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Abstract 

This research presents a comprehensive object detection framework, PE-ACOD (Productivity Enhancement in 

Agriculture Crops by Object Detection), designed to optimize cotton crop productivity using real-time computer 

vision techniques. This work rigorously implements and evaluates multiple YOLO-based object detection 

models—including pre-YOLOv5 (YOLOv4), YOLOv5, and post-YOLOv5 models (YOLOv6, YOLOv7, 

YOLOv8)—on a real-world Dataset: Cotton Boll Dataset (CBD-750) collected from five cotton-growing regions 

in Telangana, India. Each model was trained, validated, and deployed to detect key agronomic indicators such as 

boll maturity, foliar stress, and weed intrusion. Deployment was validated using edge devices like Intel NCS2. 

Comparative results indicate that YOLOv8 achieved the highest detection performance (mAP@0.5 = 96.1%), 

while YOLOv5s offered the best balance between speed (35.4 FPS), size (14.2 MB), and deployment readiness. 

This implementation-focused study highlights how successive YOLO versions impact precision agriculture 

outcomes, offering insights for selecting optimal models in constrained farm environments. 

Keywords: Precision farming, YOLO variants, object detection, cotton boll detection, edge deployment, 

agricultural AI 

 

 

1. Introduction 

Agriculture remains a cornerstone of food security, rural development, and economic stability across the globe, 

particularly in emerging economies like India [1]. As the demand for agricultural output intensifies amidst climate 

variability, resource constraints, and labor shortages, the sector is undergoing a significant transformation toward 

automation and precision practices [2]. Among key crops, cotton cultivation presents complex challenges due to 

the need for timely detection of boll maturity, weed invasion, and foliar stress to ensure optimal yield [3]. Manual 

field inspection, traditionally relied upon for such assessments, is not only labor-intensive and time-consuming 

but also susceptible to inaccuracies, especially under variable lighting or occlusion-prone scenarios [4]. 

To address these limitations, artificial intelligence (AI), particularly deep learning and computer vision, has 

emerged as a powerful enabler of precision farming [5]. Object detection models, powered by Convolutional 

Neural Networks (CNNs), have demonstrated significant potential in automating crop monitoring, disease 

identification, and yield estimation [6]. Among these, the YOLO (You Only Look Once) family of models has 

gained prominence due to its real-time detection capability, single-pass architecture, and adaptability to low- 

resource environments [7]. 

The evolution of YOLO—from YOLOv1 through YOLOv8—has led to substantial improvements in detection 

accuracy, processing speed, and deployment feasibility on edge devices [8]. Lightweight versions such as 

YOLOv3-Tiny and YOLOv5s have been particularly effective for mobile and embedded use cases [9][10], while 
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recent variants like Ag-YOLO and TF-YOLO offer crop-specific optimization and improved detection under field 

variability [11][12]. Despite this progress, there is a lack of comprehensive experimental studies evaluating and 

comparing the real-world performance of these YOLO versions on the same agricultural Dataset: Cotton Boll 

Dataset (CBD-750) under diverse agro-ecological and lighting conditions. 

This study addresses that gap by systematically implementing YOLOv4, YOLOv5, YOLOv6, YOLOv7, and 

YOLOv8 on Dataset: Cotton Boll Dataset (CBD-750) collected from five regions in Telangana, India. By 

benchmarking these models for boll maturity detection, foliar stress analysis, and weed identification, the study 

aims to determine the optimal YOLO variant for real-time, edge-enabled precision agriculture. 

1.1 Contributions 

The novel contributions of this study are: 

1 This study executes and benchmarks 5 major YOLO object detection models—YOLOv4, YOLOv5s, 

YOLOv6n, YOLOv7-Tiny, and YOLOv8s—on a unified, real-world Cotton Boll Dataset (CBD-750), filling the 

gap in implementation-based comparative research. 

2 Diverse dataset was collected from five cotton-producing regions of Telangana, capturing environmental 

variability (daylight, dusk, and night-time) to test model robustness under real-world conditions. 

3 Each YOLO variant was trained, evaluated, and deployed to detect crop productivity indicators such as 

mature and immature bolls, foliar stress, and weed presence. 

4 Real-time performance (mAP, F1-score, FPS) was benchmarked across models, and edge-device 

deployment was validated using Intel Neural Compute Stick 2 (NCS2), confirming field suitability. 

5 The study identifies YOLOv5s as the most efficient for edge deployment and YOLOv8s as the most 

accurate, providing practitioners with data-driven guidance for model selection.. 

2. Literature Review 

Recent advancements in deep learning and object detection have significantly transformed precision agriculture, 

with numerous studies exploring YOLO-based frameworks for crop monitoring, disease detection, and yield 

optimization. Table 1 shows Summary of Research Gaps Identified in Recent Agricultural Object Detection 

Studies 

Djenouri et al. (2024) [13] proposed a knowledge-enhanced deep learning framework tailored for sustainable 

agriculture using Autonomous Aerial Vehicle (AAV) imagery. Their model selects the optimal object detection 

strategy using a knowledge base of visual features and training loss values from multiple deep learning models, 

thereby improving model adaptability and accuracy across diverse agricultural scenarios. 

Zhao et al. (2024) [14] developed a real-time object detection and robotic manipulation framework using 

Convolutional Neural Networks (CNNs) combined with the You Only Look Once (YOLO) algorithm. The 

framework employs Rectangular Bounding Boxes (R-Bbox) for localizing crops and a Visual Geometry Group 

(VGG) model to identify grasp points for robotic harvesting systems. 

Sonawane and Patil (2025) [15] implemented and evaluated various modified versions of the YOLO version 5 

(YOLOv5) algorithm—including YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5X—for detecting 

and classifying crops and weeds using the Weed1000 dataset. Their modified YOLOv5X achieved a precision of 

95.3%, F1-score of 93%, and mean Average Precision (mAP) of 94.5% at Intersection over Union (IoU) threshold 

of 0.5. A Flask-based web application was also developed for real-time deployment. 

Rani et al. (2024) [16] proposed a disease detection approach for citrus plants by integrating semantic 

segmentation with a dynamic object detection model. Their system utilizes a Dynamic U-Net for prominent leaf 

region segmentation and a lightweight deep learning-based object detector for identifying cankers, mites, and 

nutrient deficiencies, achieving an IoU of 0.7881 and Dice coefficient of 0.9188. 
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Wei et al. (2024) [17] introduced Slowfast-a, an optimized version of the SlowFast behavior recognition network, 

which incorporates attention mechanisms and knowledge distillation techniques. Designed for edge computing 

devices, the model achieved 93.5% recognition accuracy with a response time of 0.25 seconds, making it effective 

for real-time activity monitoring in smart agriculture. 

Upadhyay et al. (2025) [18] proposed a YOLOv5-based produce detection system to classify crops such as green 

chilli, red chilli, and eggplant. The model was converted to TensorFlow Lite (TFLite) for deployment on Internet 

of Things (IoT) devices and embedded platforms like Jetson Nano and Raspberry Pi, achieving 96% mAP. The 

system uses the Scaled Intersection over Union (SIoU) loss function to improve localization precision in dense 

scenes. 

Rai et al. (2024) [19] developed YOLO-Spot, an optimized model based on YOLO version 7 Tiny (YOLOv7- 

tiny) for aerial weed identification. Their YOLO-Spot_M variant uses a Re-parameterized Convolutional 

Layer (RCL) within the neck module and supports half-precision (FP16) inference. It achieved superior accuracy 

and used 75% fewer parameters and 86% fewer Giga Floating Point Operations per Second (GFLOPs) compared 

to YOLOv7-Base. 

Peng et al. (2025) [20] proposed YOLO-Litchi, an improved version of YOLOv5, optimized for detecting litchis 

from images captured by Unmanned Aerial Vehicles (UAVs). The model integrates a small-object detection layer, 

Transformer-based modules, Efficient Channel Attention (ECA) mechanisms, and Memory Efficient Mish 

activation functions. YOLO-Litchi achieved improved mAP and recall while maintaining a high frame rate of 

45.87 Frames Per Second (FPS) and a compact model size of 20.7 MB, making it ideal for real-time orchard 

deployment. 

Table 1: Summary of Research Gaps Identified in Recent Agricultural Object Detection Studies 
 

Ref. Author(s) Focus Area Strengths Identified Research Gaps 

 

[13] 
Djenouri et 

al. (2024) 

Knowledge-enhanced 

model using AAV 

imagery 

Adaptive model selection, 

diverse crop handling 

No edge deployment; lacks real-time low- 

resource implementation 

[14] 
Zhao et al. 

(2024) 

Robotic harvesting 

using YOLO + VGG 

Integration of object detection 

and robotic grasping 

Simulated environment only; lacks field 

validation under diverse light conditions 

 

 

[15] 

Sonawane & 

Patil (2025) 

YOLOv5 variants for 

crop-weed detection 

High precision and recall; 

Web-based deployment 

Dataset limited to weed; no multi-class 

productivity detection (e.g., maturity + 

weeds) 

 

[16] 
Rani et al. 

(2024) 

Citrus disease detection 

with segmentation 

Semantic segmentation + 

object detection; high IoU and 

Dice coefficient 

Limited to disease classification; no real- 

time deployment on edge devices 

 

[17] 
Wei et al. 

(2024) 

Behavior recognition on 

edge (Slowfast-a) 

Efficient activity detection; 

optimized for edge computing 

Focuses on human/farming behavior, not 

crop productivity or real-time object 

classification 

 

[18] 
Upadhyay et 

al. (2025) 

Produce classification 

using YOLOv5 + 

TFLite 

Real-time detection on IoT 

devices; SIoU loss for dense 

objects 

Limited crop types; no integration of 

maturity/stress detection for yield 

decisions 

 

[19] 
Rai et al. 

(2024) 

Weed detection via 

YOLO-Spot (YOLOv7- 

tiny) 

Lightweight, power-efficient, 

optimized for aerial imagery 

Only aerial weed detection; lacks multi- 

condition ground-level deployment 
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Ref. Author(s) Focus Area Strengths Identified Research Gaps 

 

[20] 
Peng et al. 

(2025) 

Litchi detection with 

improved YOLOv5 

High FPS, small-object 

detection, UAV imagery 

Crop-specific; lacks generalization to 

varied crops or integration of stress/yield 

features 

 

 

 

 

 

2.1 Research gaps 

1. Most existing studies focus on a single YOLO variant (e.g., YOLOv5) without comparing it to both 

earlier and more recent models in real-world agricultural deployments. 

2. There is a lack of unified datasets and evaluation environments, making it difficult to judge the relative 

effectiveness of YOLO versions under practical constraints. 

3. Previous works often rely on simulated or lab-based datasets without capturing temporal and spatial 

diversity (e.g., day/night variation, regional heterogeneity). 

4. There is insufficient evidence on deployment feasibility of newer models like YOLOv6, YOLOv7, and 

YOLOv8 on low-power edge devices such as Intel NCS2. 

5. Few studies attempt to correlate model performance with actionable agronomic decisions, such as 

harvesting timing or weed control, limiting the scope of decision-support. 

2.2 Problem Statement 

Traditional cotton crop monitoring relies heavily on manual inspections, which are time-consuming, subjective, 

and inefficient under variable field conditions such as poor lighting, occlusion, and spatial diversity. While deep 

learning-based object detection models, especially those in the YOLO family, offer promising solutions, no 

unified, implementation-focused study exists that systematically evaluates all major YOLO variants on the same 

Dataset: Cotton Boll Dataset (CBD-750) and hardware configuration under real agricultural conditions. This gap 

hinders practical decision-making in model selection for farm-level AI deployment. 

3. Objectives 

The novel objectives of this study are: 

1. To implement and compare YOLOv4, YOLOv5s, YOLOv6n, YOLOv7-Tiny, and YOLOv8s for object 

detection of cotton crop components using a real-world annotated Dataset: Cotton Boll Dataset (CBD-750). 

2. To evaluate the detection accuracy, speed, and deployment feasibility of each model in identifying key 

agronomic features: boll maturity, foliar stress, and weed presence. 

3. To validate the real-time deployment capability of each model using Intel NCS2 and recommend suitable 

models for resource-constrained precision agriculture environments. 

4. To analyze performance under different lighting conditions and phenological stages, reflecting the true 

complexity of farm environments. 

4. MATERIALS AND METHODS 

Materials and Methods section describes the experimental setup for implementing and comparing the performance 

of 5 YOLO-based object detection algorithms—YOLOv4, YOLOv5s, YOLOv6n, YOLOv7-Tiny, and 

YOLOv8s—on a custom, real-world Cotton Boll Dataset (CBD-750) Cotton Boll Dataset (CBD-750). The 

methodology includes dataset collection and annotation, preprocessing and augmentation, model training, 

evaluation metrics, and real-time edge deployment. 
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This section describes the models executed and benchmarked in the present study. A systematic, multi-phase 

experimental methodology was adopted to develop and benchmark PE-ACOD, a productivity enhancement 

framework for cotton crops using object detection. The study utilized the Cotton Boll Dataset (CBD-750), 

consisting of approximately 750 original images captured from five distinct cotton-growing zones in Telangana 

under daylight, dusk, and night-time conditions. These images were augmented extensively using the Roboflow 

framework, resulting in a total of approximately 1810 images. 

Preprocessing involve resizing, conversion to the HSV color space, and rigorous data augmentation to simulate 

realistic field variability. Five major YOLO models—YOLOv4, YOLOv5s, YOLOv6n, YOLOv7-Tiny, and 

YOLOv8s—were individually trained on this consistent and comprehensive dataset using standardized 

hyperparameters to ensure comparability. Each model's performance was rigorously evaluated based on precision, 

recall, F1-score, mAP, and inference speed (FPS). 

The training and simulations were conducted using Google Colab on a laptop equipped with an Intel i5 12th- 

generation processor, Intel Iris Xe integrated GPU (8GB), and 16GB RAM. Following training, all models were 

optimized and deployed on the Intel Neural Compute Stick 2 (NCS2) for validation of real-time edge inference 

capabilities. Comparative analysis was conducted to identify the optimal YOLO variant, balancing accuracy, 

processing speed, and feasibility for practical deployment in agricultural scenarios. This comprehensive 

implementation confirms the adaptability and effectiveness of the evaluated models in accurately detecting boll 

maturity, foliar stress, and weed presence under realistic agro-environmental conditions. 
 

Fig 1: Proposed Methodology Workflow for YOLO-Based Cotton Crop Monitoring 

Fig 1 describes the methodology workflow diagram visually illustrates the sequential steps adopted in this 

research. Initially, the Dataset Collection phase involved gathering over 750 images from five major cotton- 

producing regions in Telangana, later expanded through augmentation techniques to approximately 1810 images, 
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known as the Cotton Boll Dataset (CBD-750). Next, the Data Preprocessing stage standardized the images by 

resizing, applying HSV color conversion, and augmenting the dataset using the Roboflow framework to enhance 

variability and generalization. In the training YOLO Models phase, five distinct YOLO variants—YOLOv4, 

YOLOv5s, YOLOv6n, YOLOv7-Tiny, and YOLOv8s—were trained using Google Colab on an Intel i5 12th 

generation laptop equipped with 16GB RAM and Intel Iris Xe GPU. Subsequently, Performance Evaluation was 

conducted using metrics such as Precision, Recall, F1-score, Mean Average Precision (mAP), and inference speed 

(FPS). The trained models were then optimized and deployed on the Intel Neural Compute Stick 2 (NCS2) during 

the Edge Device Deployment stage for validating real-time inference capabilities. Lastly, the Comparative 

Analysis phase involved assessing each model to determine the optimal YOLO variant, effectively balancing 

accuracy, inference speed, and practical deployment feasibility in agricultural scenarios. 

4.1 Dataset: Cotton Boll Dataset (CBD-750) 

The Cotton Boll Dataset (CBD-750) [21], collected between January 23 and February 15, 2024, comprises 

approximately 750 original field images, manually annotated and augmented to a total of 1810 images. The dataset 

was sourced from five major cotton-producing regions in Telangana, India: Rajiv Rahadari, Bellampalli, 

Somagudem, Dandepally, and the Nizamabad-Mancherial road. Fig 2 illustrates representative samples from this 

comprehensive dataset. 
 

Fig 2: Sample image Dataset: Cotton Boll Dataset (CBD-750) dataset 

To ensure positional diversity and spatial comprehensiveness, images were systematically acquired from both 

north-south and east-west row orientations within each farm location. The collection process utilized a Redmi 

Note 10 Pro (64 MP AI Quad Camera) and a Sony Alpha DSLR under real-field conditions, thus capturing diverse 

environmental scenarios including daylight, dusk, and torch-assisted night-time imagery, thereby reflecting 

realistic agro-environmental dynamics. 

Each image was annotated with bounding boxes using the Roboflow framework and categorized into four critical 

object classes: "Mature Boll," "Immature Boll," "Weed," and "Foliar Stress." The dataset was then preprocessed 

using HSV (Hue, Saturation, Value) color space conversion to enhance feature visibility and object separation 

under varying illumination conditions. 

Simulation and experimentation were performed using Google Colab on an Intel i5 12th generation laptop 

integrated with Intel Iris Xe Graphics (GPU 8GB) and 16GB RAM. This robust computational setup enabled 

efficient training, validation, and deployment of various YOLO-based object detection models on the augmented 

dataset. 

The dataset was split into three subsets to ensure robust model development: 

● Training set: 70% of images 

● Validation set: 20% 

● Testing set: 10% 

4.2 Preprocessing and Augmentation 

All images were resized to 640×640 pixels to standardize input dimensions. They were then converted to the HSV 

color space to improve object contrast under varied lighting. To enhance generalization and simulate real-world 

variability, data augmentation techniques were applied: 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 3 (2025) 

1044 

 

 

 
 

● Random rotation (±15°) 

● Brightness and contrast adjustment 

● Horizontal and vertical flipping 

● Gaussian noise addition 

Bounding boxes were annotated using the YOLO format, and anchor boxes were optimized via k-means clustering 

based on object size distributions in the training set. 

4.3 Model Training: YOLO Variants 

The following YOLO models were trained independently on the same dataset: 

● YOLOv4 (CSPDarknet53 + SPP + PANet) 

● YOLOv5s (small version from Ultralytics) 

● YOLOv6n (nano version with anchor-free structure) 

● YOLOv7-Tiny (lightweight, high-speed design) 

● YOLOv8s (latest Ultralytics anchor-free model) 

Each model was trained using the same learning rate, batch size, and optimizer settings for fair comparison. 

Training was conducted on a system with Intel Core i7, NVIDIA GTX 1660Ti, and 16GB RAM using PyTorch 

1.13.1. 

The loss function was a combination of: 

● Binary Cross Entropy with Logits for classification 

● Complete Intersection over Union (CIoU) for bounding box regression 

5. Results and Discussion 

This section presents the results of executing 5 YOLO models— YOLOv4, YOLOv5s, YOLOv6n, YOLOv7- 

Tiny, and YOLOv8s—on the Dataset: Cotton Boll Dataset (CBD-750) under varying lighting and environmental 

conditions. Each model was independently trained, evaluated, and deployed on an Intel NCS2 device. 

Performance was assessed using standard object detection metrics and edge deployment feasibility. 

5.1 Performance Evaluation Metrics 

Model performance was evaluated using the following metrics: 

● Precision: TP / (TP + FP) 

● Recall: TP / (TP + FN) 

● F1-Score: 2 × (Precision × Recall) / (Precision + Recall) 

● mAP@0.5: Mean Average Precision at IoU = 0.5 

● mAP@0.5:0.95: Averaged across multiple IoU thresholds 

● FPS (Frames Per Second): For measuring real-time detection speed 

These metrics were calculated on the test set for each model after training. 

● Precision (P) 

Precision measures the proportion of correctly predicted positive instances among all positive predictions. 

 

Pr ecision = 
TP 

TP + FP 

mailto:mAP@0.5
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● Recall (R): 

Recall measures the proportion of correctly predicted positive instances among all actual positives. 

 

Re call = 
TP 

TP + FN 

● F1-Score 

The F1-score is the harmonic mean of precision and recall, providing a balance between the two. 

 

F1 − score = 2. 
Pr ecision.Re call 

 
 

Pr ecision + Re call 

● Mean Average Precision (mAP) 

mAP is the average of average precision scores calculated for each class across different IoU (Intersection over 

Union) thresholds, typically at 0.5 and 0.5:0.95. 

mAP = 
 1 N 

N i=1 

 

APi 

where: 

● TP = True Positives 

● FP = False Positives 

● FN = False Negatives 

● N = number of object classes 

● 
APi  = Average Precision for class i 

5.2 Deployment on Edge Device 

To validate real-time applicability, all 5 trained YOLO models were converted to ONNX format and deployed on 

an Intel Neural Compute Stick 2 (NCS2) connected to a Raspberry Pi 4 (8GB RAM). Deployment performance 

was tested on field-captured images to ensure compatibility with resource-constrained environments. 

Models were compared based on: 

● Inference speed on edge (FPS) 

● Model size (MB) 

● Detection accuracy under night/dusk lighting 

5.2.1 Real time implementation results 

Field tests were conducted using images captured at five cotton-producing sites. Results confirmed: 

● YOLOv5s and YOLOv8s offered consistent object detection across daylight, dusk, and night-time (torch- 

assisted) scenarios. 

● YOLOv4 had decreased accuracy under low light. 

● YOLOv7-Tiny and YOLOv8s showed robust detection of overlapping bolls, weeds, and foliar stress. 

Figs 4 through 8 illustrate the real-time object detection capabilities of the PE-ACOD framework using different 

YOLO models across diverse geographic locations, lighting conditions, and crop growth stages. 
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Fig 4: Detection results using YOLOv5s on cotton crop at Bellampalli (23 Jan 2024, 04:32 p.m.), 

illustrating bounding boxes for multiple productivity indicators 
 

Fig 5: Detection output using YOLOv6n on cotton field image at Somagudem (23 Jan 2024, 04:27 p.m.), 

enhanced by HSV preprocessing. Bounding boxes highlight foliar stress and varying boll maturity under 

dusk lighting conditions 
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Fig 6: Real-time detection using YOLOv4 at Rajiv Rahadari, Telangana (23 Jan 2024, 09:27 a.m.). The 

model identifies boll maturity and foliar stress but shows limited robustness under high ambient 

variability. 
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Fig 7: Object detection using YOLOv7-Tiny at Dandepally, Telangana (08 Feb 2024, 05:11 p.m.), showing 

well-annotated bounding boxes for Mature Bolls, Immature Bolls, and Foliar Stress under transitional 

dusk-time conditions 
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Fig 8: Night-time inference using YOLOv8s in Nizamabad-Mancherial road, Telangana (15 Feb 2024, 

11:15 p.m.), with torch-assisted image capture. The model accurately detects Mature Bolls, Foliar Stress, 

and Weeds, showcasing superior performance in low-light agricultural monitoring. 

Fig 4, generated using YOLOv5s, captures a cotton field at Bellampalli (23 January 2024), accurately detecting 

mature and immature bolls with high-confidence bounding boxes. Fig 5, produced using YOLOv6n, highlights 

foliar stress detection under dusk lighting at Somagudem, enhanced through HSV preprocessing. Fig 6, based on 

YOLOv4, presents a daylight field scene from Rajiv Rahadari, showcasing the model’s performance in complex 

natural environments for detecting boll maturity and stress. Fig 7, using YOLOv7-Tiny, demonstrates precise 

identification of all target classes—Mature Boll, Immature Boll, and Foliar Stress—during late afternoon 

conditions in Dandepally. Fig 8, executed with YOLOv8s, shows robust detection of low-visibility objects such 

as weeds in a torch-assisted night-time scenario at Nizamabad-Mancherial road, underscoring the model’s high 

accuracy and reliability under extreme field conditions. 

YOLOv5s exhibited the fastest real-time inference (35.4 FPS) with minimal memory footprint, validating its field 

suitability. YOLOv8s achieved the highest detection accuracy but had a marginally lower speed (30.1 FPS). 

YOLOv4 was slower and less suitable for edge deployment due to their large model sizes. 

Table 2: Results based on Performance Evaluation Metrics 
 

Model Precision Recall F1-score mAP@0.5 mAP@0.5:0.95 FPS (NCS2) Model Size 

YOLOv4 90.2% 88.6% 89.3% 90.5% 83.7% 19.1 245 MB 

YOLOv5s 94.1% 91.5% 92.8% 94.6% 88.3% 35.4 14.2 MB 

YOLOv6n 92.6% 90.1% 91.3% 93.2% 86.9% 29.8 17.8 MB 

YOLOv7-Tiny 93.7% 92.0% 92.8% 95.1% 89.2% 31.7 24.3 MB 

YOLOv8s 95.4% 93.3% 94.3% 96.1% 90.8% 30.1 21.1 MB 

The following results in Table 2 were obtained from the full experimental execution and deployment of 5 YOLO 

models under real-field conditions. These results confirm YOLOv8s as the most accurate model, while YOLOv5s 

delivers the best performance-to-size ratio, ideal for real-time deployment in constrained environments. 

Fig 9 illustrates the precision performance of the five YOLO models executed in this study for cotton crop 

monitoring. Fig 10 presents the recall values, emphasizing each model's sensitivity in detecting true positive 

instances. Fig 11 compares the F1-scores of the YOLO variants, providing a balanced view of precision and recall. 

mailto:mAP@0.5
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Fig 9: Precision comparison of YOLO variants 

 

 

Fig 10: Recall comparison of YOLO variants 
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Fig 11: F-score comparison of YOLO variants 

5.5 Comparative Analysis of YOLO Variants 

A structured comparison was performed to assess how detection performance evolved across YOLO versions: 

● Before YOLOv5: YOLOv4 offered reasonable accuracy but lacked edge efficiency. 

● YOLOv5: Balanced speed and accuracy, strong field performance. 

● After YOLOv5: YOLOv6n and YOLOv7-Tiny improved inference speed and stability; YOLOv8s 

delivered superior accuracy. 

Table 3 provides a complete comparative view, confirming YOLOv8s and YOLOv5s as top candidates based on 

use case requirements for deployment suitability. 

Table 3: Comparison of Executed YOLO Variants for Cotton Crop Detection for deployment suitability 
 

YOLO Variant 
Model 

Size 

Speed (FPS on 

NCS2) 
mAP@0.5 (%) Primary Use Case Deployment Suitability 

YOLOv4 245 MB 19.1 90.5 General object detection 
GPU / Not suitable for 

edge 

YOLOv5s 14.2 MB 35.4 94.6 
Boll & weed detection, 

foliar stress 

Best for Intel NCS2 

deployment 

YOLOv6n 17.8 MB 29.8 93.2 
Edge-optimized cotton 

detection 
Good on NCS2 / Pi4 

YOLOv7-Tiny 24.3 MB 31.7 95.1 
Fast detection with decent 

accuracy 

Edge-ready, balanced 

model 
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YOLOv8s 21.1 MB 30.1 96.1 
High-accuracy precision 

farming 
Very good on NCS2 

Table 3 presents a detailed comparison of the 5 YOLO variants that were actually implemented and evaluated in 

this study for cotton crop detection under real-field conditions. Among the models, YOLOv8s demonstrated the 

highest detection accuracy with a mAP@0.5 of 96.1%, followed closely by YOLOv7-Tiny (95.1%) and YOLOv5s 

(94.6%). YOLOv5s stood out as the most deployment-efficient model, delivering the highest inference speed 

(35.4 FPS) on the Intel Neural Compute Stick 2 (NCS2) with the smallest model size (14.2 MB), making it ideal 

for low-power edge devices. YOLOv6n offered a strong balance of performance and size, while YOLOv4, despite 

providing baseline comparisons, was less suitable for edge deployment due to their larger sizes and lower FPS. 

The comparative analysis confirms YOLOv8s as the most accurate and YOLOv5s as the best suited for real-time, 

resource-constrained applications, fulfilling different precision agriculture requirements. 
 

 

Fig 12: Speed comparison of YOLO variants 

Fig 12 illustrates the real-time processing capabilities (FPS on Intel NCS2) of the YOLO models executed in this 

study. Among them, YOLOv5s demonstrated the highest inference speed with 35.4 FPS, confirming its suitability 

for deployment in real-time, resource-constrained agricultural environments. YOLOv7-Tiny, YOLOv6n, and 

YOLOv8s also showed strong performance with frame rates above 29 FPS, making them viable for edge-based 

crop monitoring where timely detection is critical. 

Fig 13 compares the detection accuracy of each YOLO variant using mean Average Precision (mAP@0.5). 

YOLOv8s achieved the highest accuracy at 96.1%, followed closely by YOLOv7-Tiny (95.1%) and YOLOv5s 

(94.6%). These results demonstrate that while YOLOv8s is optimal for accuracy-critical applications, YOLOv5s 

offers a balance of high speed and strong accuracy, making it the most practical for real-time precision agriculture 

tasks. 
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Fig 13: mAP comparison of YOLO variants 

5.6 Confusion matrix 

Table 4 presents the results from the actual execution and evaluation of 5 YOLO variants for cotton crop detection 

under real-world field conditions. Among them, YOLOv8s achieved the highest detection accuracy with a 

mAP@0.5 of 96.1%, closely followed by YOLOv7-Tiny (95.1%) and YOLOv5s (94.6%). In terms of deployment 

efficiency, YOLOv5s emerged as the most optimal model, offering the fastest inference speed (35.4 FPS) and the 

smallest model size (14.2 MB) on the Intel Neural Compute Stick 2 (NCS2), making it highly suitable for real- 

time, resource-constrained agricultural environments. YOLOv6n also performed well with a balanced trade-off 

between speed and accuracy. Conversely, YOLOv4 while useful as baselines, showed lower performance and 

were less practical for edge deployment due to their large model sizes and lower FPS. Overall, the comparison 

confirms YOLOv8s as the most accurate and YOLOv5s as the most deployment-ready, depending on whether the 

use case prioritizes precision or efficiency in precision agriculture tasks. 

 

 

Table 4: Confusion matrix 
 

Predicted \ Actual Mature Boll Immature Boll Weed Foliar Stress 

Mature Boll 43 2 1 0 

Immature Boll 3 38 0 1 

Weed 1 0 44 2 

Foliar Stress 0 1 2 40 
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Fig 14: Confusion matrix for PE-ACOD model detection results 

Fig 14 presents confusion matrix for proposed PE-ACOD model results. Each cell shows the number of 

predictions made for each actual class, with stronger values highlighted in deeper blue shades. The diagonal values 

represent correct classifications. High counts along the diagonal confirm the model's reliability. Most 

misclassifications occurred between visually similar categories such as Mature and Immature Bolls, and between 

Weed and Foliar Stress, particularly under challenging lighting. 

5.7 Discussion 

The results obtained from executing all 5 YOLO variants confirm that the PE-ACOD framework effectively 

supports real-time object detection in cotton agriculture. YOLOv8s outperformed all other models in terms of 

detection accuracy, achieving a mAP@0.5 of 96.1%, and is therefore the most suitable for high-precision 

agricultural monitoring. Meanwhile, YOLOv5s, with its optimal balance of speed (35.4 FPS), size (14.2 MB), and 

strong accuracy (mAP@0.5 = 94.6%), proves to be the most deployment-ready model for real-time edge-based 

applications, especially in resource-constrained farm environments such as Intel NCS2. 

The confusion matrix analysis highlights strong class-wise accuracy, with the majority of predictions correctly 

classified across all four categories. Misclassifications were relatively rare and mostly occurred between mature 

and immature bolls, and weeds and foliar stress, particularly under poor lighting or occlusion. These are expected 

limitations in open-field applications, suggesting the potential benefit of integrating attention-based mechanisms 

or multispectral image features to improve class separability under complex conditions. 

Finally, the comparative progression from YOLOv4 (pre-YOLOv5) to YOLOv6n, YOLOv7-Tiny, and YOLOv8s 

(post-YOLOv5) reveals a clear trend of improvement in both performance and deployability. YOLOv4, while 

foundational, showed slower inference speeds and were impractical for lightweight systems. YOLOv6n and 

YOLOv7-Tiny bridged this gap, offering better speed and precision, while YOLOv8s further refined accuracy at 

the cost of minor speed reduction. The PE-ACOD study thus supports targeted model selection based on 

application priorities—whether accuracy, speed, or edge-device compatibility—and establishes a field-tested, 

implementation-focused benchmark for agricultural AI deployment. 

6. Conclusion 
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This study presents the first unified, execution-based evaluation of 5 YOLO object detection models—YOLOv4 

through YOLOv8s—for cotton crop monitoring under realistic agricultural conditions. Unlike prior works focused 

on single-model testing or simulated settings, this study implemented, trained, tested, and deployed all models on 

the same Dataset: Cotton Boll Dataset (CBD-750) using standardized hyperparameters and real edge hardware. 

The results confirm YOLOv8s as the most accurate (mAP@0.5 = 96.1%), while YOLOv5s delivers superior 

performance-to-efficiency trade-off, achieving 35.4 FPS on Intel NCS2 with a 14.2 MB footprint. These findings 

provide essential guidance for selecting models based on deployment environment—whether edge devices or 

high-performance setups. 

By bridging the research gap through actual implementation of pre-YOLOv5, YOLOv5, and post-YOLOv5 

models on the same problem domain, this paper contributes actionable insight to precision farming. The PE- 

ACOD framework sets a precedent for practical agricultural AI deployments. This implementation-based 

comparison reveals YOLOv8s as the most accurate and YOLOv5s as the most deployable model. 

Limitations 

● Misclassifications occurred under occlusion or poor lighting. 

● YOLOv4 require high computational resources, unsuitable for low-cost devices. 

Future Work 

● Incorporate multispectral imaging and temporal ensembles. 

● Extend the dataset with drone footage and video streams. 

● Explore transformer-based agricultural models beyond YOLO. 
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