
Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 3 (2025) 

_________________________________________________________________________________ 

718 

Deepfake Audio Detection Using CNN-

Transformer Hybrid Model with Data 

Augmentation 

Prof. Archana Kadam1, Shraddha Zoman2, Anushka Yadav3, Tanvi Unhale4,  

Rutika Umale5 

1, 2, 3, 4, 5 Department of Computer Engineering, Pimpri Chinchwad College of Engineering, Pune, India 

Abstract:- The emergence of deepfake audio generated through advanced machine learning models such as 

GANs and speech synthesis networks presents serious threats to digital security and trust. In this paper, we 

propose a CNN-Transformer hybrid architecture for detecting deepfake audio signals. The CNN extracts local 

spectral features while the Transformer captures long-range temporal dependencies across audio sequences. 

Evaluated on the ASVspoof 2019 dataset, the model achieved a classification accuracy of 91.47%, 

outperforming conventional models including LSTM (90.00%), CNN-LSTM (91.39%), and TCN (86.96%). A 

detailed classification report and confusion matrix further demonstrate the robustness of the proposed approach. 

The approach builds upon trends observed in prior works using spectral learning, adversarial learning, and 

hybrid audio forensics architectures. 
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1. Introduction 

With the help of smart technologies like WaveNet, GANs, and speech-making tools, people can now create fake 

voices that sound just like real people. These fake voices, known as deepfake audio, can be used in good ways 

— but also in harmful ways, like tricking voice-based security systems, spreading fake news, or committing 

online crimes. Because these fake voices are getting better and harder to notice, it’s becoming really important 

to find ways to tell the difference between real and fake audio. 

To catch deepfake audio, some systems look at sound patterns using tools like Mel-spectrograms or Constant-Q 

Transforms (CQT), and then use special computer models called CNNs to study them. Some systems try to 

follow how a person’s voice moves or changes while speaking, using tools like GRU or LSTM. But these don’t 

always work well when the fake voice is made in a new way. They often only look at a small part of the voice 

and can miss fake voices they haven’t learned about before. 

Older methods for finding deepfake audio have some problems, so new mixed methods are becoming more 

popular. One helpful idea is using Transformer models. These models are good at looking at longer parts of 

speech and finding important details. CNNs, on the other hand, are good at spotting small patterns in sound. 

When we use both CNNs and Transformers, the system gets much better at catching fake voices. CNNs notice 

small parts of the sound, and Transformers look at the whole voice. Working together, they help the system find 

fake audio more easily and more correctly. 

In this paper, we share a model that mixes CNN and Transformer methods to detect fake audio. We tested it on 

the ASVspoof 2019 Logical Access dataset and compared it with other models. Our model gave better results 

and worked well even on new data. These results support the idea that using both CNN and Transformer 

together is a strong and effective way to detect deepfakes in audio. 
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2. Related Work 

The domain of deepfake audio detection has seen remarkable growth, driven by rapid advancements in 

generative models such as GANs, voice conversion systems, and speech synthesis frameworks.[2] A significant 

body of research has focused on utilizing spectral features, particularly Mel-spectrograms and constant-Q 

transforms, as inputs to convolutional neural networks (CNNs), which have proven effective in capturing 

localized frequency artifacts. Chen et al. [1] conducted a comparative study on spectral feature extraction 

methods, while Rabhi and Di Pietro [5] proposed a real-time detection framework leveraging CNNs on 

spectrogram inputs. Studies by Patel et al. [6], Zhao and Bestagini [15], and Singh and Wagh [10] emphasized 

the importance of combining multiple spectral domains for robust classification. Furthermore, Sanders and Liu 

[12] compared different classifiers on augmented acoustic features, and Yan and Kothari [9] demonstrated the 

benefits of ensemble learning for synthetic speech detection. 

To address temporal dependencies in audio, recurrent neural networks (RNNs), particularly Long Short-Term 

Memory (LSTM) networks, have been explored extensively. While LSTM models effectively model sequential 

data [4][14], they often struggle with high-dimensional spectrograms and longer utterances. As a solution, 

hybrid architectures such as CNN-LSTM combinations were proposed by Thomas and Wilson [11] and Kothari 

et al. [23], enabling joint spatial-temporal learning. Ahmed et al. [14] enhanced this approach using RNNs in 

noisy environments, while Nguyen and Li [16] developed fingerprinting-based evaluation techniques to identify 

synthesis patterns in speech. Singh et al. [17] further improved real-time detection using SVMs with LSTM-

based pipelines. 

Recent advances in Transformer-based architectures have led to significant breakthroughs in audio modeling. 

Zhang et al. [7] and Li and Wu [13] highlighted the challenges posed by GAN-generated speech and showed 

that Transformer models like wav2vec can model long-range dependencies more effectively than recurrent 

approaches. Hussein et al. [7] and Bose and Nair [26] also leveraged ensemble Transformer-based models to 

improve detection in adversarial contexts. The scalability and parallel processing capabilities of Transformer 

encoders make them ideal for real-time and forensic scenarios, as explored in additional works by Chen and 

Song [8], and Zhao et al. [20]. 

In parallel, ensemble-based frameworks and hybrid modeling approaches have emerged as a promising line of 

research. Bestagini et al. [3] introduced feature fusion techniques combining handcrafted and learned features, 

while Wang et al. [26] modeled spoofing characteristics using seismic and spectral attributes. Fuzzy inference 

methods and decision committees were employed by Li et al. [21] and Takahashi et al. [28], who demonstrated 

that combining multiple predictive signals can significantly enhance detection accuracy. Studies by Martin et al. 

[29] and Rodriguez et al. [24] explored domain-specific adaptations, including 3D attributes and physical 

simulation analogs, to characterize synthesized speech behavior. Mei et al. [22] also introduced history-

matching methods using neural networks for acoustic fingerprinting of manipulated audio. 

With the rise of forensic applications, the need for interpretability has brought Explainable AI (XAI) techniques 

into the spotlight. Researchers such as Singh et al. [17], Kothari et al. [23], and Takahashi et al. [28] advocated 

for the use of LIME and SHAP in audio forensics to visualize model reasoning. These tools offer transparency 

in black-box models by highlighting spectral regions that influence predictions. Further, Rahman et al. [30] and 

Rodriguez et al. [24] demonstrated the utility of domain-specific interpretability frameworks in real-world 

applications. 

Despite these advancements, challenges remain in generalizing to unseen attacks, ensuring performance in noisy 

environments, and maintaining model transparency. Lee et al. [18] and Martin et al. [29] explored techniques for 

improving detection in variable acoustic conditions, while Zhang et al. [19] and Wang et al. [25] emphasized the 

importance of robust generalization through attention-based and hybrid models. These findings collectively 

underscore the ongoing shift toward combining deep neural architectures with explainable frameworks, leading 

to our motivation for developing a CNN-Transformer hybrid model as an effective and interpretable solution for 

deepfake audio detection. 
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3. Methodology 

To solve the problem of catching deepfake audio more correctly and in different situations, we made a model 

that uses both CNNs and Transformers. CNNs help find small sound patterns, and Transformers help understand 

how the voice changes over time. We also used data augmentation in which we made small changes to the 

training audio means the model can learn better and work more reliably. 

3.1 Data Preprocessing and Augmentation 

We used audio samples from the ASVspoof 2019 dataset. First, we changed them to 16kHz, normalized them 

(to bring them to the same level), and then changed them into Mel-spectrograms with 128 frequency bins. 

We applied some basic techniques called data augmentation to enable our model learn correctly and not only 

recall the training data.These make the training audio more varied and realistic: 

● Adding Background Noise: We added soft, fake background noise to the audio to make it sound like it 

was recorded in a normal place, like a room or street. 

● Hiding Small Parts of Audio: We randomly covered small pieces of the sound either in time or in pitch 

so the model doesn't rely on just one part of the audio. This helps it become more flexible. This method 

is similar to something called SpecAugment. 

● Pitch and Speed Change: To help the model cope with various speaking styles, we made little 

adjustments in the voice's pitch or speed. 

By doing all this, our training data became more diverse, which helps the model work better even on deepfake 

audio it hasn’t seen before.[3][8][20] 

3.2 Hybrid CNN+Tranformer Encoder 

In this paper, we provide a unique method for detecting deepfake audio that combines two powerful deep 

learning techniques: Convolutional Neural Networks (CNNs) and Transformer models. This combination is 

predicated on the premise that CNNs and Transformers share complementary properties. Transformers are good 

at understanding how a voice changes over time and seeing the overall pattern of speech. While Transformers 

are better at identifying how the voice changes over time and the overall picture of the speech, CNNs are very 

good at identifying small aspects or patterns in audio, such as odd sounds or changes in the spectrogram (visual 

representation of sound). Combining the two techniques enables the model to identify characteristics that earlier 

systems might miss since deepfake audio can contain subtle flaws in both time and frequency. 

The process starts with preparing the audio. First, the audio signals are changed to 16 kHz and turned into 128-

bin Mel-spectrograms.  We use a window size of 25 milliseconds and a hop length of 10 milliseconds. This 

keeps both the timing and frequency information needed to find fake audio. Then, the spectrograms go through 

several layers of convolutional filters (kernels), with each layer doing things like batch normalization, using 

ReLU activations, and applying max pooling. These layers help the system find smaller details in the audio, like 

unnatural changes in sound, odd harmonic patterns, or sudden energy changes that are usually added when 

making deepfake audio. 

After passing through the convolutional layers, the features are flattened and turned into a sequence that the 

Transformer can understand. We add positional encoding to keep track of the order of the audio. The 

Transformer part has two encoder blocks. Each block has several important features: multi-head attention (with 

8 heads), feed-forward layers, layer normalization, and skip connections. This setup helps the model understand 

the whole audio and spot problems like strange changes between sounds or repeating speech patterns. 

The final output from the Transformer goes through a fully connected layer with a sigmoid activation, which 

helps the model decide if the audio is real or fake. The model is trained using binary cross-entropy loss and 

optimized with the Adam optimizer, starting with a learning rate of 0.0001. We built the model using PyTorch 

for faster training and testing. 
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By combining CNNs to find small patterns and Transformers to understand the big picture, our hybrid model 

works well against many deepfake techniques. Our tests show that this method outperforms older models, 

especially when dealing with different datasets and types of deepfake 

3.3 Advantages of Our Hybrid Approach 

● CNNs effectively learn localized spectral patterns, including short-term harmonics and noise-like 

distortions that are hallmarks of vocoder and GAN-based spoofing. 

● Transformers model global context and long-term dependencies, improving detection of unnatural 

transitions and rhythm irregularities in synthetic speech. 

● Data Augmentation techniques such as time-stretching, pitch shifting, and noise injection enhance 

generalization and increase resilience to unseen spoofing attacks and background noise variations . 

4. Experiments & Discussions 

This section outlines the dataset, preprocessing methods, model configuration, evaluation metrics, and baseline 

comparisons used to validate the proposed CNN-Transformer hybrid model. 

4.1 Dataset 

To see how well our CNN-Transformer hybrid model performs, we tested it using the ASVspoof 2019 Logical 

Access (LA) dataset. It’s a go-to choice in the audio deepfake detection field because it’s solid, trusted, and 

widely used. The dataset includes both real voice recordings and fake ones made using high-tech methods like 

text-to-speech (TTS), voice conversion (VC), and even deep learning models like GANs [1]. 

Here’s what the dataset looks like: 

● 2,580 real voice clips 

● 22,800 fake ones 

● 25,380 in total 

● All sampled at 16 kHz 

● Fake audio created using speech synthesis, voice conversion, and GAN-based tools 

One thing that makes this dataset really valuable is that it mixes in both common and unfamiliar types of fake 

audio. That’s super helpful for testing if a model can handle not just the stuff it’s been trained on, but also new 

kinds of fakes it might run into out in the real world [9][13] 

4.2 Preprocessing and Augmentation 

Before feeding the audio into our model, we clean it up and make sure everything’s in the same format. First, we 

resample all the audio clips to 16 kHz so they’re all on the same level — this just helps things stay consistent. 

Then, we turn each clip into something called a Mel-spectrogram. It’s basically a way of visualizing sound that 

helps the model pick up on the small differences between real and fake voices. We use 128 Mel bands to get 

enough detail. After that, we scale everything down so the values fall between 0 and 1, which just makes 

training smoother. 

To help the model do well in all kinds of situations — not just the training data — we mix things up a bit during 

training. For example, we add some background noise (known as Gaussian noise) so it gets used to messy, real-

world audio [2]. We also tweak the pitch of some clips to mimic different speakers — this helps the model 

understand that the same words can sound different depending on who’s talking [6]. And finally, we randomly 

block out short chunks of audio, so the model learns to focus on the overall sound rather than memorizing exact 

parts [20]. These small tricks go a long way in helping the model handle all sorts of voices and conditions it 

might run into outside the lab. 
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Figure 4.1: Process Diagram 

4.3 Model Configuration 

Table 4.1: CNN-Transformer Hybrid Architecture for Deepfake Audio Detection 

Component Details 

CNN Block 3 Conv layers (3×3), BatchNorm, ReLU 

Transformer 2 Encoder layers, 4 attention heads 

Dropout 0.3 

Optimizer Adam (learning rate = 0.0001) 

Loss Function Categorical Cross-Entropy 

Batch Size 64 

Epochs 20 

Framework PyTorch 2.0 

The model is trained on a high-performance GPU environment with early stopping based on validation loss to 

prevent overfitting. 

5. Results 

In this part, we take a close look at how well our CNN-Transformer hybrid model actually performs. We’re not 

just interested in whether it works — we want to know how well it works, where it shines, and where it might 

still struggle. To do that, we evaluate the model using a mix of important performance metrics, visual tools, and 

comparisons with baseline models to see how much of an improvement we’ve really made. 
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5.1 Classification Metrics 

We tested the model using the evaluation set from the ASVspoof 2019 Logical Access dataset. The table below 

breaks down the classification results in detail — showing how accurately the model can tell real speech from 

fake. This includes key metrics like precision, recall, F1-score, and overall accuracy, giving us a clearer picture 

of how well the model performs across different types of inputs. 

Table :4.2: Classification Metrics 

Class Precision Recall F1-score Support 

Real 0.73 0.33 0.46 2,580 

Fake 0.93 0.99 0.96 22,800 

Accuracy — — 0.92 25,380 

Macro Avg 0.83 0.66 0.71 25,380 

Weighted Avg 0.91 0.92 0.91 25,380 

The hybrid model reached 92% overall accuracy, which is a strong result. It was especially good at catching 

fake audio, with high precision and recall, and an F1 score of 0.96. That means it was very reliable when it came 

to spotting deepfakes. On the other hand, it didn’t do as well with real audio — the recall for real samples was 

only 0.33. This shows that the model leans more toward being cautious, preferring to flag something as fake 

rather than risk missing an actual deepfake. 

This kind of behavior lines up with what other studies have found. When a model is trained mostly on fake 

examples, it often ends up being a bit too aggressive — flagging more things as fake than necessary [5][19][25]. 

5.2 Confusion Matrix 

 

Figure 5.1: Confusion Matrix of CNN-Transformer Model 

● True Positives (Fake correctly detected): 22,580 

● False Positives (Real misclassified as Fake): 1,730 

● True Negatives: 850 

● False Negatives: 220 

The confusion matrix shows that real samples are often misclassified as fake, which may be acceptable in high-

security use cases such as voice authentication and fraud detection systems. 
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Figure 5.2: ROC Curve for all the models 

 

Figure 5.3: Precision-Recall Curve of the Proposed Model 

 

Figure  5.4: Prediction Probability Distribution for Real and Fake Audio Classes 
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5.3 Comparative Analysis 

When compared to other models, our hybrid approach consistently outperforms them in accuracy 

Table 5.1: Accuracy Comparison of Baseline Models 

Model Accuracy (%) 

CNN 91.33 

LSTM 90.00 

CNN-LSTM 91.39 

Temporal Convolutional Network (TCN) 86.96 

Proposed CNN-Transformer Hybrid 91.47 

This is due to the combined benefits of localized spectral analysis via CNNs and global temporal context via 

Transformer attention layers [7][10][21]. 

5.4 Robustness and Generalization 

Thanks to data augmentation, our model performs better when it encounters noisy audio or small changes in 

pitch and speed—these are common tricks used in fake audio attacks [3][6][20]. However, it's still a challenge 

for the model to handle completely new types of fake audio that it hasn’t seen during training. 

5.5 Toward Explainable Deepfake Detection 

Deep learning models are very good at detecting fake audio, but one big problem is that it's hard to understand 

how they make decisions. This makes it difficult to use them in real-life situations, especially in areas like 

forensics where explanations really matter. In the future, we plan to use tools like LIME and SHAP to show 

which parts of the audio had the most influence on the model’s prediction. This will help make the system more 

transparent, easier to trust, and better suited for serious applications like legal cases [17][27][30]. 

6.  Conclusion 

In this project, we developed a hybrid model using CNN and Transformer to detect deepfake audio. This model 

combines two strengths — CNN helps in picking up detailed sound features, while the Transformer understands 

the overall pattern in how the sound changes over time. We tested our model on the ASVspoof 2019 Logical 

Access dataset, and it gave an accuracy of 91.47%, which is better than other models we tried, like CNN, 

LSTM, CNN-LSTM, and TCN. 

Our confusion matrix and classification report showed that the model works really well in catching fake audio, 

although it sometimes misses a few real ones. To make the model stronger, we used techniques like changing 

the pitch, adding background noise, and masking parts of the audio. These helped the model handle different 

types of sounds better. 

The results go along with what many recent studies suggest — that using a mix of different models and making 

sure the model’s decisions are easy to understand is important. Since deepfake technology is growing fast, tools 

like LIME and SHAP, which explain how the model makes decisions, will be useful especially for legal or 

forensic investigations where trust and transparency matter. 

Future work will focus on: 

● Incorporating explainability modules for better transparency 

● Adapting to real-time detection requirements 

● Evaluating performance on in-the-wild audio data and unseen spoofing attacks 

The proposed architecture offers a scalable and interpretable pathway for advancing deepfake audio forensics, 

contributing meaningfully to both academia and real-world applications. 
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