted data. 

Integrating Blockchain and Distributed Ledger Technologies (DLT) into FL frameworks is becoming more and 

more popular, especially for smart city and Internet of Things applications [15]. Blockchain increases participant 

confidence by ensuring tamper-proof, auditable recordings of model modifications. In IoT environments, methods 

like lightweight encryption and model compression are also used to lower energy usage and communication 

overhead [5][6]. 

Because they dictate how local model updates are aggregated to create the global model, aggregation methods are 

essential to FL. A popular method for safeguarding client privacy is Secure Aggregation, which stops the server 

from viewing individual updates [1][10][14]. By carrying out local aggregation at edge nodes prior to sending 

updates to the central server, Edge and Hierarchical Aggregation techniques are used to increase scalability and 

lower communication costs in large-scale and resource-constrained contexts [5][12][13]. Furthermore, several 

frameworks use customized learning techniques and adaptive aggregation to improve model performance in 

dynamic and heterogeneous contexts. This enables models to adapt in response to user feedback and local data 

properties [8]. 

Due to stringent regulations and the sensitive nature of patient data, the healthcare industry is the largest adopter 

of privacy-preserving FL. IoMT, illness detection, and mental health monitoring studies [1][7][9][12][14] 

demonstrate how well FL works to support team-based medical research while protecting patient privacy. 

Lightweight FL models and blockchain-based techniques are used in IoT and smart settings, including as smart 

healthcare equipment, personalized learning programs, and urban parking management, to overcome resource 

limitations and improve trust. [5][8][13][15][17]. 

Without disclosing raw system logs, cybersecurity apps use FL to carry out delicate operations like intrusion 

detection and electricity theft detection. [2] [6] [10]. In order to preserve data security and enable precise threat 

detection, these systems frequently use RL-based decision-making or secure aggregation approaches. 

Furthermore, RL-integrated and cross-domain FL frameworks are developing to tackle challenging problems as 

cooperative maze-solving and disaster response [3][11][16]. These models show how FL can handle a variety of 

data kinds and decision-making situations while maintaining privacy. 

Table 2. Comprehensive Comparison of Privacy-Preserving Federated Learning Applications, 

Architectures, Techniques, and Challenges 

Pape

r 

Domain / 

Applicatio

n 

FL 

Architectu

re 

Privacy 

Techniques 

Dataset / 

Data Type 

Aggregati

on / 

Model 

Type 

Key 

Contributi

on 

Challenges 

Addressed 

[1] IoMT 

Healthcare 

HFL Secure 

Authenticati

on, DP 

Medical 

sensor data 

Secure 

Aggregatio

n 

Privacy-

preserving 

FL for 

IoMT 

Device 

authenticatio

n, Privacy 

leaks 

[2] IoT 

Resource 

Allocation 

RL-based 

FL 

Local DP IoT device 

logs 

RL Policy 

Updates 

FL + RL 

for 

optimized 

Data leakage, 

Resource 

constraints 
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resource 

allocation 

[3] Disaster 

Analysis 

Multimoda

l FL 

Secure 

Aggregation 

Text, 

Images, 

Geospatial 

data 

CNN, 

Secure 

Aggregatio

n 

Privacy-

preserving 

multimodal 

FL 

Data 

heterogeneity

, Privacy 

[4] IoT 

Systems 

Lightweigh

t FL 

Lightweight 

Encryption 

IoT device 

streams 

Lightweig

ht 

Aggregatio

n 

Fair FL 

with 

efficient 

encryption 

Resource 

constraints, 

Scalability 

[5] Smart 

Healthcare 

IoT 

Edge FL Lightweight 

Encryption 

Healthcare 

sensor data 

Edge 

Aggregatio

n 

Energy-

efficient FL 

model 

Communicati

on overhead 

[6] Smart Grid HFL Model 

Compression 

Electricity 

usage data 

Compresse

d 

Aggregatio

n 

Privacy-

preserving 

theft 

detection 

Communicati

on cost, 

Model size 

[7] Healthcare 

COVID-19 

Detection 

HFL DP Chest X-

ray images 

CNN + DP COVID-19 

detection 

with 

privacy 

Medical data 

privacy, 

Accuracy 

loss 

[8] IoT 

Personalize

d Learning 

Personalize

d / 

Adaptive 

FL 

Model 

Personalizati

on 

User 

behavioral 

data 

Feedback 

Loops, 

Adaptive 

Models 

User-

centric FL 

with 

feedback 

Personalizati

on, Model 

drift 

[9] Healthcare 

Skin 

Disease 

HFL DP Skin lesion 

images 

CNN + DP Privacy-

preserving 

skin disease 

classificatio

n 

Non-IID 

Data, 

Privacy-

Accuracy 

trade-off 

[10] Cybersecur

ity / IDS 

Edge FL Secure 

Aggregation 

Network 

traffic logs 

Anomaly 

Detection 

Models 

Intrusion 

detection 

using FL 

Privacy of 

log data, 

Anomaly 

detection 

[11] RL Multi-

Agent 

Maze 

Solver 

RL-based 

FL 

Privacy-

preserving 

RL 

Agent 

state-action 

data 

RL Policy 

Gradients 

Collaborati

ve RL with 

privacy 

Adversarial 

robustness, 

Data leakage 

[12] Mental 

Health / 

Wearables 

Hierarchic

al FL 

Local DP Wearable 

physiologi

cal data 

Hierarchic

al 

Aggregatio

n 

Stress 

detection 

with DP 

Privacy, 

Real-time 

data 

[13] E-learning / 

User 

Activity 

Hierarchic

al FL 

Privacy-

Preserving 

FL 

On-screen 

activity 

data 

Hierarchic

al 

Aggregatio

n 

User 

activity 

tracking 

with FL 

Data 

collection 

privacy 

[14] Digital 

Healthcare 

HFL SMPC Healthcare 

records 

Secure 

Aggregatio

n 

Robust FL 

against 

poisoning 

attacks 

Poisoning, 

Data 

inference 
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[15] Smart City 

/ Parking 

Blockchain 

FL 

Blockchain / 

DLT 

Smart 

parking 

data 

Blockchai

n-based 

Aggregatio

n 

Secure 

parking 

prediction 

Trust, 

Tamper-

proof updates 

[16] Cross-

Device IoT 

SplitFL Split 

Learning 

Mobile 

sensor data 

Intermedia

te 

Activation

s 

Resource-

efficient FL 

Client 

resource 

limits, Data 

security 

[17] Wellness 

Detection 

Clustered 

FL 

Clustering 

for privacy 

IoT / 

Wellness 

data 

Clustered 

Model 

Updates 

Personalize

d wellness 

monitoring 

Non-IID, 

Accuracy, 

Personalizati

on 

 

4.2 Comparative Analysis of Reviewed Papers 

Several significant tendencies are shown by the comparative analysis of the 17 evaluated papers. Because of the 

necessity for strong privacy safeguards and regulatory compliance, healthcare applications continue to be the main 

emphasis. To guarantee accuracy and privacy, the majority of healthcare FL systems use hierarchical architectures, 

or HFL, in conjunction with DP and SMPC. [1][7][9][12][14]. On the other hand, IoT and smart settings prioritize 

communication-efficient methods and lightweight models to get around resource constraints, frequently utilizing 

blockchain, client sampling, and model compression. [5][8][13][15][17]. 

Applications in cybersecurity show how FL is becoming more and more important for privacy-preserving anomaly 

and intrusion detection jobs. In order to safeguard private log data and provide real-time threat detection, these 

models use RL-based learning and secure aggregation procedures [2][6][10]. The rise of RL-based and cross-

domain FL frameworks demonstrates how flexible FL is in managing a variety of dynamic activities. These 

experiments use cutting-edge methods like SplitFL and multimodal data integration, which allow for collaborative 

learning across disparate datasets while protecting privacy. [3] [11] [16]. 

 

 

Fig. 1. Taxonomy of privacy-preserving federated learning frameworks 

4.3 Key Observations and Insights 

Overall, the research shows that because of its robust mathematical guarantees and simplicity of integration, 

Differential Privacy (DP) continues to be the most popular privacy-preserving approach. To guarantee 

transparency and immutability of model updates, there is a discernible increase in the use of Blockchain and DLT, 

particularly in IoT and smart city applications [15]. While adaptive and customized FL models provide potential 

options for enhancing accuracy and user-centric learning, clustered and hierarchical structures are being employed 

more and more to address Non-IID data difficulties and scalability issues. 
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Despite these developments, a number of issues still exist in several fields. Unresolved research issues include 

managing Non-IID data distributions, cutting down on communication cost, guaranteeing adversarial resilience, 

and striking a balance between model accuracy and privacy assurances.  

Future research should concentrate on creating more effective aggregation techniques, maximizing computing 

overhead for devices with limited resources, and strengthening FL systems' resistance to new security risks. 

Table 3. Enhanced Taxonomy Summary of Privacy-Preserving Federated Learning Frameworks 

Category Description Techniques / Features Example Papers 

FL Architecture Types of data 

distribution and 

model design 

HFL, VFL, FTL, Clustered FL, 

Hierarchical FL, SplitFL, RL-based 

FL 

[1][7][9][12][16] 

Privacy 

Techniques 

Methods used to 

enhance data 

privacy and security 

DP, SMPC, HE, Blockchain/DLT, 

Model Compression, Lightweight 

Encryption 

[7][9][12][14][15] 

Aggregation 

Methods 

Techniques used to 

aggregate local 

model updates 

securely and 

efficiently 

Secure Aggregation, 

Edge/Hierarchical Aggregation, 

Adaptive Aggregation, Personalized 

Aggregation 

[1][5][10][12][13] 

Application 

Domains 

Target sectors 

where privacy-

preserving FL is 

applied 

Healthcare and IoMT, IoT and Smart 

Environments, Cybersecurity / IDS, 

Cross-domain and RL tasks 

[1][5][7][10][11][15] 

 

5. Security Threats and Countermeasures in Privacy-Preserving Federated Learning 

Federated Learning (FL) is susceptible to a number of security risks, despite the fact that it provides notable 

benefits in terms of protecting data privacy by design. FL's decentralized structure creates additional 

vulnerabilities, especially in hostile environments where the availability, confidentiality, or integrity of the system 

might be jeopardized by malevolent actors or outside attackers. The main security risks of privacy-preserving FL 

systems are thoroughly examined in this part, along with the solutions suggested in the evaluated studies to lessen 

these risks. 

5.1 Security Threats in Federated Learning 

Federated Learning (FL) has a privacy-preserving architecture by default, but it is nevertheless vulnerable to a 

number of security risks that might jeopardize the system's integrity and secrecy. Due to the possibility of sensitive 

information leakage or manipulation by hostile groups, the decentralized architecture of FL creates distinct attack 

surfaces. Comprehending these dangers is essential to creating resilient FL systems that can function safely in 

hostile, real-world settings. 

5.1.1 Model Inversion Attacks 

Model inversion Attacks pose a serious risk to privacy in Florida, particularly in industries like healthcare, 

banking, and surveillance that handle extremely sensitive data. In order to reconstitute input features or even 

whole data samples that clients utilize for local training, attackers exploit the model's output or the gradients that 

were exchanged during training. The gradient information may inadvertently encode certain features of the 

training data, even if raw data is never explicitly exchanged in FL. For example, attackers may use gradient 

updates to rebuild medical pictures, biometric characteristics, or personal health information in healthcare 

contexts, resulting in serious privacy violations [7][9]. In applications requiring wearable sensor data or medical 

imaging, where even partial reconstruction of sensitive features might have serious ethical and legal ramifications, 

this issue is especially concerning. 

5.1.2 Membership Inference Attacks 
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To ascertain if a particular data sample was a part of the training dataset, membership inference attacks take use 

of flaws in FL frameworks. Adversaries can determine if certain data points are present or lacking by examining 

the model's answers or parameter changes, thereby endangering user privacy. Such assaults are extremely serious 

in industries like medical treatment, where even exposing that a user’s data was used in training may reveal their 

medical status or involvement in a research. It could disclose a user's involvement in certain financial activities. 

Even seemingly harmless modification to the model can reveal membership information in FL, where models are 

trained on decentralized datasets, if proper safeguards like differential privacy are not used [12][14].This attack 

compromises one of the fundamental promises of FL - preserving data anonymity. 

5.1.3 Poisoning Attacks (Data and Model) 

Because they specifically target the integrity of the global model, poisoning assaults are one of the most harmful 

dangers to FL systems. These assaults fall into two categories: model poisoning and data poisoning. Malicious 

clients purposefully alter their local training datasets to introduce detrimental patterns or inaccurate labels in a 

process known as data poisoning. The accuracy and dependability of the entire model are subsequently diminished 

when the contaminated data distorts the local model updates. In contrast, model poisoning occurs when 

adversaries submit well constructed gradients or model updates during the aggregation step in order to change the 

behavior of the global model. Attackers could, for instance, insert backdoors that cause misclassifications in 

response to particular inputs. In safety-critical systems like smart grids or healthcare diagnostics, where hacked 

models might result in catastrophic failures or wrong medical judgments, such assaults are especially deadly. [6] 

[14]. 

5.1.4 Sybil Attacks 

Sybil attacks take advantage of FL's openness by enabling adversaries to establish several fictitious clients or 

identities inside the system. Attackers can get disproportionate control over the global model updates by injecting 

a large number of Sybil nodes. Biased models, model deterioration, or the successful installation of backdoors are 

possible outcomes of this manipulation. Sybil attacks have the potential to seriously disrupt the FL process and 

erode participant trust. Large-scale FL systems with dynamic client engagement, such IoT networks or smart city 

infrastructure, are particularly vulnerable to this attack vector [15]. FL systems are especially susceptible to this 

type of attack as they may create many identities without robust authentication procedures. 

5.1.5 Gradient Leakage and Side-Channel Attacks 

FL is vulnerable to gradient leaking, in which adversaries take confidential information from the gradients 

disclosed during training, even while it blocks direct access to raw data. By closely examining these gradients, 

attackers might deduce private information about the local data, so undoing FL's privacy advantages. In order to 

obtain knowledge of the private data or model parameters, side-channel attacks also take use of indirect 

information like computing time, energy consumption, or communication patterns. These assaults are especially 

problematic in situations with restricted resources, such as Internet of Things devices, where the danger of leakage 

is increased by predictable behavior patterns and limited processing capabilities [5][6]. Without direct data access, 

such attacks have the potential to reveal comprehensive behavioral or personal information if they are successful. 

5.2 Countermeasures and Defense Mechanisms 

Researchers have created a number of remedies to mitigate the particular risks provided by decentralized learning 

settings in order to protect the privacy and integrity of Federated Learning (FL) systems. A range of defense tactics 

are suggested in the reviewed studies, all of which aim to balance system performance, communication overhead, 

and model accuracy while focusing on certain attack vectors. 

Together, these methods improve FL frameworks' robustness, especially in delicate application areas like 

cybersecurity, IoT, and healthcare.

Table 3: Summary of Security Threats in Federated Learning 

Threat Type Description Impact/Example 

Model Inversion Attack Reconstruct private input data 

from gradients or model outputs. 

Reconstruct medical images from 

gradients [7][9]. 
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Membership Inference Attack Infer if specific data was part of 

training. 

Reveal participation in healthcare 

dataset [12][14]. 

Poisoning Attack Malicious clients corrupt local 

data or gradients. 

Inject backdoors or skew model 

predictions in healthcare [6][14]. 

Sybil Attack Malicious entities create fake 

clients to manipulate model. 

Bias model behavior or inject 

backdoors [15]. 

Gradient Leakage/Side-channel 

Attack 

Extract private information from 

gradients or system-level traces. 

Infer user behavior in IoT 

environments [5][6]. 

5.2.1 Differential Privacy (DP) 

In Federated Learning (FL), Differential Privacy (DP) has become one of the most popular and ethical defenses 

for safeguarding the privacy of personal information. Fundamentally, DP makes sure that the results of a 

calculation, such a model update, are statistically same regardless of whether a certain data sample was included 

in the dataset. This is accomplished by disguising the impact of any one data point by adding calibrated random 

noise to either local gradients or aggregated model updates. 

DP is commonly used in the local training stage of federated learning, where each client introduces noise into its 

model updates prior to sending them to the central server. Even if the model is eventually made public or 

examined, this procedure keeps the server—or any listening adversary—from discovering particulars about a 

client's confidential dataset. Model inversion and membership inference attacks, which seek to recreate sensitive 

data or determine if certain data records participated in the training set, are especially successfully thwarted by 

DP. 

The privacy budget, represented by ε (epsilon), is used to measure how well privacy is protected in DP. A bigger 

ε permits better utility with lower privacy protection, whereas a smaller ε gives tighter privacy protections at the 

expense of decreased model accuracy. Because of this, tuning ε is a crucial design decision that needs to be 

carefully calibrated depending on the data's sensitivity, the number of training rounds, and the required precision. 

DP has been effectively used in real-world FL circumstances in a number of the research described in this study. 

A COVID-19 detection mechanism, for instance, uses DP in [7] to safeguard private medical imaging data 

gathered from several institutions. A DP-enhanced FL approach for classifying skin diseases is also presented in 

[9], which allows models to be trained on delicate dermatological pictures without jeopardizing patient privacy. 

In order to protect user physiological signals from exposure during the learning process, a distinct research [12] 

incorporates local differential privacy into wearable-based stress detection systems. 

These use examples highlight DP's adaptability and efficiency in high-stakes industries like IoT and healthcare. 

DP's possible effect on model performance is one of its main drawbacks, though. The usefulness of the trained 

model might drastically decrease when more noise is added to ensure better privacy (lower ε), particularly in 

challenging deep learning tasks. Furthermore, the cumulative impact of noise across several FL communication 

rounds might make this problem worse, hence it's critical to use privacy accounting strategies (such moments 

accountant or Rényi DP) to track the overall privacy loss over time.Researchers have also looked on adaptive DP 

techniques, which dynamically modify noise levels according to training success or client-specific data sensitivity, 

in an effort to strike a compromise between privacy and utility. Hybrid models that integrate DP with 

cryptographic methods such as Homomorphic Encryption (HE) or Secure Multi-Party Computation (SMPC) have 

also demonstrated potential in improving security while maintaining model integrity.  

 

In summary, the design of privacy-preserving FL systems continues to rely heavily on Differential Privacy. It is 

the go-to option for guaranteeing data anonymity in decentralized machine learning because of its formal 

assurances, adaptability, and proven efficacy in practical implementations. However, finding the best balance 

between privacy, accuracy, and scalability remains an unexplored field that needs more creativity. 

5.2.2 Secure Multi-Party Computation (SMPC) 
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A strong cryptographic system called Secure Multi-Party Computation (SMPC) was created to allow several 

parties to work together to calculate their private inputs without disclosing those inputs to one another.  To make 

sure that the server or any participating client cannot access individual model updates while generating a collective 

global model, SMPC is mostly used during the model aggregation phase of Federated Learning (FL). 

Every client trains a model locally in a typical FL configuration, then sends the modified weights or gradients to 

a central server for aggregation. However, the risk created by this central point of collection is that, if hijacked, 

the server might examine individual client updates and deduce confidential data characteristics. In order to prevent 

any one entity from possessing all the information, SMPC distributes model changes as encrypted shares across 

several parties, frequently including the server. An aggregated model update is then generated by combining these 

secret shares using secure arithmetic methods, all without ever decrypting the individual contributions. 

The information-theoretic security of SMPC is its main advantage; even if a subset of players colludes, they won't 

be able to reassemble the original inputs until a certain threshold is crossed. Because raw gradients or weights are 

never revealed during computation, SMPC is especially resistant to gradient leakage, model inversion, and 

poisoning assaults.  

Shamir's Secret Sharing Scheme, which divides a secret into pieces and gives each participant a portion, is a 

popular SMPC technique in FL. Only when a sufficient number of shares are merged can the original secret be 

recreated. In FL aggregation, this threshold-based security approach guarantees fault tolerance and privacy. 

In real-world applications, SMPC has been investigated in extremely delicate fields like healthcare, where 

maintaining data secrecy is crucial. To create a federated diagnostic model, for example, SMPC is utilized in [14] 

to safely combine medical data from several healthcare facilities. With this configuration, hospitals may work 

together to gain from shared model knowledge without disclosing patient data, which is essential for compliance 

with laws like HIPAA and GDPR. 

Even with its robust security assurances, SMPC has drawbacks. Its computational and communication overhead 

is one of the main issues. In contrast to conventional aggregation techniques, SMPC necessitates more intricate 

mathematical calculations and several rounds of client-to-client message exchanges, which can greatly raise 

latency and bandwidth consumption. This is especially troublesome in situations with resource-constrained 

devices like wearables, smartphones, or embedded IoT systems, or in large-scale FL installations. 

Recent studies have concentrated on improving SMPC protocols for FL application cases in order to overcome 

these problems. To lower overhead while preserving robust privacy guarantees, strategies include compressing 

encrypted shares, cutting down on the number of interaction rounds, or combining SMPC with lightweight 

methods like differential privacy. Furthermore, hybrid architectures that use blockchain-based auditing tools or 

homomorphic encryption with SMPC provide additional security in hostile environments. 

 

In conclusion, a reliable and theoretically sound technique for safe aggregation in federated learning is safe Multi-

Party Computation. It is essential for privacy-preserving model training since it can withstand strong inference 

assaults and do away with the necessity for a reliable aggregator. To enable wider usage in actual, large-scale 

federated ecosystems, its scalability and performance issues must be resolved. 

5.2.3 Homomorphic Encryption (HE) 

An sophisticated cryptographic approach called homomorphic encryption (HE) makes it possible to execute 

mathematical operations directly on encrypted data, resulting in encrypted results that, when decrypted, match the 

results of operations on the plaintext. Because it enables a central server to aggregate encrypted model updates 

without ever knowing the actual values, this trait is very useful in privacy-preserving Federated Learning (FL). 

Clients send model weights or gradients to a central server for aggregation in conventional FL setups. Sensitive 

information may still leak from the disclosed updates even while the raw data stays local. By enabling clients to 

encrypt their local model changes before to transmission, homomorphic encryption reduces this danger. Only 

authorized parties, usually the participating clients, may decode the final result once these encrypted updates have 

been aggregated by the central server. As a result, the server cannot obtain any useful insight into specific updates, 

even if it is compromised or malevolent. 
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HE offers robust defense against a range of privacy risks, including as malicious aggregation, gradient leaks, and 

model inversion assaults. Throughout the whole calculation process, attackers are essentially blindfolded since 

encrypted updates never disclose intermediate values. Because of this, HE is especially appealing in highly 

regulated or sensitive industries like healthcare, banking, and critical infrastructure systems, where even little 

amounts of data exposure might have ethical, legal, or security repercussions. In the healthcare industry, for 

instance, HE can guarantee the confidentiality of model updates based on patient medical information throughout 

the collaborative learning process — a situation examined in [14]. 

Partially homomorphic encryption (PHE), somewhat homomorphic encryption (SHE), and fully homomorphic 

encryption (FHE) are some of the several forms of homomorphic encryption. The most complete capability of 

these is provided by FHE, which supports addition and multiplication on encrypted data. FHE is the most 

computationally demanding, though, which makes it difficult to implement in actual FL settings. 

HE's computational expense and latency are its primary disadvantages. Compared to their plaintext counterparts, 

ciphertexts require a lot more resources to operate on and to encrypt model parameters. In large-scale installations 

with thousands of clients or real-time applications, this additional overhead creates a bottleneck. Both servers and 

edge devices may be strained by the processing time and memory needs, especially in FL systems that include 

frequent communication and recurrent updates. 

In order to tackle these problems, scientists are investigating effective HE systems designed for FL, such BGV 

(for precise calculations) and CKKS (for approximation arithmetic), which provide a trade-off between 

functionality and efficiency. In order to reconcile privacy assurances with computational viability, hybrid privacy-

preserving methods are also being developed, which combine HE with Differential Privacy (DP), Secure Multi-

Party Computation (SMPC), or Blockchain. 

In conclusion, homomorphic encryption is a mathematically elegant and highly secure solution for privacy-

preserving aggregation in FL. Its ability to prevent raw data exposure at all stages of model training makes it a 

crucial tool in the FL security toolkit. However, ongoing research must continue to address its inherent 

performance bottlenecks, making HE more scalable, efficient, and adaptable to the varied needs of modern 

federated systems. Another promising approach is offloading encrypted computations to trusted execution 

environments (TEEs) or using edge-cloud architectures, which use edge nodes to handle lightweight encryption 

while more powerful cloud servers handle secure computation. 

5.2.4 Blockchain and Distributed Ledger Technologies (DLT) 

The danger of malevolent clients interfering with the learning process is a critical issue as Federated Learning 

(FL) systems grow into open and possibly hostile settings. The two most serious dangers are Sybil attacks and 

data/model poisoning assaults, in which attackers either fabricate clients to influence learning outcomes or tamper 

with local data to deceive the global model. FL frameworks are progressively including powerful aggregation 

algorithms and anomaly detection systems to detect, mitigate, or entirely filter out fraudulent updates during 

model training in order to combat these risks. 

In order to detect anomalies in FL, incoming model updates from participating clients are continually monitored 

and compared to past patterns or predicted statistical behaviors. These systems are able to spot anomalies that can 

point to manipulation in weight distributions, gradient magnitudes, or performance indicators. To stop these 

aberrant updates from affecting the global model, they might be down-weighted or deleted after being identified. 

Cosine similarity criteria, variance-based filters that compare recent updates to earlier iterations, and z-score-

based detection are common techniques. 

Robust aggregation techniques offer robustness in addition to anomaly detection by altering the computation of 

the global model. Robust approaches take into consideration the potential for hostile contributions, in contrast to 

the conventional Federated Averaging (FedAvg) method, which presumes that all client updates are equally 

reliable. For example: 

• The effect of extreme values (perhaps tainted updates) is eliminated or diminished by the Trimmed Mean 

and Median  

            Aggregation. 
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• Krum minimizes the impact of outliers by choosing updates that are most relevant to the bulk of 

participants. 

 

• Reputation-based aggregation penalizes players who exhibit persistently suspicious conduct by tracking 

client behavior over several rounds and allocating weights or trust ratings to each update. 

 

These techniques work especially well against Sybil attacks, in which phony clients try to overload the aggregation 

process, and model poisoning, in which attackers create updates to introduce backdoors or impair performance. 

[10] provides an example use scenario in which anomaly detection and secure aggregation techniques are 

integrated in a cloud-edge intrusion detection system (IDS). Without disclosing their raw system logs, the 

distributed edge nodes in this system work together to build an anomaly detection model. Secure aggregation 

protects data privacy, while anomaly detection filters tainted updates. When it comes to identifying cyberthreats 

across dispersed networks, this dual-layer protection improves security and secrecy. 

These techniques have drawbacks despite their advantages. Particularly in predominantly Non-IID environments, 

false positives in anomaly detection might exclude valid but varied data inputs, decreasing the generalizability of 

the model. Furthermore, robust aggregation methods may come with additional communication and computational 

expenses, particularly in large-scale systems where involvement fluctuates often. Finding a balance between 

protecting innocuous data heterogeneity and filtering harmful behavior is still an outstanding research issue. 

Additionally, robust aggregation techniques that are context-aware and flexible are showing promise as remedies. 

These methods make better judgments about accepting or rejecting updates by taking into account model 

convergence dynamics, client behavior history, and environmental variables. There are also new ways to 

incorporate strong defenses without sacrificing FL's privacy goals thanks to recent developments in federated 

adversarial learning and privacy-preserving trust scoring. 

In conclusion, strong aggregation and anomaly detection are essential for protecting Federated Learning systems 

from internal attacks. Even in large-scale or untrusted distributed systems, these strategies maintain the integrity, 

fairness, and performance of global models by guaranteeing that tainted, manipulated, or aberrant updates have 

little impact. These countermeasures will be essential to ensuring privacy and robustness in decentralized AI 

systems as FL expands into more complicated contexts. 

5.2.5 Anomaly Detection and Robust Aggregation 

Federated Learning (FL) is especially vulnerable to internal threats like poisoning and Sybil assaults because it 

functions in decentralized and often untrusted contexts. Malicious clients insert tainted updates to impair model 

performance or introduce backdoors in poisoning attacks. Sybil attacks include the creation of many false 

identities by adversaries in order to control the process of model aggregation. Many FL systems now include 

anomaly detection and robust aggregation techniques as essential parts of their security structure in order to 

address these issues. 

Mechanisms for detecting anomalies are made to keep an eye out for strange or suspicious activity in incoming 

client updates. These systems indicate changes that substantially depart from predicted patterns using statistical 

or machine learning techniques. Typical tactics include noting discrepancies across several training cycles, 

monitoring update size, and calculating the distance between a client's update and the global model. FL systems 

can lessen the impact of potentially harmful updates prior to aggregation by detecting such abnormalities. These 

systems are particularly important in settings when it is impossible to ensure customer confidence. 

Robust aggregation techniques work in tandem with anomaly detection to lessen the effects of malicious or outlier 

updates during model fusion. Robust approaches either remove extreme values or allocate weights based on 

believability, in contrast to traditional averaging, which considers all updates equally. Algorithms like Krum 

choose the most representative update based on resemblance to others, Median Aggregation chooses the median 

rather than the mean, and Trimmed Mean eliminates the greatest and lowest values from each parameter. 

Furthermore, reputation-based algorithms monitor customer behavior over time, which enables the model to give 

priority to updates from reliable players. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 3 (2025) 

 

1125 
 

These methods have shown promise in practical applications, especially in fields where security is crucial. In [10], 

for example, an edge-based intrusion detection system (IDS) that protects the privacy of individual system logs 

uses both anomaly detection and safe aggregation to jointly train a network threat detection model. This system 

demonstrates the usefulness of these cybersecurity measures by enabling efficient screening of harmful updates 

without jeopardizing the confidentiality of important log data. 

Implementing robust aggregation and anomaly detection presents difficulties despite their advantages. Particularly 

in Non-IID setups, false positives can happen when valid but varied data results in odd updates. Furthermore, 

certain algorithms include communication and computational overheads that make them unsuitable for devices 

with limited resources. Thus, research on striking a balance between robustness, justice, and efficiency is still 

ongoing. In order to improve security and inclusiveness, future research may examine hybrid approaches that 

combine anomaly detection with privacy-preserving trust evaluation, or adaptive defenses that modify thresholds 

in response to system activity. 

5.2.6 Model Compression and Lightweight Encryption 

Because training in Federated Learning (FL) is client-driven and decentralized, it is naturally susceptible to 

internal malicious activity. Sybil attacks, in which a single adversary impersonates several phony clients to obtain 

disproportionate influence, and poisoning attacks, in which hostile clients introduce modified data or model 

updates to distort the global model, are two of the most disruptive dangers. A increasing number of FL frameworks 

now include strong aggregation algorithms and anomaly detection systems to counter these risks, providing a 

crucial line of defense for system trust and model integrity. 

Anomaly Detection in FL 

Finding odd or unexpected patterns in client updates that can point to malicious activity is known as anomaly 

detection. These systems function either proactively, continually monitoring for departures from expected 

behavior based on statistical or historical standards, or reactively, detecting abnormalities as they happen. 

In FL, common methods for detecting anomalies include: 

• Distance-based outlier detection: Calculates the cosine or Euclidean distance between each client's 

update and the global  

            model from the previous round or the mean update. 

• Update norm analysis: Clients with gradient magnitudes that are abnormally big or small are marked for 

further examination. 

• Temporal analysis: To spot abrupt variations, the consistency of a client's behavior across several cycles 

is monitored. 

These techniques aid in spotting both one-off poisoning attempts and longer-term hostile trends. But problems 

like false positives, which confuse benign outliers for malicious updates, need to be handled carefully, particularly 

when dealing with Non-IID data, where real client updates might vary greatly. 

 

Robust Aggregation Techniques 

Robust aggregation methods are used to either eliminate or lessen the impact of the questionable updates if 

anomalies are identified. To become resistant to adversarial input, these algorithms alter the FedAvg algorithm, 

which is a normal averaging procedure employed in ordinary FL. Prominently effective aggregation techniques 

consist of: 

• Trimmed Mean: Prior to averaging, a predetermined percentage of each model parameter's top and lowest 

values are  

            discarded. 

 

• Median Aggregation: Provides resilience against extreme values by taking the element-wise median of 

all client  

           modifications. 
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• Krum: Reduces the impact of outliers by choosing the client update that is closest (in Euclidean space) 

to the bulk of other  

            updates. 

 

• Reputation scoring: Using historical behavior and model contribution quality, it gradually increases each 

client's trust score. 

 

These methods are particularly helpful in large-scale or untrusted federations with dynamic client involvement 

since they lower the possibility of faulty updates impacting the global model. 

Real-World Application 

In [10], secure aggregation and anomaly detection are applied to an edge-based intrusion detection system (IDS) 

in tandem, providing a striking example of this dual-layered technique. Edge nodes in this system keep an eye on 

network logs and work together to use FL to train an anomaly detection model. While anomaly detection 

guarantees that changes adding to the model are authentic and unaltered, secure aggregation safeguards the privacy 

of each node's local data. This configuration successfully strikes a compromise between model security and 

privacy preservation, proving the practicality of these methods in actual cybersecurity applications. 

Challenges and Future Outlook 

Despite their efficacy, these defenses continue to confront a number of obstacles: 

• Computational overhead: Several strong aggregation techniques, like reputation scoring or Krum, require 

expensive  

            calculations that are not appropriate for low-power devices. 

• Communication latency: Training may be slowed down by the additional processing steps required to 

filter and reroute  

            updates in real-time. 

• Finding a balance between fairness and robustness: Excessively stringent screening may stifle valid 

contributions from customers with true data diversity (such as underrepresented ethnic groupings). 

Adaptive resilient aggregation frameworks that take into account fairness in the face of heterogeneity, dynamically 

adapt to shifting threat levels, and learn from historical assault patterns must be the main focus of future study. 

Building safe and equitable FL systems will need integration with privacy-preserving trust management systems, 

federated adversarial training, and machine learning-based threat detection. 

 

5.3 Summary of Countermeasures and Defense Mechanisms 

Model inversion, membership inference, poisoning, Sybil attacks, and gradient leaking are just a few of the major 

security risks that are addressed by the many protection mechanisms found in privacy-preserving Federated 

Learning (FL) systems. By include calibrated noise in model updates, Differential Privacy (DP), one of the most 

popular approaches, provides mathematical privacy guarantees. Its applicability for safeguarding sensitive data is 

demonstrated by its successful incorporation in IoT and healthcare applications [7][9][12]. 

Strong cryptographic protections are offered by Secure Multi-Party Computation (SMPC) and Homomorphic 

Encryption (HE), which guarantee the confidentiality of individual model changes while they are being 

aggregated. 

Although these methods reduce the risk of gradient leaking and poisoning assaults, they come with a 

computational cost that restricts the scalability of big systems [14]. 

By guaranteeing tamper-proof, auditable transactions, the combination of Blockchain and Distributed Ledger 

Technologies (DLT) offers an extra degree of security. This is especially helpful in reducing Sybil attacks and 

boosting confidence in smart city and Internet of Things applications [15]. Additionally, robust aggregation 

approaches like secure aggregation and outlier filtering, together with anomaly detection algorithms, enhance 

resistance against adversarial behaviors and maintain model integrity in hostile situations [10].Last but not least, 

model compression and lightweight encryption strategies improve communication efficiency while lowering the 

danger of side-channel attacks in IoT and edge contexts, addressing privacy and resource restrictions [5][6]. 
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When taken as a whole, these countermeasures show how multi-layered security frameworks are essential for 

FL systems in order to guarantee privacy, integrity, and resilience in practical implementations. 

Table 4: Summary of Countermeasures and Defense Mechanisms 

Technique Description Targeted Threats Challenges 

Differential Privacy 

(DP) 

Adds noise to gradients to 

mask individual data. 

Inversion, 

Membership 

inference 

Trade-off between 

accuracy and privacy 

[7][9][12]. 

Secure Multi-Party 

Computation (SMPC) 

Secret shares aggregation 

without revealing 

individual updates. 

Gradient leakage, 

Poisoning 

High communication 

overhead [14]. 

Homomorphic 

Encryption (HE) 

Compute directly on 

encrypted data. 

Gradient leakage, 

Model inversion 

High computational cost 

[14]. 

Blockchain / DLT Immutable records for 

tamper-proof updates. 

Sybil, Poisoning Latency and energy 

overhead [15]. 

Anomaly Detection & 

Robust Aggregation 

Detects and filters 

malicious updates. 

Poisoning, Sybil Requires adaptive 

mechanisms [10]. 

Model Compression & 

Lightweight 

Encryption 

Reduces communication 

and risk of side-channel 

leaks. 

Gradient leakage, 

Side-channel 

Potential impact on 

accuracy [5][6]. 

 

6. Challenges and Future Research Directions 

Federated Learning (FL) is still in its infancy and faces many substantial obstacles that prevent its widespread 

practical implementation, despite the fact that it has shown great promise in allowing privacy-preserving artificial 

intelligence. To increase the effectiveness, scalability, resilience, and reliability of FL systems, researchers must 

tackle these issues as FL frameworks spread throughout smart cities, cybersecurity, healthcare, and IoT 

applications. This section identifies the main open questions and suggests future lines of inquiry that are necessary 

to advance the area. 

6.1 Handling Non-IID and Heterogeneous Data 

Managing heterogeneous client datasets and Non-Independent and Identically Distributed (Non-IID) data is one 

of the most basic problems in federated learning. Because of user behavior, device kinds, ambient conditions, and 

geographic variety, data provided by various clients differs significantly in real-world applications. For instance, 

different diagnostic instruments and patient demographics cause patient data in healthcare apps to vary between 

hospitals and geographical areas. Similarly, it is unreasonable to assume homogeneous data dissemination because 

IoT devices gather data in a variety of circumstances [7][9][12]. 

Non-IID data degrades accuracy and performance by causing sluggish global model convergence, biased local 

models, and inconsistent updates. This variability is difficult for FedAvg and other traditional aggregating 

techniques to manage. Advanced methods such client clustering based on data similarity, customized FL models, 

and meta-learning strategies that adjust to different data distributions while maintaining fairness and equal 

performance among clients should be investigated in future studies. 

6.2 Communication Overhead and Resource Constraints 

Throughout several training cycles, FL need frequent communication between clients and the central server. 

Significant communication overhead is imposed by this recurrent interchange of big model updates, which is 

made worse in situations with limited resources, such as IoT networks and mobile devices, or in large-scale 

installations. FL is not appropriate for real-time or energy-sensitive applications because to its high 

communication costs, which can also saturate bandwidth, increase latency, and drain device battery life [5][6]. 
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The development of communication-efficient protocols like gradient sparsification, quantization, model pruning, 

and adaptive client participation should be the main focus of future research. Additionally, designing lightweight 

FL models optimized for edge computing environments is essential for enabling FL in ubiquitous IoT systems. 

Strategies like asynchronous communication and hierarchical FL architectures that reduce the frequency and size 

of transmitted updates can also significantly lower overhead. 

6.3 Robustness Against Adversarial Attacks 

Security is a significant and ongoing problem due to Federated Learning's (FL) open, distributed, and 

heterogeneous nature. Unlike traditional centralized machine learning systems, FL leverages several independent 

clients that engage in model training without centralized supervision. FL's intrinsic openness makes it vulnerable 

to a range of adversarial attacks that compromise both data privacy and the model's integrity. The most prominent 

of these are model inversion attacks, where an adversary attempts to reconstruct private training data from model 

gradients; membership inference attacks, which ascertain whether a particular data point was used during training; 

and poisoning attacks, in which malicious clients introduce tainted data or gradients to bias or deteriorate the 

model. 

As an example, an attacker could introduce poisoned updates that manipulate diagnostic models to misclassify 

medical images or suppress disease indicators. Similarly, Sybil attacks, in which one entity creates multiple fake 

clients to disproportionately influence model updates, can undermine the fairness and robustness of the global 

model, which can have catastrophic implications in scenarios like patient diagnosis or smart infrastructure control. 

These risks are particularly severe in sensitive domains like healthcare, where a single adversarial client could 

have disastrous consequences [6][14][15]. 

Basic privacy and security assurances are provided by existing countermeasures, such as Secure Multi-Party 

Computation (SMPC) and Differential Privacy (DP). DP uses noise to hide individual data contributions, but 

SMPC makes guarantee that model changes may be safely combined without being revealed. However, there are 

trade-offs between both methods in terms of processing complexity, communication cost, and model accuracy. 

Furthermore, systems are left vulnerable during training rounds because they are typically not built to actively 

monitor or react to adversarial conduct in real time. 

Future FL frameworks must include intelligent and adaptive protection mechanisms that can react dynamically to 

changing threats in order to increase resilience. This involves including real-time attack detection systems, which 

identify questionable trends in client behavior or model modifications using statistical anomaly detection or 

machine learning. Outlier rejection, client reputation score, and robust aggregation algorithms (such Krum and 

Trimmed Mean) are some strategies that can assist reduce the impact of hostile clients while maintaining the 

contributions of truthful participants. 

Additionally, new approaches like context-aware defense orchestration, which modifies the defense intensity 

according to threat levels or domain sensitivity, and federated adversarial training, which trains models to 

withstand adversarial perturbations in advance, present exciting research opportunities. These might be used with 

more conventional privacy-enhancing methods to provide all-encompassing and scalable solutions that strengthen 

FL's defenses against a variety of threats. 

To sum up, protecting against hostile attacks is not just a technical need but also a precondition for the reliable 

implementation of Federated Learning in important real-world applications. Building safe, dependable, and 

privacy-preserving FL systems that are resistant to passive and aggressive threats will need ongoing efforts in this 

field. 

6.4 Balancing Privacy, Utility, and Computational Efficiency 

One of the most difficult and enduring problems in Federated Learning (FL) is striking the correct balance between 

model utility, privacy protection, and computing performance. Although privacy-enhancing technologies like 

Secure Multi-Party Computation (SMPC), Homomorphic Encryption (HE), and Differential Privacy (DP) provide 

robust theoretical assurances for safeguarding private information, they frequently have substantial trade-offs. As 

seen in several implementations in the healthcare and Internet of Things sectors, they include increased latency, 

additional computational and memory cost, and a decrease in model correctness as a result of noise injection or 

computational approximation [7][14]. 
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In real-world deployments where FL must function on resource-constrained devices such as wearables, mobile 

phones, or low-power IoT sensors, these trade-offs become especially challenging. In some situations, learning 

may become completely unfeasible due to excessive encryption or aggressive noise methods that impede model 

convergence. Consequently, it is essential to build methods that preserve privacy in an adaptable manner. Based 

on the sensitivity of the local data, each client's processing capacity, and the importance of the work at hand, these 

systems ought to be able to dynamically modify privacy settings (such the encryption depth in HE or the noise 

level in DP) in real time. 

Researchers are investigating hybrid FL frameworks that include many privacy strategies in an effort to further 

reduce the trade-offs between privacy, usefulness, and efficiency. For instance, combining DP with lightweight 

encryption enables local privacy protection and secure communication without having to pay the entire price of 

HE. Similar to this, HE systems can be optimized to provide quicker computing while maintaining acceptable 

privacy levels (e.g., by utilizing approximate encryption instead of precise encryption). Context-aware privacy 

budgets, which selectively enhance or loosen privacy restrictions based on the application area or data relevance, 

represent another interesting approach. 

FL design should use multi-objective optimization techniques in addition to architectural enhancements. Instead 

than treating privacy, usefulness, and efficiency as separate trade-offs, these frameworks approach them as 

concurrent goals. Pareto-optimal solutions that attain a better balance across dimensions can be obtained by 

modeling these factors collectively. In heterogeneous systems, where one-size-fits-all privacy techniques are 

inadequate, such methods can be very helpful. 

In conclusion, creating adaptable and intelligent systems that can adjust their behavior to the operational situation 

is more important for the future of privacy-preserving FL than merely attaining complete privacy or maximum 

accuracy. In order to make FL both theoretically sound and practically deployable in real-world, performance-

sensitive contexts, it is imperative that this difficulty be addressed. 

6.5 Scalability and Dynamic Participation 

For FL, scalability is a major obstacle, particularly as systems grow to serve hundreds or millions of users. Model 

convergence and stability are made more difficult by managing dynamic client involvement, in which devices join 

and exit the federation regularly because of power or connection problems. This issue is made worse by the need 

to maintain equity among clients with different processing capacities and data quantities [5][15]. In order to 

guarantee reliable performance even in extensive deployments, future FL systems should integrate load balancing 

algorithms, adaptive client sampling, and hierarchical aggregation strategies. Furthermore, there is still a great 

need for research on federated systems that can handle dynamic populations, scale seamlessly, and guarantee equal 

participation. 

6.6 Explainability and Interpretability of FL Models 

The need for explainable and interpretable models is growing as Federated Learning (FL) is being used in more 

important and high-stakes fields including healthcare, finance, autonomous systems, and cybersecurity. From loan 

approvals and medical diagnoses to security threat responses, AI system judgments in various domains may have 

a big impact on people's lives and institutional operations. As a result, stakeholders—such as end users, subject 

matter experts, and regulators—need to know exactly how and why a federated model makes a given choice. 

Insufficient interpretability erodes confidence in FL systems and may make it difficult to comply with new AI 

governance regulations or legal frameworks like GDPR and HIPAA. 

By attributing model choices to input characteristics, traditional Explainable AI (XAI) approaches like saliency 

maps, SHAP (SHapley Additive exPlanations), and LIME (Local Interpretable Model-agnostic Explanations) 

have demonstrated efficacy in centralized learning contexts. Nevertheless, there are particular difficulties when 

using XAI in FL settings. First, the capacity to execute global interpretation is limited since raw data is never 

exchanged among clients. Second, different clients will see different model behavior since FL models are usually 

trained on diverse and non-IID datasets. Both local interpretability (explaining specific predictions) and global 

interpretability (understanding the general logic of the model) are made more difficult by this. 

Future studies must concentrate on creating privacy-preserving interpretation methods specifically designed for 

FL in order to overcome these problems. These techniques ought to uphold stringent data security while offering 

clear, accurate explanations of model behavior. Differentially private or encrypted explanation summaries might 
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be used to provide aggregated insights in a privacy-aware way, while local explainability approaches could be 

implemented fully on the client side utilizing private data. When producing explanations, federated XAI 

frameworks should also take into consideration differences in data distributions and model inconsistencies among 

clients. 

Furthermore, transparency may be further improved without sacrificing privacy by directly integrating 

explainability into the FL training process, for example, by integrating interpretable surrogate models or 

attention methods. By giving clients the opportunity to comprehend and maybe audit the behavior of their local 

models, these systems would promote more responsibility and confidence throughout the FL ecosystem.  

In conclusion, explainability is a crucial prerequisite for the proper implementation of FL models in delicate 

applications, not just a desired attribute. For FL systems to be equitable, responsible, and socially acceptable, it 

will be crucial to bridge the gap between black-box learning and human-understandable insights in a way that 

protects privacy. 

6.7 Standardization, Benchmarking, and Regulatory Compliance 

The lack of set standards, assessment procedures, and regulatory norms for privacy-preserving FL is another 

significant obstacle. Real-world adoption is slowed down and meaningful comparisons amongst FL techniques 

are impeded by the absence of agreement on performance measurements, privacy standards, and security 

requirements. Furthermore, although many industries need adherence to regulations like the AI Act, GDPR, and 

HIPAA, it is still challenging to implement in distributed learning environments.  

The creation of thorough privacy and security benchmarks, standardized evaluation frameworks, and legal 

compliance toolkits customized for FL systems must be the top priorities of future research. Establishing moral 

principles and certification requirements for the responsible and safe use of FL technologies will need cooperation 

between academics, business, and legislators. 

6.8 Summary 

In conclusion, a number of interrelated issues must be resolved in order to advance Federated Learning as a 

workable, private, and secure machine learning paradigm. It is crucial to manage data heterogeneity, reduce 

communication overhead, bolster defenses against hostile attacks, and strike a balance between accuracy and 

privacy. Real-world adoption also depends on enhancing scalability, guaranteeing model interpretability, and 

complying with changing regulatory environments. In order to create robust, effective, and reliable FL systems 

that are appropriate for widespread deployment in delicate areas, future research must embrace interdisciplinary 

efforts that integrate machine learning, cryptography, optimization, and legal knowledge. 

7. Conclusion 

A game-changing concept for facilitating collaborative machine learning while protecting user privacy and data 

security is federated learning (FL). Because of its decentralized design, which enables numerous clients to 

collaborate on model training without exchanging raw data, it is especially well-suited for privacy-sensitive 

industries including cybersecurity, smart environments, healthcare, and the Internet of Things (IoT). A thorough 

taxonomy and overview of current privacy-preserving FL frameworks has been provided in this review paper, 

together with an analysis of their architectures, privacy strategies, aggregation approaches, and practical 

applications. 

This evaluation demonstrates the increasing use of FL in crucial industries where data sensitivity and regulatory 

compliance are crucial by methodically examining a few peer-reviewed publications. To improve privacy 

guarantees and system robustness, methods like Homomorphic Encryption (HE), Secure Multi-Party Computation 

(SMPC), Differential Privacy (DP), and Blockchain-based aggregation have been extensively used. The research 

under examination show that although FL successfully tackles data privacy issues, it still has to deal with a number 

of enduring problems, such as managing Non-IID data, cutting down on communication overhead, enhancing 

resilience against hostile assaults, and striking a balance between privacy and model correctness. 

Future research topics that are crucial for the advancement of the discipline are also identified in the report. These 

include improving model explainability, creating uniform benchmarks and regulatory frameworks, and creating 

scalable and communication-efficient FL systems. In order to fully realize Federated Learning's promise as a 
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reliable and broadly applicable solution for privacy-preserving artificial intelligence, several issues must be 

resolved.  

In conclusion, in the age of large data and decentralized computing, federated learning is a crucial enabler for safe 

and moral AI applications. Overcoming present constraints and opening up new possibilities for FL in a variety 

of real-world situations will need sustained research and development in privacy-enhancing technologies, strong 

aggregation mechanisms, and multidisciplinary cooperation. 
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