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Abstract:- In this paper, we study the characteristics of Ricci-Yamabe solitons in the context of Lorentzian para-
Kenmotsu manifolds with respect to generalized Tanaka-Webster connection. At first, we show that the
concircular curvature tensor C(X,Y)& = 0 does not imply C*(X,Y)& = 0. Next, we show that a Lorentzian
para-Kenmotsu manifold with respect to V* admitting a Ricci-Yamabe soliton is an #-Einstein manifold and we
find the condition for soliton to be shrinking, steady and expanding. we find out if potential vector field V" is collinear
with & then manifold is an x-Einstein manifold. Finally, manifolds satisfying the &-concircular flat and ¢-
concircular semisymmetric conditions have been studied.
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1. Introduction

The study of geometric flows and their soliton structures has played a pivotal role in differential
geometry and theoretical physics, particularly in understanding the evolution of manifolds and their
curvature properties. Among the most influential geometric flows are the Ricci flow and the Yamabe
flow, which have been extensively studied due to their connections with Einstein metrics, conformal
geometry, and general relativity.

The Ricci flow, introduced by Hamilton [1], is defined by the evolution equation:

%9 _ _3Ric(g) (1.1)
— = —2Ric .
ot g

where g is the Riemannian (or pseudo-Riemannian) metric and Ric(g) denotes its Ricci curvature. A Ricci
soliton is a self-similar solution to this flow, satisfying:

1
Ric(g) + ELVg +2g =0, (1.2)

where £y, is the Lie derivative along a vector field V and 4 is a scalar constant. Ricci solitons
generalize Einstein metrics and have been classified in various geometric settings [2,3].

On the other hand, the Yamabe flow, introduced by Hamilton [2], evolves a metric conformally to
achieve constant scalar curvature, governed by:

ag
—~ = —Ryg, 1.3
5t g (1.3)

where R is the scalar curvature. A Yamabe soliton obeys:

(R—Ng+5Lyg =0 (1.4)
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and has been studied in the context of conformal geometry.
A natural generalization arises by considering a combination of these flows, leading to the Ricci-
Yamabe flow [4]:

z—‘z = —2aRic(g) + BRyg, (1.5)

where , § are constants. When this flow admits a soliton solution, we obtain the Ricci- Yamabe
soliton equation:

aRic(g) — (%R — /1) g+ %ng =0. (1.6)

This framework unifies Ricci and Yamabe solitons, providing a richer structure for geometric analysis.

In the context of Lorentzian para-Kenmotsu manifolds, which are pseudo-Riemannian analogues of Kenmotsu
manifolds, the interplay between curvature and soliton structures becomes particularly intriguing. Recent studies
have explored Ricci solitons [6,7] and Yamabe solitons [9] in such settings. However, the investigation of Ricci-
Yamabe solitons under the generalized Tanaka-Webster connection-an extension of the canonical connection in CR-
geometry [8] - remains largely unexplored. n-Ricci solitons on para-Sasakian and para-Kenmotsu manifolds was
studied by Singh, A., & Kishor, S.,[11,12], Conformal Ricci solitons in Lorentzian para-Sasakian manifolds was
studied by Kishor, S. et al [15]. Readers can also see [13, 14, 16].

The paper is structured as follows: First section is Introduction. Second section is Preliminaries, where we give
a brief introduction of Lorentzian para-Kenmotsu manifolds.

We divide the section 3 into four subsections : in subsection 3.1, we obtain the various relationship between
concircular curvature tensor with respect to Levi-Civita connection and with respect to generalized Tanaka-
Webster connection V*. In section 3.2, Ricci-Yamabe solitons in Lorentzian para-Kenmotsu manifold M with
respect to V* have been discussed. Section 3.4 deals with Lorentzian para-Kenmotsu manifold with &-
concircularly flat and @-concircularly semisymmetric conditions. Section 3.4 is devoted to the study of
C*(§,X) - Ric* = 0 condition.

2. Preliminaries

Let M be an n-dimensional smooth manifold equipped with a Lorentzian metric g. A Lorentzian
para-Kenmotsu manifold (M, @, %,m, g) is a Lorentzian almost paracontact manifold satisfying the
following conditions:

P’ =1+NQ% (2.1)

n@® =-1, (2.2)
9(@X,0Y) = g(X,Y) + n(X)n(Y), (2.3)
0% = 0,n(eX) =0, (2.4)
9(X,8) =m0, (2.5)

dX,Y) = d(Y,X) = g(@X,Y), (2.6)

for all vector fields X,Y € X(M), where ¢ is a (1,1)-tensor field, & is the Reeb vector field, and n
is the associated 1-form.
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The Lorentzian para-Kenmotsu condition is characterized by the properties:
(Vx@)Y = —g(eX,Y)E —n(V) X, (2.7)

Vx§ = —X —nX)§, (2.8)

where V is the Levi-Civita connection of the metric g. Furthermore, on a Lorentzian para-Kenmotsu
manifold M, the following relation hold:

(Vxn)Y = —g(X,Y) —n(X)n(Y), (2.9)

Furthermore, on a Lorentzian para-Kenmotsu manifold M, the following results hold:

gRX,Y)Z,8) = g(¥,ZnX) — g(X, Z)n(Y), (2.10)
3. RE XY = g(X,Y)T —n(¥)X,
RX,Y)E=n(N)X —nX)Y, (2.12)
SX,8) = (n— DnX), (2.13)
QE=(n— 1), (2.14)
Ric(@X, @Y) = Ric(X,Y) + (n — n(X)n(Y), (2.15)

The generalized Tanaka-Webster connection V* on a Lorentzian para-Kenmotsu manifold is defined by

[5]:
VxY = Vy¥ —n(¥) Vg + (V) (V)E —n(X) oY, (2.16)
for all vector fields X,Y € X(M).

Using (2.8) and (2.9) in (2.16), we get

Vi¥ = Vi — g(X, Y)E+n(¥)X — n(X)eY. (2.17)

If the Riemann curvature tensor, Ricci tensor, scalar curvature and Ricci operator with respect to the
generalized Tanaka-Webster connection is denoted by R*, Ric*, R* and Q* respectively. Then from [10],
we have

Vy§ = —2X — 2n(X)§, (2.18)
R*(X,Y)Z =R(X,Y)Z +3g(Y,Z)X — 3g(X,2)Y + 2n(X)g (Y, Z)E

—2n(V)g (X, 2)§ — 2n(X)n(2)Y + 2n(Y)n(2)X

—2nOn2) @Y + 2n(Y)IN(2) X, (2.19)
R*X,Y)E=2n(Y)X — 2n(X)Y + 2n(X) Y — 2n(YV) X, (2.20)
Ric*(X,Y) = Ric(X,Y) + 3n —5)g(X,¥) + 2n + 2y — HnX)n(Y), (2.21)
Where ¢ = trace (o).
Q"X = QX + (3n — 5)X + 2n + 2y — HnX)E, (2.22)
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R*=R+Bn-4)(n-1) - 2y.

1.1  Definition

A manifold M is called an n-Einstein manifold if its Ricci tensor Ric can be expressed as

Ric(X,Y) =pg(X,Y) + qn(X)n(Y),

where p and q are scalar functions on M. In particular, if @ = 0, then (2.24) represents an Einstein

manifold.
Now, putting X =Y = £ in (2.24) and using (2.13), we get
p—q=Mn-1)
Contracting (2.24) along X and Y, we get
pn—q=R

From (2.25) and (2.26), we get p = ﬁ —1landqg = L _n

n—1

Thus (2.24) becomes

Ric(X,Y) = (n}% - 1) gx,Y) + (% - n) nCOn(Y)

From (2.26), we have
T r
Differentiating (2.28) covariantly with respect to Y, we have

Y(r) (

(W QX = —= (X +1(0 9 = (=5 =) (g, N+ 2nNW) §+1(N 1)

n—1

By contracting (2.29) over Y, we get

n-3
2(n-1)

X(r) = = X)) + (a(n - 1) = HIn(0).
Putting X = £ in (2.30), we get

§r) =2(r —n(n-1)).
Using (2.31) into (2.30), we get

X(r)= —Z(T —n(n— 1))n(X).
4. Main Results

3.1 Concircular Curvature Tensor in M with respect to V*

Concircular curvature tensor C on a Lorentzian para-Kenmotsu manifold M is defined by

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)
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R

CHNZ=RK,VZ ~

[g(Y,2)X — g(X,2)Y], (3.1

ForallX,Y,Z € X(M).

Now , the concircular curvature tensor with respect to the generalized Tanaka-Webster connection is given by
R*

C'K,VZ=RKVZ =gV, D)X — g(X,2)Y], (3.2)
ForallX,Y,Z € X(M).
Taking the inner product of (3.2) with W, we have
XY, ZW) =R (XY, ZW) - ——[g(¥,2)g(X,W) — g(X,Z)g(Y, W)], (3.3)

n(n-1)
where C*(X, Y, Z, W) = g(C*(X, Y)Z, W) and R*(X, Y, Z, W) = g(R*(X, Y)Z, W).

Now, interchanging X and Y in (3.3), we get
Rt

C*(Y,X,Z,W) = R*(Y,X,Z,W) — vy [eX, 2)g(Y, W) — g(Y,Z)g(X, W)]. (3.4)
Adding (3.3) and (3.4), we get
C'XY,ZW)+C*(V,X,ZW) =R XY, ZW) + R*(Y,X,Z, W). 3.5)

From (2.19), it is clear that R*(X,Y,Z, W) + R*(Y,X,Z, W) = 0.

Hence, ¢*(X,Y,Z,W) + C*(Y,X,Z,W) = 0.
Now, interchanging Zand Win (3.3), we have

*

Adding (3.3) and (3.6), we get
C'XY,ZW) +C* XY W,Z) =R XY, ZW) + R*X,Y,W,Z). 3.7)

From (2.19), we have
R*XY,Z,W) + R*(X,Y,W,Z) = -2nXn (D) g(eY, W) + 2n(Y)n(Z)g(eX, W)
—2nXOMW)g(oY, Z) + 2n(Y)n(W)g(eX, Z). (3.8)
So, it is clear from (3.7) and (3.8) C*(X, Y, Z, W) + C*(X,Y, W, Z) # 0.

Since,
C*(Z,W,X,Y) = R"(Z,W,X,Y) — - (:il) [e(W,X)g(Z,Y) — g(Z, X)g(W, V)]. (3.9)
Subtracting (3.9) from (3.3), we have
C'XY,Z,W)-C"(ZWXY)=R"XY,ZW) -R*(ZW,X,Y) (3.10)
From (2.19), we have
R'(X,Y,Z,W) = R*(Z,W,X,Y) = 2n(V)n(2)g(eX, W) — 2n(Xn(W)g(eY, 2). (3.11)

So, it is clear from (3.10) that C* (X, Y, Z, W) # C*(Z, W, X, Y).
Then, following can be stated :

Theorem 1 : In an n-dimensional Lorentzian para-Kenmotsu manifold M admitting generalized Tanaka-Webster
connection, the following relations hold :

c*(X,Y,Z,W) = —C*(Y,X,Z, W)
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C*(X,Y,Z,W) # C*(X,Y,W,Z)
C*(X,Y,Z,W) # C*(Z,W,X,Y)
forany X, Y,Z, W € X(M).

Next, we study the equivalence of &-concircularly flatness with respect to V and V*.
Using (2.19), (2.23) into (3.2), we have

C* (X, V)Z = C(X,V)Z + 3g(Y, L)X — 3g(X, 2)Y + 2n(X)g(Y, 2)§ — 2n(Vg(X, 2)§ — 20X (@)Y +
2n(YM(DX = 2nXn(Z)eY +

(3n—4)(n-1)-2¥]

2n(NN@) X — EBED A g(y, )X - g(X, Z)Y]. (3.12)
Putting Z = § into (3.12), we get
4 A Y
CHNE= CENE- (21 = 235 X =GN + 2aeY —nMeX)  (313)

Then, we have the following result:
Theorem 2 : In a Lorentzian para-Kenmotsu manifold M, &- concircular flatness with respect to the Levi-Civita connection

does not imply the concircular flatness with respect to generalized Tanaka-Webster connection.
Corollary 1: In a Lorentzian para-Kenmotsu manifold &-concircular flatness with respect to V
And V*are equivalent, if X, Y are orthogonal to &.
3.2 Ricci-Yamabe solitons in M with V*
Let the metric of M with respect to V* be Ricci-Yamabe soliton, then from (1.6), we have

Lye)XY) + 2aRic* X, Y) + A — BR)gX,Y) =0, (3.14)
forany X, Y € X(M).
Now, from the definition of Lie derivative, we have

Ly (X, Y) = g(ViV,Y) + g(X, VV). (3.15)

Using (2.17) in (3.15), we have

LyPX, V) = Lyg)X,Y) — gX,V)n¥) — g(¥,VIn(X)
—NnX)g(eV,Y) —n(Y)gX,oV) + 2n(V)g(X,Y). (3.16)

Now, using (2.21}, (2.23) and (3.16) into (3.14), we have
Ly X, Y) —gX, V) — g, V)nX) —nX)g(eV,Y) —n(V)gX, ¢V) + 2n(V)g(X,Y)
+ 2 <(% - 1) g Y) + (% _ n> n(X)n(Y)) +2a(3n — 5)g (X, Y)
+ 2a(2n + 2¥ — 4)m(X)n(Y)
+[2A—=B(R + Bn—4)(n—1) —2¥)]gX,¥) =0 (3.17)
Putting X = Y = € into (3.17), we have
(Lyg) (8 —4an+ 4a+4a¥ — 22+ BR+B(Bn—4)(n — 1) — 2B¥ = 0. (3.18)

The aftermath of the Lie derivative of g(§,§) = —1 is
(Lyg)(E ) = —2n(Ly?), (3.19)
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relations (3.18) and (3.19) infer
2n(Lye) =4a(14+¥Y—-—n)—-2A+BR+Bn—-4)(n—-1) — 2¥]. (3.20)
Thus, we have the following result:

Theorem 3 : Let a Lorentzian para-Kenmotsu manifold with V* admits Ricci-Yamabe soliton then £y,€ is orthogonal to &
if
A= 2a(1+Lp—n)+§[R+(3n—4)(n—1)—2\y]. (3.21)
Now, let us assume V' = & in (3.14), we have
(L:g)(X,Y) + 2aRic*(X,Y) + (21 — BR)g(X,Y) = 0. (3.22)
From (2.18), we have
(L:9)X, V) = g(Vi&, V) + g(X, Vi X) = —4g (X, ¥) — an(On (). (323)
Using (3.23) into (3.22), we have

(2A— BR* — 4)

Ric*(X,Y) = — o

gX,Y) + én(X)n(Y), a#0, (3.24)

which shows that manifold M is an n-Einstein manifold.
Putting X =Y = §in (3.24), we get

BR
A= 20((1+‘P—n)+7. (3.25)

Thus, using (3.24) and (3.25), we can state the following:

Theorem 4 : Let the Lorentzian para-Kenmotsu manifold M with respect to V* admits Ricci-Yamabe soliton then M is
an 1-Einstein manifold and soliton constant A is given by

A=2a(1+Y¥ —n) +B§*.
Now, we can have the following corollary:

Corollary 2 : Let M admits a Ricci-Yamabe soliton then soliton is expanding,steady an shrinking according as R* >

4a(11[-3l{’—n) ’ R = — 4a(11[-3‘{’—n) and R* < — 40(1+¥Y-n)

respectively.
Now, Let us assume that M admits a Riccci-Yamabe soliton where the potential vector field V
is pointwise collinear i.e. V = b, with b being a function on M. Then from (3.14), we have
&Xbm(Y) + Ybn(X) + bg(VxEY) + bg(X,V3E) + 2aRic* (X, Y)
+(2A—-BRYHgX,Y) = 0. (3.26)
Using (2.18) in (3.26), we get
Xbn(Y) + Yb)n(X) — 4bg(X,Y) — 4bn(X)n(Y) + 2aRic*(X,Y)
+(21—-BR")g(X,Y) =0. (3.27)
Putting Y = € in (3.27) and using (2.21), we get
—(Xb) + EbM(X) + 2a(2n — 2¥ — 2)n(X) + 2A — BR*IN(X) = 0. (3.28)
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Putting X = §, into (3.28), we get
(&) = —a(2n — 2W — 2) + (B% -1). (3.29)

Using the relation (3.29) into (3.28), we have

*

BR
(Xb) = 2a(n — ¥ — Dn(X) + (x - T) n(x) (3.30)

Relation (3.30), infers
BR*
db = [za(n—\p—1)+x—7]n (331)

Applying d on both sides of (3.31), we get

R*
[Za(n—‘{’—l) ”‘BT] dn=0 (3.32)
Since, dn # 0, so from (3.32), we get
PR
AzT—Za(n—‘P— 1). (3.33)

Using the value of A from (3.33) into (3.31), we get db = 0, which shows that b is constant. Therefore, from (3.27), we
get

Ric*(X,Y) = 2—10( (4b — 21+ BROG(X, Y) + %n(X)n(Y), a#0 (3.34)

Thus, we have the following result:

Theorem 5 : Let a Lorentzian para-Kenmotsu manifold M admits a Ricci-Yamabe soliton such that potential vector
field V is collinear with & then manifold is an n-Einstein manifold.

3.3 M with &-Concircularly Flat and @-Concircularly Semisymmetric conditions
Let us assume that the Lorentzian para-Kenmotsu manifold M with respect to V*

is &-Concircularly flat. Then from (3.2), we have

*

R

R*(X,Y)§ = ) M(MX —nX)Y]. (3.35)

Using (2.20) into (3.35), we have

MeX —nX)eY)
MX —nOY) [

R*=2n(n-1) [1 - (3.36)

Thus, we have the following result:

Theorem 6 : Let M be an n-dimensional Lorentzian para-Kenmotsu manifold equipped with the generalized Tanaka-
Webster connection V*. If there exists vector fields X, Y € X(M) such thatn(Y)X —n(X)Y # 0, then the scalar
curvature R* of V* is given by

M@)eX —m(X)eY)
MX —mX)Y) |

R*=2n(n—1) [1—
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Now, let us consider a Lorentzian para-Kenmotsu manifold M with respect to the generalized Tanaka-Webster connection
V* is @-concircularly semi-symmetric, i.e.

C*-¢@=0. (3.37)
From (3.37), we have
C'X,Y)oZ —pC*(X,Y)Z = 0. (3.38)
From (3.2), we have
R*
C' X, Y)oZ =R (X,Y)pZ — = 1) lg(Y, 02)X — g(X, Z)Y] (3.39)
And,
eC*(X,Y)Z = oR*(X,Y)Z —m[g(y; )X — g(X,Z)Y]. (3.40)

Using (3.39), (3.40) into (3.38), we have

R X, Y)QZ — oR*(X,Y)Z — R*l) lg(Y, 02)X — g(X,Z2)Y — g(Y,Z)oX + g(X,Z)eY] =0  (3.41)

n(n-—
Putting Z = § into (3.41) and using (2.1), (2.2), (2.4), we have

MX)Y —n()X)
XY —n()eX)|’

R*=2n(n-1)|1- (3.42)

providedn(X) @Y —n(Y)@X # 0.
Hence, we have the following result:

Theorem 7 : Let M be an n-dimensional Lorentzian para-Kenmotsu manifold equipped with the generalized Tanaka-
Webster connection V*. If there exists vector fields X, Y € X(M) such thatn(X) @Y —n(Y)@X # 0 then the scalar
curvature R*of V* is given by relation (3.42).

3.4 M satisfying C* (£, X) - Ric* = 0

Let the n-dimensional Lorentzian para-Kenmotsu manifold M associated with generalized Tanaka-Webster connection
V* satisfies the relation

C*'(,X) - Ric*=0. (3.43)

From (3.43), we have
Ric*(C*(§, X)Y,Z) + Ric*(Y,C*(§,X)Z) = 0. (3.44)

From (3.2), we have
R*

C'EY)Z=R"(E Y)Z—m{g(Y,Z)E—n(Z)Y}. (3.45)

From (2.19), we have
R*EY)Z =2g9(Y,2)E—2n(2)Y + 2n(2) Y. (3.46)

Using (3.46) into (3.45), we have
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*

€' X)Y = 2g(X,)§— ()X + (V)X —

2= D) WEE—n(X}. (3.47)

Using (3.47) into (3.44), we have

29(X,V)Ric* (£ Z) — 2n(Y)Ric* (X, Z) + 2n(Y)Ric* (¢X,Z) — %g(& Y)Ric* (%, Z)

n(
+ %n(Y)Ric*(X. Z) + 29(X, Z)Ric*(Y,¥) — 2n(Z)Ric*(X,Y) + 2n(2)Ric* (¢X,Y)
R* *

Using (2.21) into (3.48), we get

22n —-2¥ - 2)g(X,Y)n(Z) — 2n(V)Ric* (X, Z) + 2n(Y){Ric(@X,Z) + 3n — 5)g(@X,Z)}
+2(2n —2¥ - 2)g(X,Z(Y) — 2n(2)Ric*(X,Y) + 2n(Z){Ric(¢X,Y)
+ (Bn—5)g(¢X,Y)}

* *

Taking Z = & into (3.49) and using (2.4), we have
. 2n(n—1)
Ric*(X,Y)=(02n—-2¥ -2)g(X,Y) — R = {S(eX,Y) + (3n —5)g(pX,Y)}. (3.50)

2n(n—1)
Thus, we can state the following:

Theorem 8 : If a n-dimesional Lorentzian para-Kenmotsu manifold admitting generalized Tanaka-Webster connection
satisfies the condition C*(§, X) - Ric* = 0. Then Ricci tensor is given by relation (3.50).
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