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Abstract: In this paper, we introduce a novel image inpainting technique for reconstructing damaged or missing 

image regions. The method relies on pattern formation, specifically searching for predefined patterns that originate 

from damaged or lost pixels. Subsequently, these pixels are reconstructed by filling them with colors derived from 

the observed patterns. 

Keywords: Image inpainting, Cahn-Hilliard equation, inpainting path, path gradient. 

1. Introduction 

Inpainting is the art of modifying an image such that the results of changes are not easily detectable by an ordinary 

observer. The purpose of inpainting is to reconstitute the missing or damaged portions of the image, in which the 

inpainted region is seamlessly merged into the image [4]. Propagating the image information along lines of equal 

gray values into the areas to be modified is expressed by the third-order nonlinear PDE [6]. In this paper, the 

authors explained that good inpainting algorithms should propagate sharp edges in surrounding areas into the 

damaged parts required to be fill in . Furthermore, a new PDE’s model based on the reformation of the Navier-

Stokes equations with an isotropic term and a fidelity term is proposed by Bertozi [3]. Cahn and Shen proposed 

the well-known variational image denoising and segmentation models which was adapted to the inpainting task 

with a simple modification [8]. This model is based on image denoising model of Rudin, Osher, Fatemi [?]. It 

propagates sharp edges into the damaged domain as well. But this model does not keep the direction of isophotes 

continuous across the boundary of inpainting. The Cahn and Shen model [9] have drawbacks. So later, Cahn, 

Kang and Shen introduced a more complete new variational image inpainting model. Two PDE’s models for 

image inpainting based on the Mumford-Shah model are proposed by Esedoglu and Shen [13], one is a simple 

modification of the fidelity term, another one is obtained by considering the Euler’s elastica approximation. 

Ballester et.al’s model [2] is based on joint interpolation of the image gray-levels and gradient/isophotes 

directions, smoothly expanding in an automatic fashion isophote lines into the missing data. Other PDE’s 

inpainting models can be found in [10], [12], [14], [15], [16], [19] and [22]. The paper [23] contains a modification 

on the total variation model. It is based on a new insight into the neighborhood pixels of the damaged areas. In 

this paper, our suggestion model is based on finding the paths whose the first or the end include in inpainting 

region. These paths involve almost the same colour. The organization of the chapters are as follows: 

In Section 2, some variety of models for image inpainting are explained. In Section 3, our proposed model is 

introduced and finally in Section 4, some numerical experiments are given to confirm the advantages of proposed 

model. 

 2   Some models for image inpainting 

 Image inpainting is the process of filling a missing or a damaged image based on the information obtained from 

the surrounding areas. It is in fact a type of interpolation [4, 19]. 

 Let 𝑓(𝑥) be a given image in a domain Ω, and 𝐷 ⊂ Ω be the inpainting domain. The inpainting model is to find 

an image 𝑢 in Ω such that 𝑢 ≈ 𝑓 on Ω\𝐷 for a given image 𝑓 in Ω\𝐷 and find a suitable approximation on 𝐷 

(Figure1). 
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Figure  1: A schematic of the domain Ω and the inpainting region 𝐷  

  In the sequel, we present some variety of image inapinting models:  

2.1   The energy method 

 In order to recover a corrupted images, the selection of suitable degradation operator is very important. Let 𝑅 be 

the degradation operator and  

 𝑓 = 𝑅𝑢 + 𝜂,  (1) 

 where 𝑢 is the original image (the unknown), 𝑓 is the observed image and 𝜂 is a white Gaussian noise. According 

to the maximum likelihood principle, one can find an approximation of 𝑢 by solving the least square problem:  

 min𝑢 ∫
Ω

|𝑓 − 𝑅𝑢|2 𝑑𝑥.  (2) 

 If there exists a minimum 𝑢 of (2), then we will have the following equation  

 𝑅∗𝑓 − 𝑅∗𝑅𝑢 = 0,  (3) 

 where 𝑅∗ is the adjoint of 𝑅. The equation (3) is an ill-posed problem, therefore, the idea is to add regularization 

term to the energy. The idea was for Tikhonov and Arsenin [24] whose proposed the minimization problem:  

 𝐹(𝑢) = ∫
Ω

|𝑓 − 𝑅𝑢|2𝑑𝑥 + 𝜆 ∫
Ω

|∇𝑢|2𝑑𝑥,  (4) 

 where the first term is referred to as the fidelity term while the second one is a smoothly term and the parameter 

𝜆 is a positive weightly constant. The value of 𝑖𝑛𝑢𝐹(𝑢) is characterized by Euler-Lagrange equation,  

 𝑅∗𝑅𝑢 − 𝑅∗𝑓 − 𝜆Δ𝑢 = 0.  (5) 

 The equation (5) with the Neuman boundary condition  

 
𝜕𝑢

𝜕𝑛
= 0  on  𝜕Ω,  (6) 

  has a unique solution, where 𝑛 is the unit outward normal vector. Naturally if there exists smoothness in the 

edges of the image, the condition (6) will satisfies. Adding the regularization term ∇𝑢 by the 𝐿2 norm, will be 

caused to remove the noise, but unfortunately penalizes too much the gradients corresponding to edges. So, one 

of the solutions can be effective is changing the norm. One of the first works in this direction is due to Rudin, 

Osher and Fatemi [21], [20] who proposed to use 𝐿1 norm on the regularization term that is referred to as total 

variation, instead of the 𝐿2 norm. Furthermore, the regularization term can be given in a generalized form by [1]: 

 

 𝐹(𝑢) =
1

2
∫

Ω
|𝑓 − 𝑅𝑢|2𝑑𝑥 + 𝜆 ∫

Ω
𝜙(|∇𝑢|)𝑑𝑥.  (7) 

 The Euler-Lagrange equation of (7) reads:  

 𝑅∗𝑅𝑢 − 𝜆𝑑𝑖𝑣(
𝜙(|∇𝑢|)

|∇𝑢|
. ∇𝑢) = 𝑅∗𝑓.  (8) 

 2.2  Total variation 

 As we cited in the preceding section, the total variation (TV) inpainting model is represented as follows:  
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 min {∫
Ω

|∇𝑢| +
𝜆

2
∫

Ω  𝐷
|𝑢 − 𝑓|2𝑑𝑥} ,  (9) 

 where 𝑓 is a given image and 𝑢 is unknown. 

 The TV regularization term can be interpreted by the existence edges of the image:  

 min
𝑢

∫
Ω

|∇𝑢| ⟺ min
Γ𝜆

∫
+∞

−∞
𝐿(Γ𝜆)𝑑𝜆,  (10) 

 where Γ𝜆 = {𝑥 ∈ Ω: 𝑢(𝑥) = 𝜆} is the level curves for the gray value 𝜆. and 𝐿(Γ𝜆) shows the length of the Γ𝜆. The 

inpainting model has drawbacks that it cannot connect edges over large distances and does not smoothly propagate 

level curves into the inpainting region. In order to decrease this deficiency, in addition to |∇𝑢|, the curvature of 

the level curves are considered  

 min ∫
Ω

(𝑎 + 𝑏𝜅2)|∇𝑢|𝑑𝑥 ⟺ min
Γ𝜆

∫
+∞

−∞
𝑎𝐿(Γ𝜆) + 𝑏𝜅2(Γ𝜆)𝑑𝜆,  (11) 

 where 𝜅 = ∇.
∇𝑢

|∇𝑢|
 is the curvature of level curves Γ𝜆 of 𝑢. So, here it is expected to have a better result than the 

TV inpainting model [17].  

2.3  Binary Cahn-Hilliard inpainting 

 In this subsection, we explain the modified version of Cahn-Hilliard equation that is used for inpainting of binary 

images [4]. 

 Let 𝑓 be the given binary image on domain  Ω ⊂ ℝ𝑑(𝑑 = 2,3). The aim is to construct the image in the inpainting 

domain 𝐷 ⊂ Ω in an undetectable way by the evolution of the Cahn-Hilliard equation as  

 
𝜕𝑢

𝜕𝑡
=△ (−𝜖 △ 𝑢 +

1

𝜖
𝐹′(𝑢)) + 𝜆(𝑥)(𝑢 − 𝑓),     𝑖𝑛  Ω (12) 

 where 𝐹(𝑢) = 𝑢2(𝑢 − 1)2 is a double well-potential and   

 𝜆(𝑥) = {
0, 𝑥 ∈ 𝐷
𝜆, 𝑥 ∈ Ω\𝐷.

 

 If 𝜆(𝑥) = 0, the original Cahn-Hilliard equation will be derived by  

 
𝜕𝑢

𝜕𝑡
=△ (−𝜖 △ 𝑢 +

1

𝜖
𝐹′(𝑢)).  (13) 

 The modified Cahn-Hilliard equation (??) consists of two different flows. Using 𝐻−1-norm for the first term of 

(??) concludes a gradient flow for the Cahn-Hilliard energy as follows:  

 𝐸1(𝑢) = ∫
Ω

(
𝜖

2
| ▽ 𝑢|2 +

1

𝜖
𝐹(𝑢))𝑑𝑥,  (14) 

 while the second term gives a gradient flow under 𝐿2-norm for the fidelity term [4],  

 𝐸2(𝑢) =
𝜆

2
∫

Ω\𝐷
(𝑢 − 𝑓)2𝑑𝑥.  (15) 

 Now,   E(u)=E_1(u)+ E_2(u), is called modified Cahn-Hilliard energy. Thus the modified Cahn-Hilliard 

inpainting model (12) gives a superposition of the 𝐻−1-gradient flow for 𝐸1(𝑢) and the 𝐿2-gradient flow for 𝐸2(𝑢). 

The evolution of 𝑢 can be described as follows: 

 Outside of the damaged region, 𝑢 stays close to the given image 𝑓. We can control this closeness via the fidelity 

parameter 𝜆. According to the known image information, the damaged area are filled in. The role of 𝜖 in equation 

(12) is important. In the original Cahn-Hilliard equation, 𝜖 serves as a measure of the transition region between 

two metals in an alloy, after heating and reaching a steady state. In image processing, 𝜖 is a measure of the 

transition region between the two grayscale states (for example between the black and white printed text) [5].    

3   The proposed inpainting model 

 Let 𝑝0, 𝑝1, 𝑝2, . . . , 𝑝𝑚 be the pixels of an image 𝑢. We call 𝜌 = {𝑝0, 𝑝1, 𝑝2, . . . , 𝑝𝑚} the  inpaintnig path if the 

following conditions hold: 
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 1. 𝑝0 ∈ 𝐷, 

 2. 𝑝1, 𝑝2, . . . , 𝑝𝑚 ∈ Ω\𝐷, 

 3.∑𝑚
𝑖=1 |𝑢𝑝𝑖

− 𝑢𝑝𝑖−1
| < 𝜖, 

 where 𝑢𝑝𝑖
 shows the intensity of the image u at the point 𝑝𝑖 . The point 𝑝0 can be at the beginning or end of the 

inpainting path. Without loss of generality, we assume that 𝑝0 is at the beginning of the inpainting path. Let 𝜋𝑗 =

{𝜌1, 𝜌2, . . . , 𝜌𝑘} be inpainting paths including the point 𝑝0 (see Figure 2). Now, we define the path gradient at the 

point 𝑝0 ∈ 𝐷 for the path 𝜌𝑗 by  

 ∇̅𝑢𝜌𝑗
(𝑝0) = ∑𝑚

𝑖=1 |𝑢𝑝𝑖
− 𝑢𝑝𝑖−1

|.  (16) 

 We calculate the path gradient for each path and define:  

 ∇̅𝑢𝜌∗(𝑝) = min
𝜌𝑗

∇̅𝑢𝜌𝑗
(𝑝0).  (17) 

 Now, we set  

 𝑢(𝑝0): =
1

𝑚
∑𝑚

𝑖=1 𝑢(𝑝𝑖), 𝑝𝑖 ∈ 𝜌∗  for  𝑖 = 1, … , 𝑚.  (18) 

  

    

Figure  2:  Pixels including zero values show the domain D and pixels including 50, 100, 150 and 200 marked in 

dark blue, light blue, green and orange respectively, show 4 different paths for 4 pixels in the domain Ω\𝐷. 

   Algorithm 1 inpaints the region 𝐷. Since 𝐷 is a closed and bounded region, it is clear that Algorithm 1 converges. 

   

Algorithm 1 

1 For 𝑖 = 1: 𝑚 do 

2      If 𝑞𝑖 ∈ 𝐷, then 
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3            𝑝0: = 𝑞𝑖 

4            For 𝑗 = 1: 𝑘 do 

5                  Find 𝜋𝑗 = 𝑝1
(𝑗)

, … , 𝑝𝑚
(𝑗)

 such that 𝑝0 ∪ 𝜋𝑗 is an inpainting path 

6                    𝜌𝑗: = 𝑝0 ∪ 𝜋𝑗 

7                 Compute ∇̅𝑢𝜌𝑗
(𝑝0) = ∑𝑚

𝑖=1 |𝑢𝑝𝑖

(𝑗)
− 𝑢𝑝𝑖−1

(𝑗)
| 

8             EndFor  

9              Compute ∇̅𝑢𝜌∗(𝑝0) = min
𝑗

∇̅𝑢𝜌𝑗
(𝑝0) 

10 
              𝑢(𝑝0) =

1

𝑚
∑

𝑚

𝑖=1
𝑢(𝑝𝑗) 

11      EndIf  

12 EndFor 

 

      3.1 The mathematical model of our method  

  In this subsection, we present a mathematical model for our proposed method. According to modified Cahn-

Hilliard equation, our proposed method can be expressed as follows:  

 min
𝑢

𝐽[𝑢] = ∫
𝐷

|∇̅𝑢|𝑑𝑥 +
𝜆

2
∫

Ω\𝐷
|𝑓 − 𝑢|2𝑑𝑥,  (19) 

 where ∇̅ is the continuous form of (16) and 𝜆 is a positive regularization parameter. Therefore, the model can be 

rewritten by  

 min
𝑢

𝐽[𝑢] = ∫
Ω

𝜒Ω|∇̅𝑢|𝑑𝑥 +
𝜆

2
∫

Ω
𝜒Ω\𝐷(𝑥)|𝑓 − 𝑢|2𝑑𝑥,  (20) 

 where the characteristic function 𝜒𝐸(𝑥) on a domain 𝐸 is defined by  

 𝜒𝐸(𝑥) = {
1 𝑥 ∈ 𝐸
0 𝑥 ∉ 𝐸.

 

 The Euler-Lagrange equation for the minimization problem (20) reads:  

 − ∇̅. (
∇̅𝑢

|∇̅𝑢|
) + 𝜆𝜒Ω\𝐷(𝑥)(𝑓 − 𝑢) = 0.  (21) 

 In order to solve (21) by an iterative process, we consider the following PDE problem:  

 
𝜕𝑢

𝜕𝑡
= ∇̅. (

∇̅𝑢

|∇̅𝑢|
) + 𝜆𝜒Ω\𝐷(𝑥)(𝑓 − 𝑢).  (22) 

 To solve numerically (22), let 𝑢𝑛(𝑖, 𝑗) be the value of 𝑢 in pixel (𝑖, 𝑗) at time 𝑛ℎ where ℎ is the time step. By 

forward differences, we have  

𝑢𝑛+1(𝑖, 𝑗) = 𝑢𝑛(𝑖, 𝑗) + ℎ(∇̅. (
∇̅𝑢𝑛(𝑖,𝑗)

|∇̅𝑢𝑛(𝑖,𝑗)|
) + 𝜆𝜒Ω\𝐷(𝑥)(𝑓(𝑖, 𝑗) − 𝑢𝑛(𝑖, 𝑗)),  (23) 

  

 that is an explicit finite difference scheme.   

4  Numerical experiments 

 In this section, we present some numerical examples to show the efficiency of our proposed method.  

 Example 1: For the first example, we consider Figure 3(a) that is a 200 × 200 image of cross in which the 

inpainting region is shown by gray colour. Figure 3(b) denotes the implementation of the numerical scheme (23) 

only by 2 iterations. As is seen, the inpainting region is inpainted well. 
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Figure  3:  The performance of our approach. (a) A damaged image (b) Running the numerical scheme (23) with 

 2 iterations. 

   Let us make a comparison to show how much faster our method is. We compare Figure 3 with a figure "inpainting 

of a cross" in [5]. They represented the model for inpainting based on the modified Cahn-Hilliard equation for 

binary image. It is observed that in spite of Figure 3(a), there exist a blurring case in Figure 4(c). So, we see better 

results in the edges of the image.  

     

Figure  4:  (a) Initial data of cross (inpainting region in gray). (b) Intermediate state at 𝑡 = 300. (c) Steady state 

at 𝑡 = 1000. (Image domain is 128 × 128, stripe width is 20 units, initial gap distance is 50 units).  

    Example 2: Figure 5(a) shows a 200 × 200 image of a double stripe whose inpainting region is cleared by 

gray colour. Figures 5(b-d) show the implementation of the numerical scheme (23) in 5, 10 and 14 iterations, 

respectively. As is seen, the inpainting region is inpainted well.   

   

     

Figure  5:  The performance of our approach on an image. (a) original image and implementation of our 

proposed method in  (b) 5 iterations, (c) 10 iterations and (d) 14 iterations. 
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  As the last example, we compare our method with  [5] on the double strip image (Figure 5(a)). Again we 

observed that our method works well for Figure 5(a).  

     

Figure  6:  (a) Initial data (inpainting region in gray). (b) Intermediate state at 𝑡 = 50. (c) steady state at 𝑡 =

700. (Gap distance is 30 units, Image domain is 128 × 128). 

  Example 3: Figure 7(a) shows a 200 × 200square image which the inpainting region is black square .Figure 

7(b-d) denotes the implementation of the numerical scheme (23) in 5, 8 and 14 iterations, respectively. As is seen, 

the inpainting region is inpainted well.   

  

 
Figure  7:  The performance of our approach on (a) an original image (b) in 5 iterations, (c) 8 iterations and (d) 14 

iterations. 

 Example 4: Figure 8(a) shows a 200 × 200 circle image which inpainting region is black square. Figure 8(b-d) 

denotes the implementation of the numerical scheme (23) in 14, 22 and 29 iterations, respectively. As is seen, 

although the inpainting region is fairly big, the proposed method inpaints well.   

   

 
  Figure  8:  The performance of our approach on (a) an original image (b) in 14 iterations, (c) 22 iterations and 

(d) 29 iterations. 
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