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Abstract: - Chronic gastritis is a prevalent inflammatory condition of the gastric mucosa that, if not properly 

diagnosed, it can progress to ulcers or gastric cancer. Breath analysis using non-invasive electronic nose (e-nose) 

systems has developed as a promising diagnostic approach, detecting volatile organic compounds associated with 

the disease. This paper presents a hybrid Fuzzy Deep Convolutional Neural Network (F-DCNN) framework for 

gastritis prediction from e-nose sensor data. The proposed method integrates pre-processing, feature selection, 

deep convolutional feature extraction, and fuzzy inference to identify individual patterns. Experiments comparing 

SVM, k-NN, ANN, conventional DCNN, and F-DCNN show that F-DCNN achieves superior performance, with 

an accuracy of 96.23% and the highest AUC among all tested classifiers. The proposed F-DCNN algorithm 

achieves efficient processing, ensuring fast execution. These results highlight the potential of hybrid deep-fuzzy 

models in medical diagnostics, offering both high accuracy and interpretability. 

Keywords: Non-invasive, Breath data, Chronic Gastritis, Feature Selection, Machine Learning  

1. Introduction 

Chronic Gastritis, an inflammation of the gastric mucosa, is a prevalent gastrointestinal disorder with global health 

associations. Its causes include Helicobacter pylori infection, chronic use of nonsteroidal anti-inflammatory drugs 

(NSAIDs), extreme alcohol consumption, and autoimmune processes [1]. Symptoms such as epigastric 

discomfort, nausea, and bloating are often non-specific, and in many cases, the condition is asymptomatic until 

complications such as peptic ulcer disease or, in chronic cases, gastric carcinoma arise. Early and accurate 

detection is therefore critical for effective intervention [2]. Upper gastrointestinal endoscopy, combined with 

histopathological examination, remains the traditional method for diagnosing gastritis, offering high diagnostic 

accuracy but it is invasive, and often uncomfortable for patients [3]. Other non-invasive techniques, like stool 

antigen assays, urea breath tests, and serological testing, are either indirect, exclusive to gastritis caused by H. 

pylori, or impacted by recent medication usage. These drawbacks have increased interest in innovative, quick, 

precise, and patient-friendly non-invasive diagnostic techniques [4].  

Exhaled human breath contains a complex mixture of volatile organic compounds (VOCs) rising from metabolic 

processes and microbial activity. In gastric diseases, inflammation and infection can alter VOC composition 

manifesting as changes in compounds such as ammonia, ethanol, and various aldehydes. Electronic nose (e-nose) 

systems, which use arrays of cross-reactive gas sensors, have emerged as a promising technology for detecting 

these VOC patterns [5]. 

Advances in machine learning (ML) provide great approach for understanding high-dimensional sensor data. 

Through pattern recognition, ML algorithms can uncover indirect relationships between VOC profiles and disease 

states, enabling accurate classification even in the presence of biological variability and environmental noise. A 

critical step in this process is feature selection, which includes identifying the most relevant and discriminative 

sensor-derived variables from the often large and noisy dataset. Effective feature selection reduces dimensionality, 

overfitting, and improves model interpretability, thereby enhancing diagnostic performance.Once relevant 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 3 (2025) 

 

842 
 

features are identified, and classification algorithms are applied to assign each sample to a diagnostic category 

such as gastritis or non-gastritis based on learned patterns in the data. Evaluating multiple classifiers allows for 

selecting the approach that offers the best balance of accuracy, sensitivity, and specificity for the task [6]. 

In this work, an existing publicly available e-nose breath dataset to examine the possibility of predicting gastritis 

in a non-invasive manner. In this approach involves three main stages: (1) data pre-processing to enhance signal 

quality and remove noise; (2) feature selection to identify the most relevant features; and (3) classification using 

machine learning algorithms to distinguish between gastritis and non-gastritis.  

2. Related work 

Breath analysis diagnostics have been explored widely for various medical conditions, with research across non-

invasive sensing technologies, feature selection techniques, and machine learning classification models. Previous 

studies have proved that exhaled VOC patterns can serve as reliable biomarkers for diseases such as lung cancer, 

COPD, diabetes, and gastric cancer, using sensor arrays coupled with statistical or machine learning analysis. 

Feature selection methods [7] such as PCA, ReliefF, and LASSO have been shown to enhance model performance 

by reducing dimensionality and improving interpretability, while classifiers like SVM, Random Forest, and 

Gradient Boosting consistently achieve high diagnostic accuracy. Table 1 summarizes representative research 

across these areas, providing a comparative view of their objectives, methodologies, and key findings.  

Table 1. List of Related work 

Author(s) Year Focus Results 

Rangel et al. [8] 2025 H. pylori Breath Test MIR spectroscopic breath test, high accuracy, non-

invasive, point-of-care potential 

Haick et al. [9] 2013 Cancer Detection via 

VOCs 

Nanoparticle e-nose; high sensitivity/specificity for 

stomach cancer 

Wang et al. [10] 2009 Laser Spectroscopy for 

Breath Analysis 

Reviewed laser-based VOC detection; identified 

gastric biomarkers 

Lawal et al. [11] 2017 VOC Analysis Methods Surveyed GC-MS and sensor arrays; disease-specific 

VOC signatures 

De Vries et al. [12] 2015 E-Nose + Spirometry Multimodal integration improved respiratory 

diagnostics 

Mule & Patil [13] 2021 Statistical Methods Preprocessing, feature extraction, ML for breath data; 

improved detection accuracy 

Meister et al. [14] 2021 Audio Feature Ranking Feature selection improved COVID-19 detection by 

17% 

Xia et al. [15] 2022 Audio-Based 

Respiratory Screening 

MFCC and spectral features for respiratory condition 

detection 

Ezzat et al. [16] 2021 Diabetes via Breath 

VOCs 

ReliefF feature selection; >90% classification 

accuracy 

Yang et al. [17] 2022 VOC-Based Diabetes 

Detection 

SVM/KNN classifiers; >90% sensitivity and 

specificity 

Wei et al. [18] 2017 Lung Sound 

Classification 

CNN and SVM; ~86% accuracy 

Alshammari et al. 

[19] 

2023 COVID-19 via E-Nose 

VOCs 

Gradient boosting; ~96% accuracy 

Zhang et al. [20] 2024 Lung Cancer Breath 

Test 

SVM + SMOTE; highest accuracy on chemosensor 

datasets 
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Rahman et al. [21] 2020 CNN-RNN Respiratory 

Classification 

Hybrid deep learning; ~71.8% accuracy 

Li et al. [22] 2024 mmWave Radar Breath 

Rates 

Quadratic SVM; 95% accuracy 

Xu et al. [23] 2013 Gastric Disease VOC 

Differentiation 

Nanomaterial sensors; 89% sensitivity, 90% 

specificity 

Amal et al. [24] 2016 Nanoarray & GC-MS 

Gastric Cancer 

Up to 98% specificity, 97% sensitivity 

Schuermans et al. 

[25] 

2020 E-Nose Gastric Cancer MOS e-nose; 81% sensitivity, 71% specificity 

Amal et al. [26] 2013 Early vs Advanced 

Gastric Cancer 

VOC profiling; 89% sensitivity, 94% specificity 

3. Methodology 

3.1 Pre-processing 

The dataset used in this study was obtained (https://github.com/Chenyif/enose) [27] which contains e-nose 

measurements from two groups: healthy individuals and patients diagnosed with chronic gastritis. Each record 

represented the time-series output of multiple metal-oxide semiconductor (MOS) sensors for a single subject. 

Missing Values: The raw sensor data contained missing readings produced by sensor instability. Missing values 

within short gaps were imputed using linear interpolation between the nearest valid samples. If ta and tb 

represent the timestamps before and after a missing point tm, the imputed value was calculated as: 

x(tm) = x(ta) + 
tm− ta

tb− ta

 . [ x(tb) - x(tb)]         (1) 

Baseline Correction: Electronic nose sensors often exhibit baseline drift due to environmental factors or sensor 

drift. To normalize the signal, the mean pre-exposure value bi of each sensor i was computed and subtracted 

from the corresponding time-series readings: 

xi
′(t) = xi(t) - bi            (2) 

This ensured that all responses were aligned to a common zero reference point, enabling more accurate feature 

comparison. 

Noise Reduction: High-frequency noise rising from sensor electronics and ambient conflicts was minimized 

using a moving average filter. For each time point t, the smoothed value was obtained as: 

x̃(t) = 
1

w
 ∑ x(t − k)w−1

k=0            (3) 

Where w is the smoothing window size.  

Label Encoding: The dataset consisted of two groups healthy subjects and patients with chronic gastritis. These 

categorical class labels were converted into numerical form for machine learning compatibility, with “0” 

representing healthy and “1” representing gastritis cases. This encoding allowed supervised learning algorithms 

to understand the target variable during training and evaluation. 

3.2 Feature Selection 

Feature selection is an essential step in machine learning approach, particularly for high-dimensional sensor data 

such as that produced by electronic noses. The goal is to retain only the most informative and non-redundant 

features, thereby improving classification performance, reducing overfitting, and lowering computational costs. 

https://github.com/Chenyif/enose
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In this study, a hybrid approach was implemented, combining a filter method for statistical preselection with 

Principal Component Analysis (PCA) for variance-based dimensionality reduction. Filter methods, such as 

correlation analysis and mutual information ranking, for exploration because they quickly calculate the statistical 

connection between each feature and the target variable. However, these methods alone may retain redundant 

features or fail to capture latent patterns in the data. Instead, Principal Component Analysis (PCA) is a powerful 

exploitation technique that converts features and concentrating variance into a compact representation. When used 

in isolation, PCA may still embed irrelevant features, reducing interpretability and classifier efficiency. The 

proposed hybrid Filter–PCA approach leverages the strengths of both strategies: the filter stage first explores the 

entire feature set, removing irrelevant and highly correlated variables, while the PCA stage exploits the refined 

subset to produce an optimized, low-dimensional representation. This combination shows that the final feature set 

is both statistically relevant and information-dense, making it particularly effective for non-invasive gastritis 

prediction from breath sensor data. 

3.2.1 Method 1: Filter-Based Feature Selection 

Filter methods rank features according to statistical relevance to the target variable without relying on a specific 

classifier. In this work, two filtering strategies were applied sequentially: 

Correlation Filtering 

In the first stage of the hybrid feature selection process, correlation filtering was applied to detect and remove 

redundant features. The Pearson correlation coefficient was computed between every possible pair of features to 

measure the strength and direction of their linear relationship. If two features were found to be highly correlated 

(∣r∣>0.9), one of them was removed to reduce redundancy in the subsequent modeling stages. This filtering step 

confirmed that only features carrying unique and non-overlapping information were retained for further analysis. 

The Pearson correlation coefficient was calculated using Eq. (4). 

rxy = 
∑ (xi−x ̅n

i=1 )(yi−y )̅̅ ̅̅

√∑ (xi−x)̅̅̅2n
i=1 .√∑ (yi−y)̅̅ ̅2n

i=1

             (4) 

Mutual Information Ranking 

After removing redundant features through correlation filtering, the remaining features were ranked based on their 

statistical dependency with the target variable using Mutual Information (MI). MI quantifies the amount of 

information one variable contains about another, making it suitable for identifying features that are most 

informative for classification. This step prioritizes variables that contribute the most to predicting the class labels. 

The top k features with the highest MI scores were retained for the next stage of dimensionality reduction. Mutual 

Information was calculated using Eq. (5). 

MI(X, Y) = ∑ ∑ p(x, y)y∈Yx∈X log
p(x,y)

p(x)p(y)
           (5) 

3.2.2 Method 2: Principal Component Analysis (PCA) 

Following the filter-based pre-selection of features, PCA algorithm was applied to further reduce dimensionality 

while stabilising the maximum possible change in the data. PCA changes the selected features into a new set of 

principal components, which are ordered allowing to the amount of variance they explain [28]. The covariance 

matrix of the filtered features was first computed, and then its eigenvalues and eigenvectors were obtained. The 

principal components corresponding to the largest eigenvalues were selected such that the cumulative variance 

explained met or exceeded the predefined threshold (𝜏=95%). The covariance matrix was calculated as shown in 

Eq. (6). 

C = 
1

n−1
 XTX            (6) 

The data were then projected onto the selected principal components using Eq. (7). 

Z= X.W             (7) 
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Where X is the mean-centered feature matrix, W is the matrix of selected eigenvectors, and Z is the transformed 

dataset in the reduced feature space. The pseudo code of hybrid feature selection algorithm represent in 

Algorithm 1. 

Algorithm 1: Hybrid Filter–PCA Feature Selection 

Input:   

    X: Feature matrix (n samples × p features)   

    Y: Class labels   

    r_thresh: Correlation threshold  

    k: Number of top features after MI ranking   

    τ: PCA variance retention threshold  

Output:   

    X_PCA: Reduced feature matrix   

Steps:   

1. Stage 1 – Exploration (Filter Selection)   

2. For each feature pair (f_i, f_j) in X:   

3.     Compute Pearson correlation r_ij   

4.     If |r_ij| > r_thresh: Remove one of (f_i, f_j)   

5. For each remaining feature f_i:   

6.     Compute Mutual Information MI(f_i, Y)   

7. Rank features by MI in descending order   

8. Select top k features → X_filtered   

9. Stage 2 – Exploitation (PCA Transformation)   

10. Center X_filtered (zero mean per feature)   

11. Compute covariance matrix C of X_filtered   

12. Compute eigenvalues λ_j and eigenvectors v_j of C   

13. Sort eigenvectors in descending λ_j order   

14. Select m components s.t. (Σ_{j=1}^m λ_j)/(Σ_{j=1}^p λ_j) ≥ τ   

15. Transform: X_PCA = X_filtered × [v_1, v_2, ..., v_m]   

16. Return X_PCA 
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3.3 Classification  

The selected features obtained from pre-processing and feature selection are transform into a Deep Convolutional 

Neural Network (DCNN) designed to extract high-level, discriminative representations from the sensor data. The 

DCNN comprises multiple convolutional layers, each followed by nonlinear activation functions and pooling 

layers, which together capture complex spatial-temporal patterns inherent in the e-nose measurements. The output 

of the DCNN is a set of deep feature activations that summarize the raw input into a more informative feature 

space. To handle the uncertainty and variability present in sensor responses, these deep features are then 

transformed into fuzzy membership degrees across predefined linguistic categories such as Low, Medium, and 

High, using Gaussian membership functions. This fuzzification step allows the system to express the degree to 

which each feature belongs to these fuzzy sets, providing a soft and flexible representation of the data. 

Subsequently, a fuzzy inference system applies a rule base composed of if-then fuzzy rules that relate fuzzified 

features to class labels, combining antecedents with fuzzy logical operators such as minimum or product to 

calculate each rule’s firing strength. The fuzzy outputs from all relevant rules are aggregated for each class and 

then defuzzified using the centroid method to produce crisp membership scores. The final predicted class is 

selected based on the highest defuzzified score, distinguishing between healthy and gastritis cases [29]. The 

DCNN is trained end-to-end via backpropagation to optimize convolutional filters and fully connected weights 

for accurate feature extraction. Concurrently or sequentially, the fuzzy membership functions and inference rules 

are tuned through optimization techniques to maximize classification performance. To enhance model efficiency 

and reduce overfitting, minimal weight quantification methods are employed on the DCNN parameters, which 

involve pruning or discretizing weights to lower precision representations while preserving predictive accuracy. 

This hybrid approach synergizes the powerful feature learning ability of DCNNs with the robust uncertainty 

modeling of fuzzy logic, resulting in an effective classifier for non-invasive gastritis prediction using e-nose data. 

Figure 2 shows the methodology of proposed Fuzzy DCNN classifier. The pseudo code of proposed classifier 

represent in Algorithm 2. 

 

Fig. 1: Proposed F-DCNN Classifier Methodology 
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Algorithm 2: Proposed F-DCNN Classifier  

Input: 

    X_train, Y_train  # Training features and labels (post feature selection) 

    X_test            # Test features 

    fuzzy_params      # Initial fuzzy membership functions and rules 

Output: 

    Y_pred            # Predicted labels for X_test 

 

Algorithm: 

Step 1: Train DCNN  

DCNN_model = initialize_dcnn() 

DCNN_model.train(X_train, Y_train) 

Step 2: Extract features from trained DCNN 

def extract_features(model, X): 

    features = model.get_activations(X, layer='final_layer') 

    return features 

train_features = extract_features(DCNN_model, X_train) 

test_features = extract_features(DCNN_model, X_test) 

Step 3: Fuzzy features 

def fuzzify(features, fuzzy_params): 

    fuzzified = [] 

    for feature_vector in features: 

        fuzzified_vector = [] 

        for i, val in enumerate(feature_vector): 

            memberships = compute_membership(val, fuzzy_params[i]) 

            fuzzified_vector.append(memberships) 

        fuzzified.append(fuzzified_vector) 

    return fuzzified 

train_fuzzy = fuzzify(train_features, fuzzy_params) 

test_fuzzy = fuzzify(test_features, fuzzy_params) 

Step 4: Fuzzy inference and defuzzification 

def fuzzy_inference(fuzzified_vector, fuzzy_rules): 

    rule_outputs = [] 

    for rule in fuzzy_rules: 

        antecedent_degree = evaluate_rule_antecedent(fuzzified_vector, rule) 

        consequent_degree = rule.consequent * antecedent_degree 

        rule_outputs.append(consequent_degree) 

    aggregated = aggregate_rules(rule_outputs) 
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    crisp_score = defuzzify(aggregated) 

    return crisp_score 

Step 5: Predict labels for test data 

Y_pred = [] 

for fuzz_vec in test_fuzzy: 

    scores = fuzzy_inference(fuzz_vec, fuzzy_rules) 

    predicted_label = argmax(scores) 

    Y_pred.append(predicted_label) 

return Y_pred 

 

Table 2 presents the detailed structure of the proposed fuzzy-DCNN architecture designed for non-invasive 

gastritis prediction. The network begins with an input layer that takes the selected features from preprocessing. It 

then passes through a series of convolutional layers with small kernel sizes (3×3), each followed by batch 

normalization and ReLU activation to enhance feature extraction and improve training stability. Max pooling 

layers reduce spatial dimensions, helping to capture hierarchical patterns efficiently. The convolutional blocks are 

followed by fully connected layers that condense the learned features into a compact representation. A dropout 

layer is included to prevent overfitting. The final fully connected layer outputs features that are then fuzzified 

using Gaussian membership functions to model uncertainty. The fuzzified features are processed through a fuzzy 

inference system implementing rule-based logic, and finally, the fuzzy outputs are defuzzified to produce crisp 

class predictions distinguishing healthy individuals from gastritis patients. This layered architecture synergizes 

deep learning’s feature extraction capabilities with fuzzy logic’s handling of uncertainty to improve classification 

accuracy. 

Table 2: Description of DCNN Layers 

Layer 

No. 

Layer Type Output Shape Kernel Size 

/ Units 

Activation Remarks 

1 Input Layer (Input feature 

size) 

– – Input from selected 

features 

2 Convolutional 

Layer 

(…, 64) 3×3 ReLU Feature extraction 

3 Batch 

Normalization 

(…, 64) – – Stabilizes training 

4 Max Pooling 

Layer 

(…, 32) 2×2 – Downsampling 

5 Convolutional 

Layer 

(…, 128) 3×3 ReLU Deeper feature extraction 

6 Batch 

Normalization 

(…, 128) – – – 

7 Max Pooling 

Layer 

(…, 64) 2×2 – – 

8 Fully Connected 

Layer 

256 – ReLU High-level feature 

representation 

9 Dropout 256 – – Prevents overfitting 

10 Fully Connected 

Layer 

Number of fuzzy 

sets (e.g., 3) 

– Linear Features for fuzzification 
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11 Fuzzification 

Module 

(Same as above) – – Membership functions 

applied 

12 Fuzzy Inference 

Layer 

Number of 

classes (2) 

– – Applies fuzzy rules and 

aggregates 

13 Defuzzification 

Layer 

Number of 

classes (2) 

– – Converts fuzzy outputs to 

crisp prediction 

4. Experimental Results  

The pre-processed and selected features e-nose dataset was fed into multiple machine learning classifiers, 

including k-Nearest Neighbors (k-NN), Support Vector Machine (SVM), Artificial Neural Network (ANN), 

standard Deep Convolutional Neural Network (DCNN), and the proposed Fuzzy DCNN approach. Performance 

evaluation was carried out using five key metrics as Accuracy, Precision, Recall, F1-score, and AUC under a 10-

fold cross-validation scheme to ensure robustness and reduce bias in the results. 

The confusion matrix for each classifier was computed to assess their capability for accurate classification of 

healthy and gastritis cases. The comparative diagnostic performance of these classifiers is summarized in Table 

3. 

Table 3: Comparison of Performance Measures  

Classifier 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1-score 

(%) 
AUC 

Support 

Vector 

Machine 

(SVM) 

89.15 87.40 88.23 87.25 89.50 90.25 

k-Nearest 

Neighbors 

(kNN) 

90.23 90.58 91.75 89.89 91.68 90.36 

Artificial 

Neural 

Network 

(ANN) 

91.89 91.36 92.78 91.54 92.36 90.89 

DCNN 93.25 92.36 94.21 93.69 94.56 93.98 

Proposed F-

DCNN 

96.23 95.89 96.47 94.92 96.32 95.98 

 

 

Fig. 2: Performance comparison of the proposed F-DCNN with existing classifiers. 

80

100

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-score (%) AUC

Performance Measures 

Support Vector Machine (SVM) k-Nearest Neighbors (kNN)

Artificial Neural Network (ANN) DCNN

Proposed F-DCNN
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The proposed F-DCNN achieves the highest accuracy, sensitivity, specificity, precision, F1-score, and AUC, 

demonstrating superior robustness and diagnostic capability for non-invasive gastritis prediction. 

 

Fig. 3: Receiver Operating Characteristic (ROC) curve of the proposed F-DCNN model. 

The curve illustrates the trade-off between the True Positive Rate (TPR) and False Positive Rate (FPR) across 

various classification thresholds. The high Area Under the Curve (AUC = 95.98%) indicates the model’s strong 

discriminative capability in distinguishing between healthy subjects and gastritis cases. 

Table 4: Comparative accuracy performance of classifiers before and after feature selection 

Classifier Accuracy (%) Before feature 

Selection   

Accuracy (%) After feature 

Selection   

Support Vector Machine (SVM) 85.05 89.15 

k-Nearest Neighbors (kNN) 86.23 90.23 

Artificial Neural Network (ANN) 87.36 91.89 

DCNN 88.56 93.25 

Proposed F-DCNN 91.08 96.23 
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Fig. 4: Comparative accuracy performance of classifiers before and after feature selection. 

The results show that applying the proposed hybrid feature selection method consistently improves accuracy 

across all models. The improvement is most significant for the proposed F-DCNN, which achieves a 5.14% 

increase, reaching 96.23% accuracy. This enhancement demonstrates the effectiveness of removing redundant 

and irrelevant features, allowing the classifiers to learn more discriminative patterns for accurate gastritis 

prediction 

4.1 Discussion  

The proposed Fuzzy Deep Convolutional Neural Network (F-DCNN) framework integrates the strengths of deep 

hierarchical feature learning with the uncertainty-handling capabilities of fuzzy inference systems to achieve 

accurate and robust non-invasive gastritis prediction using e-nose sensor data. The pre-processing and feature 

selection phases effectively reduce dimensionality and noise, allowing the DCNN to focus on the most informative 

input patterns. This is further enhanced by fuzzifying high-level DCNN features, enabling the model to handle 

variations in sensor responses and patient-specific differences. The proposed F-DCNN framework successfully 

combines deep hierarchical feature learning with fuzzy reasoning to deliver 96.23% accuracy in non-invasive 

gastritis prediction. By integrating feature selection, optimized convolutional layers, and fuzzified decision-

making, the model achieves superior accuracy, AUC, and robustness compared to SVM, k-NN, ANN, and 

standard DCNN. Particularly, the proposed algorithm maintains low processing time. The 4–5% accuracy gain 

after feature selection confirms the importance of pre-processing in enhancing both efficiency and predictive 

power.  

5. Conclusion 

This study proposed a Fuzzy Deep Convolutional Neural Network (F-DCNN) for non-invasive gastritis prediction 

using e-nose breath analysis. By combining deep convolutional feature extraction with fuzzy logic decision-

making, the model effectively captured complex sensor patterns while handling uncertainty in volatile compound 

measurements. Experimental results showed that F-DCNN outperformed conventional classifiers, achieving 

96.23% accuracy. The additions of feature selection significantly increase accuracy. The proposed approach 

shows strong potential as a fast, accurate, and interpretable diagnostic tool for early gastritis detection. Future 

work will focus on developing a prototype model for gastritis prediction, aimed at deployment in clinical settings 
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