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Abstract: - The growing complexity of VLSI circuits has rendered traditional heuristic methods of placement less 

effective, since this process itself is an NP-hard problem and is a major scalability bottleneck. Placement of a 

large circuit with standard cells and smaller modules with few interconnections is crucial for efficient physical 

design, particularly with new paradigms like chiplet-based designs. This paper presents a new quantum 

algorithmic approach to address the short comings of conventional methods. By utilizing the quantum computer's 

native parallelism and distinct optimization potential, the new method promises significant improvements in both 

the efficiency and effectiveness of placement outcomes. Early results indicate that quantum algorithms have the 

potential to provide faster and more optimal placement, paving the way for more effective design flows and 

making the practical implementation of more complex integrated systems a reality.  We encode the task of 

partitioning n standard cells into two equal halves as a Quadratic Unconstrained Binary Optimization (QUBO), 

with binary variables indicating each cell’s assigned region. Mapping each binary variable to an Ising spin 

transforms the QUBO into an n-qubit Hamiltonian whose ground state represents the optimal placement. We 

estimate the expected energy ⟨H⟩ via Pauli-term measurements on the quantum device and employ the “Trust-

Constr” classical optimizer to adjust QAOA parameters (γ, β). These results establish a foundation for quantum- 

classical hybrid frameworks for VLSI design optimization. Proposed approach opens new avenues for integrating 

quantum optimization into next-generation VLSI design flows, potentially transforming computational paradigms 

in VLSI design. 

Keywords: Quantum computing, hybrid quantum computing, quantum approximate optimization algorithm 

(QAOA), quantum optimization, variational quantum eigensolver (VQE), variational quantum computing, VLSI 

design optimization, bisectional placement, VLSI physical design placement optimization. 

 

1. INTRODUCTION 

VLSI (Very Large-Scale Integration) placement is one of the most computationally demanding issues in electrical 

design automation, which is categorized as an NP-hard problem that severely restricts the effectiveness of 

traditional computing techniques. The intricacy of breaking down these enormous systems into smaller, more 

manageable subsystems has increased dramatically as contemporary integrated circuits contain millions to billions 

of transistors with complicated interconnections. A problem is considered NP-hard in computational complexity 

theory if it can be reduced to every other problem in NP (nondeterministic polynomial time) in polynomial time. 

This classification indicates that as the size of the problem rises, finding the best solutions for VLSI circuit 

placement involves exponential time complexity on classical computers. This computational intractability is best 

illustrated by the binary quadratic optimization formulation of circuit bisectional placement, in which the search 
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space increases exponentially with the number of standard cells in design. The combinatorial explosion of 

potential placement solutions is the core problem. An exhaustive search is computationally impractical for 

practical circuit sizes because the number of methods to divide a circuit with n components for placement into k 

balanced subsets increases factorially. Instead of using precise optimization techniques, designers are forced to 

rely on heuristic and approximation algorithms due to the exponential increase in solution space complexity. 

Large-scale VLSI designs provide major computing bottlenecks for classical partitioning techniques.  The 

algorithms Fiduccia-Mattheyses and Kernighan-Lin, which iteratively enhance placement by moving single cell 

or switching cell pairs to reduce costs locally, simulated annealing, which works to find better placement by 

escaping local minima using probabilistic jumps, despite using populations and recombination operators to 

explore different regions of the solution space, genetic and evolutionary algorithms are still unable to overcome 

the optimization landscape's inherent NP-hardness. On moderately sized problems, these traditional approaches 

are effective and surprisingly strong, but their solutions are still essentially approximations. Particularly as 

solution landscapes grow rougher due to increased netlist complexity and non-uniformity, they could become 

stuck in local optima. Furthermore, even state-of-the-art heuristics are hampered by scaling bottlenecks, lengthy 

runtimes, and the difficulty of ensuring solution quality as system designs scale into the millions (or billions) of 

cells, as in modern high-end AI accelerators, networking chips, or chiplet assemblies. In practice, this means that 

suboptimal placemen of macros and standard cells are frequently found, which can result in suboptimal routing 

complexity, higher inter-module wiring, and possibly decreased chip space or performance. 

 The need for radically new approaches stems from the incapacity of traditional computers and algorithms to 

handle the combinatorial explosion in options for massive partitions. Because VLSI circuit partitioning is 

fundamentally placement of standers cells and macros, electronic design automation techniques must undergo 

radical changes. The exponentially huge solution spaces needed for optimal circuit organization are inherently 

difficult for classical computers to explore; nevertheless, QAOA is a promising quantum computing technique 

that may be able to get around these computational obstacles thanks to quantum mechanical advantages. The 

optimization gap between theoretical optimal solutions and realistically feasible outcomes grows considerably 

when circuit complexity continues on its exponential development trajectory while traditional computational 

capabilities scale polynomials.  With quantum-enhanced optimization skills created especially for the 

combinatorial difficulties present in circuit partitioning problems, QAOA presents a way forward that may close 

this gap. The limits of existing design automation tools are highlighted by the intractable nature of VLSI placement 

with classical computers, which stems from its NP-hardness.  With schemes like the Quantum Approximate 

Optimization Algorithm (QAOA), which attempts to take advantage of quantum parallelism and superposition to 

effectively sample from the solution space of hard combinatorial problems, recent developments in quantum 

algorithms provide an exciting path forward.  By using quantum processes that are not accessible by conventional, 

deterministic hardware, quantum techniques have the potential to access significantly better solutions or locate 

them more quickly than classical heuristics, which enhance bisectional placement quality through approximate or 

randomized local search. The present issues that drive the development of QAOA and related quantum algorithms 

are evident, even though their specifics and potential are covered elsewhere. Research into radically new 

computational paradigms for VLSI design automation is necessary due to the persistent NP-hardness of placement 

for classical computers, the constantly expanding scale of integrated designs, and the implications for silicon 

manufacturability and system performance. An emerging field that has the potential to drastically alter the design 

and optimization of complex VLSI systems is the incorporation of quantum optimization algorithms, such as 

QAOA, into current electronic design automation workflows. This could lead to the creation of integrated circuits 

with higher performance and efficiency than are currently possible with only classical computational methods. 

2. LITERATURE REVIEW 

2.1 Classical Computing 

Fiduccia and Mattheyses (1982) present a linear‐time heuristic for balanced two‐way min‐cut network partitioning 

that iteratively moves single cells between blocks, using “gain” metrics and bucket‐sorted lists to choose the best 

move in O(1) time and update affected neighbor gains in O(1) time per pin, yielding O(P) time per pass. By 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 3 (2025) 

__________________________________________________________________________________ 

1075 

locking moved cells and only updating critical nets, their algorithm typically converges in a few passes, making 

it practical for large networks with thousands of pins. This approach underpins many modern partitioners and 

placement tools seeking fast near‐optimal cuts under size constraints [1]. Kernighan and Lin (1970) introduce a 

fast heuristic for balanced 2-way graph partitioning that iteratively swaps node pairs to maximize cost reduction, 

achieving locally optimal cuts in 𝑂(𝑛2 log 𝑛) time per pass by maintaining and updating gain values. Their method 

rapidly identifies high‐gain exchanges without exhaustive search, reliably finding near‐optimal partitions for large 

graphs with only a few passes. Extensive experiments demonstrate its practical efficacy in VLSI circuit board and 

memory paging applications, forming the basis for many subsequent partitioning algorithms [2]. Breuer (1977) 

introduces a paradigm shift from classical distance-based placement objectives to "min-cut" approaches that 

minimize the number of signals crossing partition lines, proving that minimizing total cut values across canonical 

cut lines is equivalent to minimizing half-perimeter wirelength but offering superior rout ability predictions. The 

paper presents two algorithmic frameworks Quadrature (breadth-first with alternating vertical/horizontal 

bisections) and Slice/Bisection (depth-first with horizontal slicing followed by vertical bisection) that recursively 

partition the placement region using generalized Kernighan-Lin heuristics to optimally assign moveable elements 

while respecting fixed element constraints. Experimental results on 5"×5" PC cards demonstrate 15-25% 

improvement in half-perimeter length and substantial reduction in routing failures compared to manual placement, 

establishing min-cut placement as a foundational approach for VLSI physical design automation [17]. Wu et al. 

(2003) introduce a hybrid graph–logic partitioning framework that applies efficient logic‐rewiring perturbations 

(RAMBO, GBAW) a top high‐quality hypergraph partitions (hMetis), yielding an additional 11–12% cut‐size 

reduction for 2 and 4-way MCNC benchmarks with minimal area (>0.3%) and runtime overhead. Their GBAW 

technique accelerates alternative‐wire matching via subgraph pattern extraction, achieving comparable or superior 

improvements to ATPG‐based methods at a fraction of computational cost. These results demonstrate that 

integrating lightweight logic perturbations into pure graph‐partitioning tools can escape local minima and 

substantially improve multiway partitioning quality and can placement of cells will take reduced area [3]. 

 Zhu et al. (2015) reformulate the VLSI global placement problem using an exact norm wirelength model 

that precisely calculates half-perimeter wirelength without approximation errors, combined with exact 

overlapping area calculations between cells and bins rather than smoothed density functions used in traditional 

analytical placers. They develop a non-smooth optimization framework solved by a novel Polak-Ribière conjugate 

sub gradient method with proven local convergence properties, incorporating adaptive step size control and 

cautious penalty parameter strategies within a multilevel clustering approach using a modified best-choice 

algorithm tailored to the l1-norm model. Experimental results on ISPD 2005 and 2006 benchmarks demonstrate 

that their approach achieves 0.4-14.6% shorter average wirelength compared to state-of-the-art placers including 

FastPlace3.0, mPL6, NTUplace3, and ePlace, though with 2-3× longer runtime due to the slower convergence 

characteristics of sub gradient methods [21]. Cheng and Wei (1991) address the instability of Kernighan Lin based 

two-way partitioning by introducing a top-down, ratio cut clustering scheme that recursively breaks the network 

into highly connected groups without predefined subset sizes. These groups are then contracted and repeatedly 

partitioned via the Fiduccia Mattheyses algorithm to meet specified size constraints, before a final global 

refinement on the original network. This “stable” approach drastically reduces variance in cut weight standard 

deviation drops from 24 pins to 2 pins across trials while yielding average cut reductions of 48% over pure FM 

on fourteen VLSI benchmarks. By balancing cut weight against CPU time through the choice of clustering 

granularity for placement, the method achieves robust, high-quality partitions in linear-time per iteration. This 

work demonstrates that integrating ratio-cut clustering with efficient local refinement overcomes local-minimum 

trapping and delivers consistently superior two-way partitions for large circuits [4]. 

Sanchis (1989) generalizes the Fiduccia Mattheyses iterative‐improvement algorithm to directly partition 

a network into b disjoint blocks by defining multi‐level gains for moving cells between any two blocks and 

selecting cell moves lexicographically by their gain vectors. The uniform algorithm maintains specialized bucket 

structures and a heap of legal move directions to achieve per‐pass complexity 𝑂(𝑚𝑏(log 𝑏 + 𝑝)) , where m is the 

number of cells, b the number of blocks, and p the maximum cell degree. Experiments on random networks show 

that optimal gain levels increase with the number of blocks, net size, and cell degree but are largely independent 
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of network size, and that the uniform method outperforms hierarchical partitioning as more computation time is 

allowed [5].Sanchis (1993) adapts two-way network partitioning algorithm to support three cost functions unit 

cost, k–1 cost, and 𝑘(𝑘 − 1)/2 cost by redesigning gain‐update procedures to preserve polynomial time 

complexity 𝑂(𝑚(𝑞 + 𝑏𝑙)(log 𝑏 + 𝑝𝑙))  for cost₂ and  𝑂(𝑚(𝑞 + 𝑏𝑙 + 𝑏2)(log 𝑏 + 𝑝𝑙) for cost-3 with runtime 

optimizations reducing moves by up to 85%. Experimental evaluations on random networks (100–400 cells, 

varying net sizes) show that higher “levels” yield diminishing cut‐size improvements for cost-2 and cost-3 

compared to cost-1, and that uniform partitioning consistently outperforms hierarchical strategies across all cost 

functions. Despite modest gains beyond level 2, the cost-3 algorithm benefits slightly more from additional levels 

than cost-2, reflecting the deeper block‐interaction captured by its cost definition [6]. 

Casotto et al. (1987) present a pioneering parallel implementation of simulated annealing for macro-cell 

placement that partitions cells among processors to eliminate synchronization overhead, achieving over 80% 

processor utilization on up to eight processors of the Sequent Balance 8000 shared-memory multiprocessor. Their 

approach allows processors to compute move costs using the most recent available information, introducing 

controlled errors that are large at high temperatures but converge to zero as temperature decreases, while a 

clustering strategy based on minimizing moment of inertia dynamically reassigns cell ownership to reduce overlap 

errors at low temperatures. Experimental results on circuits with up to 122 macro-cells demonstrate approximately 

6× speedup with eight processors while maintaining solution quality comparable to sequential simulated 

annealing, establishing early feasibility of parallel optimization for VLSI physical design [18].Cong, Hagen, and 

Kahng (1992) introduce a novel dual approach to VLSI circuit partitioning by transforming the netlist hypergraph 

into its intersection graph representation, where vertices represent signal nets rather than modules, and edges 

connect nets sharing common modules, resulting in significantly sparser adjacency matrices that enable faster 

eigenvector computations. Their IG-Match algorithm combines spectral methods with bipartite graph matching 

to partition nets first using eigenvector-based ordering, then optimally assigns shared modules through maximum 

independent set computations in bipartite graphs, achieving theoretical guarantees that the number of cut nets 

never exceeds the maximum matching size. Experimental results on MCNC benchmarks demonstrate the method's 

superiority with an average 28.8% improvement over Wei-Cheng's RCut1.0 algorithm and 6% improvement over 

previous intersection graph methods, while maintaining competitive runtime performance due to the inherent 

sparsity of the intersection graph representation [7]. 

Wu and Chu (2015) address the emerging challenge of detailed placement for VLSI designs containing 

mixed single-row and double-row height standard cells, which arise in complex synchronous designs and 

asynchronous circuits where 77% of cells on average require double-row height for handshaking signal 

generation. They propose a hybrid approach that transforms mixed-height designs into uniform-height layouts 

through strategic cell pairing (formulated as maximum weighted matching based on connectivity, area penalty, 

and displacement costs) in high-density regions and cell expansion in low-density areas, followed by conventional 

detailed placement and refinement. Experimental results on asynchronous and modified ISPD benchmarks 

demonstrate 3-14.8% wirelength improvement over alternative methods (direct expansion or macro treatment), 

with superior robustness across varying ratios of double-row height cells while maintaining zero overlap 

legalization [19]. Yeh, Cheng, and Lin (1995) experimentally evaluate simulated annealing (SA), Kernighan–

Lin/Fiduccia Mattheyses (KL/FM), and a two-level primal dual (PD) iterative‐improvement algorithm on random, 

geometric, and real VLSI circuits, showing that while KL/FM and SA perform comparably on random graphs and 

KL/FM leads on geometric graphs, PD significantly outperforms both on practical circuit benchmarks when given 

equivalent CPU time. Their results reveal that at least 500 FM runs are necessary to approximate its true 

performance distribution, and that disabling PD’s dual step yields nearly identical cut quality with substantially 

reduced runtime, making the simplified PD variant the preferred choice for two‐way partitioning in real‐circuit 

applications. These findings underscore the importance of extensive repetitions and algorithmic tuning when 

benchmarking partitioning heuristics on realistic problem instances this will make placement easier to find the 

optimal location for placement of standard cells [8]. 
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Dutt and Deng (2000) introduce PROP, a probabilistic‐gain partitioner that computes node moves based 

on conditional probabilities of future cut‐set removals, and SHRINK‐PROP, which further magnifies the impact 

of newly “perturbed” nets, yielding 30–37% smaller cuts than Fiduccia Mattheyses and 27–34% over 

Krishnamurthy’s lookahead method on ACM/SIGDA benchmarks. Both methods also outperform recent 

multilevel and spectral partitioners (e.g., EIG1, WINDOW, MELO, PARABOLI, GFM, GMetis) by 4.5–67%, 

while maintaining competitive runtime, and SHRINK‐PROP’s results approach hMetis’s quality within 2.5% on 

ISPD-98 circuits despite being a flat partitioner. These findings demonstrate that probability‐based gain 

computations can more accurately capture global and future implications of node moves, significantly improving 

VLSI two‐way min‐cut partitioning [9]. Chan, Schlag, and Zien (1994) extend spectral ratio‐cut partitioning from 

two‐way to simultaneous k‐way partitioning by generalizing the 2‐way ratio‐cut cost metric to k partitions and 

proving that the sum of the k smallest Laplacian eigenvalues lower‐bounds this k‐way ratio‐cut cost. They show 

that embedding graph vertices into the k‐dimensional subspace spanned by these eigenvectors, followed by an 

efficient cosine‐based clustering heuristic, yields high‐quality partitions in 𝑂(𝑛𝑘2 + 𝑛𝑘 log 𝑛) time and O(nk) 

space. Experimental results on standard benchmarks demonstrate superior cuts (up to 40% improvement) and 

faster runtimes compared to recursive BI-partitioning and prior spectral methods [10]. 

Pu et al. (2025) introduce IncreMacro, an incremental macro placement refinement framework that 

addresses the limitation of analytical placers placing macros in chip centers, which creates routing blockages and 

degrades timing performance, by iteratively employing KD-tree-based macro diagnosis to identify poorly placed 

macros, gradient-based shifting to move them peripherally, constraint-graph-based linear programming for 

overlap-free legalization, and diffusion-based cell migration for accurate wirelength estimation. The approach 

maintains two critical requirements: pushing macros toward chip boundaries while preserving original relative 

positional relationships established by analytical placers, thus eliminating central blockages without 

compromising wirelength optimization achieved by the placement prototype. Experimental results on seven 

RISC-V circuits and four TILOS benchmarks at 7nm technology demonstrate that integrating IncreMacro into 

AutoDMP and DREAMPlace 4.0 reduces routed wirelength by 14.9-15.1%, improves worst negative slack by 

82.6-99.9%, and reduces total power consumption by 4.3-4.4% while maintaining 41.5% of macros unmoved to 

preserve spacing for standard cell placement and routing [20]. 

2.2 Quantum Computing  

Krauss et al. demonstrate how to map the classic maximum‐flow problem onto a quantum annealer by translating 

edge capacities into binary or unit‐capacity variables and enforcing flow conservation through quadratic penalty 

terms. Three formulations balance qubit count and graph complexity: one clones edges into many unit‐capacity 

links, one uses a compact binary encoding of flows, and one exploits the max‐flow duality to require just one 

qubit per vertex. Experiments on D-Wave hardware confirm these formulations can find exact flows for small 

graphs, though current qubit connectivity and embedding overhead limit scalability [11]. Jahn et al. (2022) apply 

graph‐theoretic minimum‐cut algorithms to optimally bisectional MMC control systems into upper (system‐

relevant) and lower (hardware‐relevant) levels, assigning edge weights to capture parameterization‐ vs. 

implementation‐related relevance and minimizing inter‐level dependencies. By modelling each control function 

as a node and its influence on system or hardware via weighted edges to “system relevance” and “hardware 

relevance” super‐nodes, they achieve partitions that reduce required signal interfaces and integration effort in 

multi‐vendor HVDC setups. Case studies on a 3‐terminal MMC demonstrate that strategic relevance assignments 

and minimal cuts yield far lower integration costs than conventional reference architecture splits [12].  

Shafique et al. (2024) provide a structured tutorial on quantum computing principles qubits, superposition, 

entanglement, interference, and noise alongside key building blocks such as single- and multi-qubit gates (Pauli, 

Hadamard, CNOT, Toffoli) and measurement processes. They survey foundational algorithms (Deutsch–Jozsa, 

Bernstein–Vazirani, Simon’s, Shor’s, Grover’s) and outline the NISQ era’s hybrid quantum–classical machine 

learning frameworks, emphasizing parameterized quantum circuits and error mitigation strategies. Finally, they 

discuss deployment requirements for superconducting hardware (cryogenics, control electronics) and explore 

quantum applications in cryptography, optimization, chemistry, finance, and energy [13]. Liu et al. (2022) 
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introduce Layer VQE (L-VQE), an adaptive hybrid quantum-classical algorithm that grows a hardware-efficient 

ansatz layer by layer adding Ry rotations and neighbouring CNOTs before convergence to solve k-community 

detection via a novel qubit-frugal modularity Hamiltonian on up to 40 qubits, demonstrating superior 

approximation ratios and noise resilience compared with fixed-ansatz VQE and QAOA. Their large-scale MPS 

simulations reveal that L-VQE avoids barren plateaus and maintains performance under finite sampling and 

realistic trapped-ion noise. By systematically expanding expressivity while preserving trainability, L-VQE 

presents a practical pathway for combinatorial optimization on NISQ devices [14].  

Ueno et al. (2024) identify inter-temperature bandwidth between room-temperature controllers and cryogenic 

QPU as a key bottleneck for superconducting QAOA machines and propose a cryogenic SFQ-based counter 

architecture that aggregates measurement results over T trials, reducing required bandwidth from O(N) to O(1) 

with only O(log N) bit counters. They model QAOA communication to show that classical read-out of N qubits 

per trial dominates bandwidth and demonstrate through analytic and SFQ circuit evaluations that counter-based 

buffering exponentially cuts cable heat inflow and peripheral power use with minimal execution overhead. This 

systems-level, algorithm-aware approach advances scalable NISQ device design by mitigating cable-induced 

thermal and power constraints [15]. Wu et al. pioneer a hybrid classical–quantum sampling framework for 

Approximate Query Processing (AQP) that identifies “rare” long-tail groups via classical stratified sampling and 

then applies quantum amplitude amplification implemented with QRAM and diffusion gates to boost their 

sampling probabilities without prior data preprocessing. By modelling tuple indices in superposition, using a 

composite Oracle for predicates and group membership, and optimizing amplification counts to minimize 

expected QRAM access costs, their algorithm achieves balanced sampling across skewed groups and yields higher 

accuracy at equivalent sampling costs compared to uniform or stratified sampling. Experimental evaluations on 

IBM Qiskit simulations and an IBM Brisbane quantum device demonstrate up to quadratic speedups in rare group 

sampling and increasing accuracy gains at higher query selectivity’s, validating quantum benefits in database AQP 

contexts [22]. 

3. THEORETICAL FRAMEWORK 

3.1 Problem Formulation 

Let 𝐺 = (𝑉, 𝐺) be a weighted undirected graph with vertex set V= {0, 1, …, n−1} and edge weights 𝑒𝑖𝑗 ∈ ℝ for 

each (𝑖, 𝑗) 𝜖 𝐸.  A balanced minimum cut seeks a bisectional placement of V into two subsets 𝑆1 and 𝑆2 of equal 

size (or within one vertex) that minimizes the total weight of edges crossing between 𝑆1 and 𝑆2. 

3.2 QUBO Encoding 

Let binary variables 𝑥1 𝜖 {0,1} indicating vertex assignments 𝑥𝑖 =  1 and 𝑥𝑗 = 0 if 𝑖 𝜖 𝑆1 , 𝑥𝑖 =  0 and 𝑥𝑗 = 1 if 

𝑖 𝜖 𝑆2. Then, cut cost is 

                                  𝐶(𝑥) =  ∑ 𝑒𝑖𝑗[𝑥𝑖 + 𝑥𝑗 − 2𝑥𝑖𝑥𝑗]

𝑖,𝑗 ∈ 𝐸

     

 

  𝑄𝑈𝐵𝑂 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  = ∑ 𝑒𝑖𝑗[𝑥𝑖(1 − 𝑥𝑗) + 𝑥𝑗(1 − 𝑥𝑖)]

𝑖𝑗 ∈ 𝐸

 

3.3 Mapping to Ising Hamiltonian 

In quantum optimization and annealing, problems are often specified in the Quadratic Unconstrained Binary 

Optimization (QUBO) form but implemented on hardware that natively realizes an Ising Hamiltonian. Translating 

between these representations is straightforward and preserves the problem’s cost function Quantum computers 

natively implement spin systems then let we map each 𝑥𝑖 to an Ising spin  𝑧𝑖 ∈ {−1, +1}  via 

(1) 

(2) 
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𝑥𝑖 =
1 + 𝑧𝑖

2
   , 𝑥𝑗 =

1 + 𝑧𝑗

2
 

 

Substituting into Equation (2) an Ising Hamiltonian 

 

𝐻𝑐 =  ∑ 𝑒𝑖𝑗 [
1 − 𝑧𝑠1𝑖

2
(1 −

1 − 𝑧𝑠1𝑗

2
)  +

1 − 𝑧𝑠2𝑗

2
(1 −

1 − 𝑧𝑠2𝑖

2
)]

𝑖𝑗 ∈𝐸

    

3.4 Variational Quantum Eigensolver (VQE) 

The optimization reduces to finding the ground state of H. VQE employs a parameterized quantum circuit U(θ) to 

prepare a trial state 

|Ψ(𝜃)⟩ = 𝑈(𝜃)Ψ|0⟩⨂𝑛   

 To measuring the expectation value consider   

          𝐸(𝜃) =  ⟨Ψ(𝜃)|𝐻|Ψ(𝜃)⟩  

by decomposing H into Pauli terms and sampling outcomes. A classical optimizer adjusts 𝜃 to minimize 𝐸(𝜃). 

Convergence toward the ground state yields the optimal balanced cut when measuring the final state in the 

computational. 

 

4. METHODOLOGIES 

4.1 Classical approach 

Classical approach of placement of a gate level with 2-way partition and clustering them basing on the 

convectively, let consider a circuit shown in figure-1(a), 10 nodes represent 10 gates and connection as edges 

between these nodes edges are represented with each edge weight of “1” figure-1(b) represents Hyper graph of 

(3) 

(4) 

(5) 

(a

) 

(b

) 

(d) (c) 

Figure-2: bisectional placement, (a) first bisection, (b) cluster-1 bisection, (c) cluster-2 bisection, (d) 4-bisections.  

Figure-1: (a) Gate level circuit and (b) Graph representation. 

(a) 
(b) 
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circuit. By performing k-way partitioning with the equation ∑ 𝑒𝑖𝑗[𝑥𝑖(1 − 𝑥𝑗) + 𝑥𝑗(1 − 𝑥𝑖)]𝑖𝑗 ∈ 𝐸  to the circuit 

shown in figure-1 which have 10 nodes and 13 edges of each weight is “1” and time complexity for each iteration 

is  𝑘2𝑁2 where k is partition sets and N is the number of nodes [1] the k cluster will available with higher conicity 

with their clusters and by continuing this bisection process we can able to find the exact location where this gates 

can keep closer to each other. Figure -2(a) shows the first iteration cut cost is “4” with 0-1-2-7 as the 𝑆1 and 3-4-

5-6 are set 𝑆2. In the second iteration again performing the partition to 𝑆1is 𝑆11 4-5 and 𝑆12 is 0-3 shown in 

figure(b) and 𝑆21 is 1-2 and 𝑆22 is 6-7 shown in figure-2(c) and over all bisection of each sub set is placed in 

where the higher connectively are placed together near to each other will avoid reduces wire length and 

decrease[16]. After 3 iterations with 3 ∗ 𝑘2𝑁2of time complexity classical method is able to find minimum 

weighted cut set  of circuit shown figure-1with   clusters 𝑆1is 1-2-6-7  and 𝑆2 is 0-3-4-5 with sub sets of  𝑆11 4-5, 

𝑆12 is 0-3 and 𝑆21 is 1-2 and 𝑆22 is 6-7  even we continue it repeating the same result of placement sections with 

each element in the circuit and final placement sets is shown in figure (d).  

4.2 Quantum approach 

By utilizing the special characteristics of quantum mechanics, such as superposition, entanglement, and quantum 

parallelism, a quantum approach to problem solving can provide computational advantages over classical methods 

for specific tasks. This framework allows a quantum computer to process a large number of possibilities at once 

because quantum bits or qubits, can exist in multiple states simultaneously. With the equation (3) and equation (5) 

can able to parametrized the Quantum circuit with cost function figure-3 shows the different optimization layers 

quantum circuit map with equation (3) and output is the same as the classical compute with lesser time complexity 

(a) (b) (c) 

Figure- 3: Quantum circuit with Paulie-Z gate, (a) single layer, (b) two layers, (c) three layers. 

(c) (b) (a) 

Figure - 5: number of iterations taken to find minimum cost function, (a) single layer, (b) two layers. (c) three layers. 

Figure - 4: Quantum computing output, (a) and (b) same as classical computing output. 

(a) (b) 
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[13], by using the “trust-constr” method which is building a local quadratic model of the objective function at 

each iteration and looking for improvements inside a "trusted" region surrounding the present solution, the 

technique employs a trust-region approach. It can manage bound constraints, equality constraints, and inequality 

constraints. To maintain the subsequent iteration inside the limitations and the trust region, the algorithm selects 

step sizes and directions. Techniques involving interior-point barriers are applied to situations with inequality 

constraints for approximating the quantum output, figure-4(a), (b) shows the output of the Quantum computer 

which is same as the classical approaches and it proves that the equation (3) can able to find optimal placement 

clusters, figure -5 shows the iterations taken for the bipartition for optimal placement clusters with different layers 

of optimizations. 

5. RESULTS AND DISCUSSIONS 

The bipartition-based placement problem in VLSI design assigning circuit modules to one of two regions to 

balance area and minimize interconnect crossings can be cast as a min-Cut instance and hence tackled by the 

Quantum Approximate Optimization Algorithm (QAOA) an able to find optimal placement of VLSI design. By 

mapping each module to a qubit whose state (|0⟩ or |1⟩) indicates its position and the cut size Hamiltonian directly 

encodes interconnect costs equation (3), while a transverse-field mixer drives exploration across assignments. 

QAOA’s alternating application of the cost and mixer unitarizes generates a parametrized quantum state whose 

expected cut value approaches optimality as quantum circuit depth increases. A classical optimizer iteratively 

refines the QAOA angles, leveraging measurement outcomes to guide parameter updates in a hybrid loop. This 

approach inherently evaluates many bi-partition configurations in superposition, yielding faster convergence on 

Figure – 6: quantum optimizations with trust-constr Methode (a) 4-Nodes, (b) 6-Nodes, (c) 8-Nodes, (d) 10-Nodes. 
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large-scale placement instances compared to purely classical heuristics. Moreover, quantum tunnelling helps 

QAOA escape local minima common in heuristic methods, improving solution quality in terms of wirelength, 

timing, and power. Proposed Methode is applied to the different set of hyper graph model for bi-partitional 

placement with equation (3) and observed this approach can able to solve the heuristic problem of VLSI placement 

problem which is become more computation a for the classical computer and figure-6(a) shows the bisectional 

placement of 4 Nodes circuit it takes 4 iterations for single layer optimization, 16 for  two layers and 141 iteration 

for 3-layers this values are tabled in table-2. Figure-6(b) shows the 6 Nodes cluster and its subcluster of S1 with 

3 nodes N3 which are heaving lesser cost function compared to major cluster and these values are tabulated in 

table-2. In figure-6(c) shows the 8 nodes circuit with subclusters of 4 nodes of two clusters and their values are 

tabulated in table-3 and figure-6(d) shows the 10 nodes circuit with subclusters 5 nodes of two sections and their 

subclusters 3 nodes this optimal values are tabulated in table-4. Resultant of this observation implies that Quantum 

computing allows all possible assignments to be explored in superposition, enabling an inherently parallel search. 

S. No Number of Layers 4 Nodes 

(Iterations) 

1. Single layer 4 

2. Two layers 16 

3. Three layers 141 

Table-1: number of iterations take for 4 node circuit bisectional placement. 

S. No Number of Layers 6 Nodes 

(Iterations) 

Subset-1 3 Nodes 

(Iterations) 

Subset-2 3 Nodes 

(Iterations) 

1. Single layer 22 55 10 

2. Two layers 101 91 124 

3. Three layers 128 99 130 

Table-2: number of iterations take for 6 node circuit bisectional placement. 

The algorithm alternates between applying a “cost” Hamiltonian which encoding the desired objective and a 

“mixer” Hamiltonian which exploring the search space, adjusting parameters at each step to improve the solution 

[13]. These parameters are iteratively updated using classical optimization, guiding the quantum circuit toward 

solutions with minimized cross-partition connections between the clusters and maximum with their subclusters 

and again minimum between subcluster with this approach we find the optimal placement of each element of the 

circuit. 

S. No Number of Layers 8 Nodes 

(Iterations) 

Subset-1 4 Nodes 

(Iterations) 

Subset-2 4 Nodes 

(Iterations) 

1. Single layer 28 71 12 

2. Two layers 91 81 61 

3. Three layers 113 155 163 

Table-3: number of iterations take for 8 node circuit bisectional placement. 

Table-4: number of iterations take for 10 node circuit bisectional placement. 

This Empirical evidence shows that QAOA-based bisectional placement typically grants the enhanced solution 

quality by generating more balanced partitions base placement of given circuit with minimized total wire length 

and cut size compared to classical heuristics. Resilience against local minima by leveraging quantum tunnelling 

[14], QAOA can escape poor-quality local minima that trap conventional placement heuristics. Adaptability of 

S. No Number of 

Layers 

10 Nodes 

(Iterations) 

Subset-1 5 Nodes 

(Iterations) 

Subset-1 3 Nodes 

(Iterations) 

Subset-2 5 Nodes 

(Iterations) 

Subset-2 3 Nodes 

(Iterations) 

1. Single layer 25 10 19 55 46 

2. Two layers 130 19 22 66 56 

3. Three layers 240 99 36 93 93 
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hybrid quantum-classical approach allows tuning to specific design constraints like timing, power, or rout ability, 

and can handle changed problem parameters dynamically. 

 

6. CONCLUSION 

In this paper, we demonstrate the first successful application of QAOA to VLSI bi-sectional placement, 

achieving significant improvements over classical methods in both solution quality and computational efficiency. 

Our quantum-enhanced framework opens new avenues for EDA optimization and establishes a foundation for 

quantum computing's role in next-generation chip design. This quantum‐classical hybrid framework for bi‐

sectional VLSI placement that formulates the task of dividing N standard cells into two balanced regions as a 

balanced bisectional QUBO problem and find the optimal placement location for each standard cell. Mapping 

𝑥𝑖 = (1 + 𝑧𝑖)/2 Ising spins 𝑧𝑖 yields a Hamiltonian H whose ground state encodes the optimal placement. We 

implement a Quantum Approximate Optimization Algorithm (QAOA) ansatz of alternating Rx rotations and 

nearest‐neighbour entangling gates, using classical outer‐loop optimizers trust-constr to minimize the measured 

expectation. Under the standard Ising spin transformation, this problem becomes equivalent to finding the ground 

state of an N‐qubit Ising Hamiltonian with local pairwise interactions, a problem that belongs to the QMA‐

complete complexity class for general local Hamiltonians. The Quantum Approximate Optimization Algorithm 

provides a heuristic approach with theoretical approximation guarantees, where sufficiently deep parameterized 

quantum circuits can achieve expected energies arbitrarily close to the optimal ground state energy, with 

concentration bounds ensuring that measurement outcomes yield near‐optimal placements with high probability. 

Classical algorithms for placement typically require exponential time [16] in the worst case or polynomial time 

with poor approximation ratios, while QAOA can theoretically explore the complete exponentially large solution 

space through quantum superposition effects within polynomial quantum circuit depth, suggesting potential 

exponential computational speedups for sufficiently coherent quantum hardware platforms. 
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