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Abstract: 

With deepfakes becoming more convincing and widespread, it is getting harder to tell what’s real and what’s 

fake in digital media. This paper introduces a practical framework designed to spot deepfakes and synthetic 

visuals—whether they’re images or videos. The approach blends different techniques: we look at subtle 

biometric signals like heartbeat rhythms through photoplethysmography (PPG), and we use deep learning 

models such as CNNs and LSTMs to track patterns over time. By combining these elements, the system 

becomes better at catching even well-made fakes. Our results show improved accuracy and better resistance to 

manipulation compared to traditional methods. This makes the framework useful for verifying media, 

supporting online safety, and helping digital forensics teams deal with the growing threat of fake content. 
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1. Introduction 

Piracy In our fast-paced digital age, where media is evolving at lightning speed and artificial intelligence is 

woven into nearly every tech facet, it’s becoming trickier to determine if the content we encounter is authentic. 

One of the most alarming developments in this arena is deepfakes technology. Deepfakes leverage sophisticated 

AI algorithms to produce strikingly realistic yet entirely fabricated videos, images, and audio.  

These can range from minor tweaks in facial expressions to entirely invented individuals who never existed. The 

widespread availability of deepfakes tools and their increasing realism present serious risks. 

They can fuel misinformation, invade privacy, and even jeopardize political systems and cybersecurity. The 

misuse of synthetic media is a pressing issue, making the creation of effective detection systems more crucial 

than ever. Deepfakes have been employed to slander individuals, spread misleading information, and even affect 

political campaigns [2].  

Moreover, with the sophistication of deepfakes techniques driven by advances in deep learning, even individuals 

with malicious intent can now easily produce highly realistic manipulated content [1]. 

To tackle this challenge, researchers are blending digital forensics with AI techniques to identify signs of 

manipulation. However, as deepfakes creation methods advance, traditional detection tools often lag behind. For 

example, biometric image modifications through deepfakes technology are posing significant threats to personal 

privacy and national security [3]. 

In light of this, our study introduces a fresh approach that merges physiological data with computational 

methods to enhance the accuracy and reliability of deepfakes detection. A pivotal aspect of our method involves 

Photoplethysmography (PPG)—a medical technique that tracks changes in blood volume through the skin. 
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While it may seem unrelated to video analysis, deepfakes videos frequently struggle to replicate these subtle 

physiological signals, such as pulse-related color shifts in a person's face.By combining PPG signals with 

cutting-edge deep learning models—specifically Convolutional Neural Networks (CNNs) for detecting spatial 

patterns and Long Short-Term Memory (LSTM) networks for monitoring changes over time—our framework is 

crafted to catch even the faintest signs of manipulation [1][4]. Existing approaches have explored integrating 

CNNs, RNNs, and transfer learning to extract critical features and enhance detection capabilities in deepfakes 

videos [4]. Our proposed system pinpoints both visual and physiological discrepancies, aiding in the 

differentiation between genuine content and fakes. 

This research aspires to bolster the ongoing battle against deepfakes technology and its implications, 

contributing to a more secure and trustworthy digital ecosystem by leveraging advanced neural network models 

and physiological signal analysis. 

2. Background 

The evolution of artificial intelligence (AI) has significantly transformed multimedia content creation, enabling 

the rise of deepfakes technology. Deepfakes are synthetic media where faces, voices, or entire visuals are 

manipulated using AI algorithms to appear authentic. Originally, s were generated using convolutional neural 

networks (CNNs) and long short-term memory (LSTM) networks, which helped in extracting both spatial and 

temporal features from videos [1]. This combination allowed models to capture intricate patterns and detect 

subtle inconsistencies in manipulated content.Further advancements introduced adversarial training techniques 

that strengthened deepfakes detection models by exposing them to challenging, manipulated examples during 

training [2]. Despite these efforts, the increasing sophistication of deepfakes generation tools continues to pose 

challenges, especially in detecting manipulations involving biometric images, which have significant privacy 

and security implications [3]. Biometric deepfakes not only deceive the eye but also threaten the integrity of 

identity verification systems. 

Another significant contribution to this field came from the integration of ResNet50 architectures and LSTM 

models, which improved the accuracy of detection by combining powerful image feature extraction with time-

sequence analysis [4]. Audio deepfakes also emerged as a parallel threat, with studies showing that analyzing 

voiced and unvoiced regions of speech can effectively distinguish between genuine and synthetic audio. 

Specifically, unvoiced speech components like fricatives and stops have been identified as crucial in detecting 

spoofed audio signals [5]. 

Artificial intelligence has further enabled deepfakes tools to become accessible and user-friendly, making it 

possible for even non-experts to create convincing manipulated videos [6]. As a result, the trustworthiness of 

online media has been severely impacted, as deepfakes now extend across photos, audio, and videos with far-

reaching consequences for public discourse and national security.Various face manipulation tools, such as 

Faceswap and Deepfakes Web, have simplified the creation of fake content, leading to the development of more 

robust detection methods that leverage eye blink patterns, head movements, and facial symmetry [7]. 

Researchers have also emphasized the importance of model attribution—determining which specific deepfakes 

generation model was used—since this can support forensic investigations by tracing the source of manipulated 

media. Spatial and temporal attention-based methods have been developed to address this challenge and 

differentiate between deepfakes [8].Recent detection frameworks have shifted towards multi-attention-based 

networks, focusing on fine-grained classification rather than simple binary detection. These models employ 

multiple attention heads to capture subtle, local artifacts across different face regions, enhancing the network’s 

ability to detect realistic forgeries that might otherwise go unnoticed [9]. By emphasizing textural and semantic 

feature combinations, these approaches have achieved superior performance compared to traditional 

classifiers.Beyond detection, there is growing interest in reconstructing the source images from deepfakes 

media, which can provide deeper forensic insights. Techniques using Vector Quantized Generative Adversarial 

Networks (VQGANs), CNNs, and Vision Transformers (ViTs) have been proposed to reverse-engineer 

deepfakes images, aiming to identify the original source material from the manipulated content [10]. This 

advancement shifts the focus from mere detection to understanding the origins and manipulation pathways of 
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deepfakes media. 

3. Surveyofexistingwork 

Niranjani V et al. [1] present a multi-modal deepfakes detection system combining CNNs, LSTMs, and 

photoplethysmography (PPG) signals. By fusing visual and physiological features, they improve accuracy and 

resilience against adversarial attacks. 

Sahithi Bommareddy et al. [2] design a CNN-based deepfakes detection pipeline that integrates adversarial 

training. Leveraging pre-trained feature extractors and transfer learning, they achieve strong performance across 

multiple datasets and suggest this setup is especially robust for cross-manipulation detection. 

Valery Dudykevych et al. [3] propose a neural network framework to classify biometric image forgeries. Their 

architecture identifies subtle face-swapping artifacts and outlines a structured approach that incorporates 

sensitivity, specificity, and Youden's index to optimize detection thresholds. 

Nandinee L. Mudegol et al. [4] explore deepfakes detection by combining ResNet50 feature extraction with 

LSTM temporal modeling. Experimental results highlight the effectiveness of leveraging pre-trained ResNet 

architectures alongside temporal sequence learning to recognize manipulated video clips. 

Ganesh Sivaraman et al. [5] investigate the role of voiced and unvoiced speech segments in detecting audio 

deepfakes. They show that unvoiced regions contribute distinctive features that help separate synthetic speech 

from genuine recordings, improving the model’s detection accuracy. 

Moaiad Ahmed Khder et al. [6] focus on reconstructing source images from deepfakes face swaps. Their 

VQGAN-based pipeline estimates latent embeddings of manipulated images and regenerates the original face(s), 

assisting forensic investigators in tracing the source of the fake. 

Oleh Pitsun et al. [7] provide a broad survey of deepfakes datasets and detection tools. They highlight state-of-

the-art datasets like DFDC and FaceForensics++ and review popular algorithms like XceptionNet and Intel’s 

FakeCatcher, emphasizing the need for diverse training data. 

Shan Jia et al. [8] propose DMA-STA, a spatial-temporal attention model that attributes deepfakes videos to 

their generative architecture. By learning distinctive visual signatures left by different GANs, their method 

achieves over 70% attribution accuracy. 

Hanqing Zhao et al. [9] advocate for a fine-grained multi-attentional approach to deepfakes detection. They 

incorporate bilinear attention pooling to zoom into local facial inconsistencies, outperforming conventional 

binary classifiers across multiple benchmarks. 

Syeda Jannatul Naim et al. [10] present a novel VQGAN-based deepfakes source reconstruction framework. 

Given a manipulated image, they recover the latent representation of the original faces and decode these into 

realistic source images to support forensic analyses. 

4. ProposedModel 

 

 

 

 

 

 

 

Figure 1: Multi-modal deepfakes detection framework 
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Figure 1 illustrates our proposed multi-modal deepfakes detection framework, which integrates biometric, 

spatial, and temporal analyses to recognize manipulated videos with high accuracy. The system begins by 

processing the input video, breaking it into frames, and enhancing the faces for clarity and consistency. This 

preprocessing step enables the extraction of subtle physiological variations — such as skin tone fluctuations due 

to heartbeat (PPG) — which are typically missing in deepfakes videos. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Implementation Workflow -Multi-Modal Deepfakes Detection Pipeline 

Our architecture then applies a two-stage deep learning process. First, a convolutional neural network (CNN) 

examines each frame individually to capture detailed facial characteristics, including skin texture and micro-

expressions. Next, a long short-term memory (LSTM) network evaluates the sequence of frames to identify 

irregular face movements, blinking patterns, or lip-syncing errors over time. Finally, the system fuses these 

temporal and biological signals with the CNN-derived visual features to classify the video as real or fake. By 

combining both fine-grained, frame-level details and longer-term temporal patterns, our framework provides a 

robust, holistic solution for deepfakes detection. 

5.Implementation 

Figure 2 outlines the implementation workflow of our multi-modal deepfakes detection pipeline, which is 

designed to achieve high accuracy and resilience against manipulated video content. The process begins when a 

user uploads a video, which is immediately examined to verify that both the face and the overall visuals appear 

authentic. The video is then split into individual frames for detailed analysis. 

Next, the system extracts two types of features from the data. First, a convolutional neural network (CNN) 

processes each frame, focusing on fine-grained visual details such as facial structure, skin texture, and subtle 

facial expressions. Simultaneously, a long short-term memory (LSTM) network observes how the face moves 

across consecutive frames, capturing unnatural dynamics like irregular blinking or lip movements that do not 

align properly with speech. 
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Additionally, the system checks for a physiological signal — the photoplethysmography (PPG) signal — by 

detecting minor color variations in the skin caused by the heartbeat. Since deepfakes videos rarely preserve 

these natural variations, the absence of a PPG signal becomes a strong indicator of tampered media. 

Finally, the system combines all extracted features — including spatial information, temporal motion, and 

biological signals — into a single dataset. A classification model then evaluates this aggregated data to produce 

a confidence score indicating the likelihood that the video is genuine or fake. 

To ensure the system’s real-world effectiveness, we validate its performance against the FaceForensics++ 

benchmark. This standard dataset tests the model under various conditions, including compression artifacts, 

noise, and different deepfakes generation techniques, ensuring that the proposed pipeline is both robust and 

broadly applicable. 

6. OutcomeandComparisonoftheProposed Work 

Our proposed multi-modal deepfakes detection pipeline was designed to leverage a rich set of visual, temporal, 

and physiological features to recognize manipulated media more accurately and reliably. To assess its 

effectiveness, we compared our system against the state-of-the-art techniques introduced across the surveyed 

papers, focusing on key aspects like accuracy, resilience, and generalizability. 

 Compared to Niranjani et al. [1], who integrated CNN-LSTM with photoplethysmography (PPG) for 

multi-modal detection, our method matches the benefit of combining visual and biological cues but further 

enhances temporal sensitivity by utilizing an optimized LSTM module. This yielded better resilience against 

adversarial examples and higher accuracy on unseen datasets. 

When contrasted with Sahithi Bommareddy et al. [2]’s CNN-based adversarial training approach, our pipeline 

showed a notable improvement in generalization. Our additional temporal sequence modeling and PPG 

extraction enabled us to reduce misclassifications on manipulated videos compressed at different quality 

levels.Compared to the image-only systems like Valery Dudykevych et al. [3], which relied solely on CNN 

feature extraction, our work achieved higher detection rates by incorporating temporal face movement analysis, 

a key feature highlighted by Nandinee L. Mudegol et al. [4] as crucial for spotting subtle manipulations. 

In contrast to the work of Ganesh Sivaraman et al. [5], which concentrated on analyzing unvoiced segments in 

speech to detect audio-based deepfakes, our approach draws from the broader insight that biological signals—

whether audio or visual—play a key role in identifying manipulated content. While their research highlighted 

how inconsistencies in natural speech patterns, such as the lack of expected pauses or irregularities in breathing 

sounds, can signal tampering, we extended this concept into the visual space. Specifically, we leveraged 

photoplethysmography (PPG) to extract subtle physiological cues—like pulse and skin color variation—that are 

typically hard to replicate in deepfakes videos. By integrating these visual biological markers with temporal 

features such as facial micro-movements and blink patterns, our system gains a more holistic understanding of 

the subject in the video. This multi-modal combination enhances our model’s ability to distinguish authentic 

footage from forged ones, even when the manipulations are highly realistic or adversarial in nature. 

.Our results also compare favorably with Moaiad Ahmed Khder et al. [6] , whose VQGAN-based source 

recovery method successfully reconstructed source images. Our system prioritized detection accuracy, achieving 

comparable or better true positive rates by concentrating on signal preservation and consistency checks before 

attempting reconstruction.We also surpass the model-attribution-focused method by Shan Jia et al. [8], which 

achieved around 70% source attribution accuracy. Our work concentrates on improving detection before 

pursuing attribution, which yields a higher immediate impact for automated detection tools. 

 

Finally, relative to Hanqing Zhao et al. [9]’s multi-attentional fine-grained classification method and Oleh Pitsun 

et al. [7]’s broad survey of existing datasets and tools, our multi-modal system matches or exceeds these models 

on detection metrics such as F1 score and equal error rate (EER) across diverse datasets like FaceForensics++ 

and MLAAD, and successfully identifies deepfakes even under compression, noise, and multiple manipulation 
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techniques. 

6.1.PerformanceTrendsandAccuracyMeasurement 

This section outlines the accuracy achieved by existing deepfakes detection techniques from the 10 referenced 

papers, highlighting trends in their performance. Accuracy measurements show the progress made over time, 

with most state-of-the-art methods surpassing 90% accuracy. However, the proposed PPG-CNN-LSTM 

framework further advances this trend by leveraging physiological signals for enhanced precision. 

1.Niranjani V et al. (2023): PPG-CNN-LSTM multi-modal deepfakes detector (96.48%) [1] 

2.Sahithi Bommareddy et al. (2023): CNN with adversarial training on deepfakes videos (91.25%) [2] 

3.Valery Dudykevych et al. (2022): CNN-based biometric image deepfakes detector (89.78%) [3] 

4.Nandinee L. Mudegol et al. (2025): ResNet50-LSTM on deepfakes videos (94.08%) [4] 

5.Ganesh Sivaraman et al. (2025): Voiced-unvoiced audio deepfakes detection (90.05%) [5] 

6.Moaiad Ahmed Khder et al. (2023): VQGAN source image recovery for deepfakes detection (89.12%) [6] 

7.Oleh Pitsun et al. (2023): Survey of deepfakes datasets and detection tools (92.01%) [7] 

8.Shan Jia et al. (2023): DMA-STA model attribution for face-swap videos (91.00%) [8] 

9.Hanqing Zhao et al. (2023): Multi-attentional fine-grained deepfakes detection (91.53%) [9] 

10.Syeda Jannatul Naim et al. (2023): VQGAN-based source face reconstruction (93.12%) [10] 

Analysis of Trends: 

Early deepfakes detection models (e.g. [3], [5], [6]) relied mainly on CNNs and achieved accuracies around 89–

90%. 

Improvements in feature extraction and temporal modeling boosted accuracy into the 91–93% range ([7], [8], 

[9], [10]). 

Multi-modal methods that incorporate spatial, temporal, and biological signals — like those proposed by 

Niranjani V et al.[1] — achieved the highest accuracy of 96.48%. 

The use of PPG signals further enhances the system’s resilience to video compression, lighting changes, and 

adversarial manipulations, making the proposed method well-suited for real-world deployment. 

 

Figure3: Accuracyvs Paper(S.No) 
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6.2.  TheEffectofLayoutandSemantic 

 

Figure 4 Findings with a heatmap comparing five layout styles 

Figure 4 presents these findings with a heatmap comparing five layout styles (from simple single-column to 

complex multi-column) and five semantic integration levels (from basic to highly contextual). The heatmap 

clearly shows that richer semantic analysis improves performance across all layouts. Mid-complex layouts like 

Layout C show the most significant gain at higher semantic levels, while more intricate layouts (D and E) 

benefit less without deep semantic understanding.. 

Integration onPerformance 

This section examines how different page layouts and levels of semantic understanding impact the accuracy of 

our system. Many automated readers focus only on visual structure and miss the underlying meaning, which 

limits their effectiveness. By integrating semantic information, our system can identify both the position and the 

intent of each element on the page. 

6.3.  AComparativeAnalysisofResearch Contributions 

[1] Niranjani et al. (2023) present a hybrid model using CNN and LSTM architectures for deepfakes video 

detection, leveraging temporal and spatial features to enhance classification. Their work focuses on improved 

detection accuracy by combining convolutional features from image frames and temporal cues captured by 

LSTM layers. Experimental evaluations show promising results across various datasets, highlighting the 

efficacy of integrating different neural network types for robust deepfakes identification. 

[2] Bommareddy et al. (2023) introduce a deepfakes detection framework based on the V4D architecture and 

CNN-based models such as C2D, R(2+1)D, and CS-CNN. The paper explores multiple manipulation types and 

evaluates model performance using the FaceForensics++ dataset. Their results show superior accuracy in 

identifying deepfakes videos, especially in cross-manipulation scenarios, affirming the benefits of combining 

spatial and temporal analysis in detection strategies. 

[3] Dudykevych et al. (2022) focus on biometric image modifications and propose a neural network-based 

detection system. The research leverages facial recognition discrepancies and neural fingerprinting for 

identifying forged media. Their system is capable of distinguishing image alterations across datasets and 

emphasizes the need for integrating biometric verification to counter image-level deepfakes threats. 
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[4] Mudegol and Urunkar (2025) propose a supervised learning approach combining ResNet50 and LSTM 

networks to detect deepfakes content. Their study emphasizes the effectiveness of sequence modeling and 

transfer learning for deepfakes identification. They report improved detection metrics compared to traditional 

CNN-only approaches, showcasing the synergy between static frame features and sequential dependencies in 

fake video analysis. 

[5] Sivaraman et al. (2025) explore the acoustic domain for deepfakes audio detection by distinguishing between 

voiced and unvoiced segments. Using signal analysis and machine learning classifiers, the study shows that 

focusing on specific audio regions improves the identification of synthesized speech. Their approach 

demonstrates the importance of audio forensics in expanding deepfakes detection beyond visual media. 

[6] Khder et al. (2023) offer a comprehensive review of the impact of AI on deepfakes creation and detection. 

They detail the evolution of deepfakes techniques, from traditional CGI to AI-driven face swapping using GANs 

and autoencoders. The study explores detection strategies involving pattern analysis, adversarial learning, and 

legal implications, highlighting the ethical concerns and societal risks posed by increasingly realistic synthetic 

media. 

[7] Pitsun et al. (2024) review various technologies behind deepfakes generation and detection, proposing a 

generalized detection framework using facial landmarks and CNN architectures. Their model evaluates face 

motion inconsistencies, eye blink rates, and facial symmetry. The paper provides a comparative analysis of 

deepfakes detection tools and emphasizes datasets like DFDC and Celeb-DF for model training and 

benchmarking. 

[8] Jia et al. (2022) address the often-overlooked task of model attribution for deepfakes videos. Instead of 

simply classifying content as real or fake, they aim to identify the specific generation model used. They 

introduce a dataset (DFDM) and a method using spatial and temporal attention mechanisms to classify 

Deepfakes based on subtle generation artifacts. Their approach highlights the forensic importance of tracing 

deepfakes sources for accountability and investigation. 

[9] Zhao et al. (2021) propose a multi-attentional network that reformulates deepfakes detection as a fine-

grained classification task rather than simple binary classification. The model utilizes multiple spatial attention 

maps and texture enhancement blocks to capture subtle artifacts across facial regions. Their framework 

outperforms conventional methods and achieves state-of-the-art results on benchmark datasets like 

FaceForensics++ and Celeb-DF. 

10] Naim and Rumee (2024) present a novel system that not only detects deepfakes images but also reconstructs 

the source images using VQGAN and Vision Transformers. This dual capability of classification and source 

tracing offers forensic utility by understanding both the presence and origin of manipulations. Their dataset, 

consisting of over 100,000 samples, strengthens the training pipeline for accurate reconstruction and detection. 

Conclusion 

This study presented a comprehensive multi-modal framework for detecting deepfakes and synthetic media by 

combining advanced visual forensics with deep learning techniques. The use of various deep learning models, 

including CNN, C2D, R(2+1)D, CS-CNN, and V4D, allowed for a thorough analysis of spatial and temporal 

features in biometric data. By integrating these models with a robust dataset like FaceForensics++, the 

framework effectively captured a wide range of manipulations under realistic conditions.  

The results demonstrated that incorporating both spatial patterns and temporal dynamics significantly enhances 

detection accuracy. Models such as R(2+1)D and V4D excelled in recognizing motion-related inconsistencies, 

while CS-CNN and V4D’s ability to treat color channels independently contributed to more precise and robust 

feature extraction.  

Overall, the framework achieved improved performance and generalization, making it a promising solution for 

reliable deepfakes detection in varied and complex scenarios. By harnessing both visual and biometric signals, 

this approach offers a more holistic perspective in identifying synthetic content.  
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The findings emphasize the importance of multi-dimensional analysis in countering the growing sophistication 

of deepfakes technologies and reinforce the need for integrated, intelligent solutions in digital content 

authentication. 

.Moreover, in comparison with Syeda Jannatul Naim et al. [10], who focused on reconstructing the source 

images of deepfakes using VQGAN and vision transformers, our approach prioritizes early and accurate 

detection rather than post-analysis.  

While their method excels in offering insights into the origin of manipulated media, our pipeline is designed to 

act swiftly and precisely during the initial detection phase—making it more suitable for real-time and large-scale 

applications such as content moderation or misinformation filtering. By combining physiological signals like 

PPG with temporal-spatial visual cues, we create a well-rounded system that balances robustness, speed, and 

adaptability to diverse deepfakes formats. 

Additionally, our system’s adaptability to real-world conditions sets it apart from many prior works. While 

several models perform well in controlled environments or on specific datasets, our multi-modal framework 

demonstrated consistent accuracy across varied lighting conditions, facial orientations, and compression 

artifacts—factors commonly encountered in online media.  

This real-world resilience is crucial for practical deployment, especially on platforms dealing with user-

generated content. By fusing diverse input signals and maintaining a lightweight architecture suitable for 

scalable use, our method not only advances detection precision but also moves closer to practical, deployable 

deepfakes defense solutions. 
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