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Abstract: - Ray tracing has emerged as a powerful rendering technique for generating photorealistic images in 

scientific visualization, animation, and interactive graphics. This study evaluates and compares the performance 

of CPU and GPU implementations of a custom ray tracing algorithm without relying on third-party libraries. 

The CPU version was developed in MATLAB with sequential execution, while the GPU implementation used 

CUDA with parallel thread processing. Benchmark tests were conducted across resolutions (11×11 to 

1000×1000) and scene complexities (1 to 9 spheres). Results show that CPUs outperform GPUs at low 

resolutions due to lower memory overhead, while GPUs become significantly faster at higher resolutions and 

complex scenes. Performance profiling reveals GPU execution benefits from scalable parallelism but exhibits 

variability at smaller workloads. This paper highlights the trade-offs between CPU and GPU-based ray tracing 

and offers guidance for selecting appropriate hardware based on rendering requirements. Future work includes 

CPU parallelization, hybrid processing models, and hardware acceleration through VLSI. 

Keywords: Ray Tracing, GPU vs CPU Performance, CUDA Programming, Computer Graphics Rendering, 

Parallel Processing 

 

1 Introduction  

Over the past few decades, computer graphics have become a crucial aspect of numerous industries and societal 

applications. They are essential for visualizing scientific discoveries, simulating real-world phenomena, and 

creating compelling computer-generated imagery (CGI). This growing field has driven the development of 

advanced techniques to achieve more realistic renderings, with Ray Tracing standing out as a prominent 

method.The concept of Ray Tracing dates back to the 16th century, but its practical applications only began to 

materialize in the 1960s. This technique involves simulating the paths of light rays within a scene, modeling 

their interactions with surfaces, and calculating the resulting visual effects. Initially, Ray Tracing created 

realistic light reflections in 3D visualizations. However, its adoption slowed due to the limited computational 

power of early computers and the availability of less resource-intensive alternatives that produced similar 

results. With advancements in computing technology, Ray Tracing has made a strong comeback and is now 

widely used. 

Today, Ray Tracing is a cornerstone of 3D visualizations, especially in animated films and increasingly in real-

time graphics for video games. The continued improvement in computing hardware has made real-time Ray 

Tracing more feasible, enabling highly realistic rendering in interactive applications.The rise of general-purpose 

computing on graphics processing units (GPGPU) has further revolutionized Ray Tracing. Unlike traditional 

CPU-based programming, GPGPU leverages parallel processing to enable real-time Ray Tracing, which is 

particularly advantageous for applications like gaming. Meanwhile, animation studios often rely on CPU 

clusters for Ray-Traced rendering, as these systems excel at handling the diverse computational demands of 

large-scale animation projects. 

2 Background 

Computer graphics are fundamental to modern applications, influencing entertainment, education, and 

engineering through visualization and simulation [1]. With increasing demand for realism, techniques like Ray 

Tracing have become central due to their ability to simulate light behavior accurately. 

2.1 Ray Tracing: Principles and Methods 

Ray Tracing is a rendering algorithm that models light interactions to produce lifelike images [2]. Inspired by 

the pinhole camera model (Figure 1), rays are cast from a virtual camera through pixels to compute reflections, 

refractions, and shadows based on object properties [3]. 
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Two main approaches exist: 

 Forward Ray Tracing traces rays from light sources but is inefficient due to many rays missing the 

viewer [2]. 

 Backward Ray Tracing traces rays from the viewer into the scene, focusing only on those 

contributing to the image, making it more efficient [3]. 

 

Fig. 2: An established model for describing Ray Tracing. Credit goes to Wikipedia user Henrik. 

2.2 Processing Hardware for Ray Tracing 

2.2.1 Central Processing Unit (CPU) 

CPUs are general-purpose processors with multiple cores optimized for sequential and control-heavy tasks [4]. 

They effectively orchestrate complex workflows but are less efficient than GPUs for highly parallel workloads 

like Ray Tracing [5]. 

2.2.2 Graphics Processing Unit (GPU) 

GPUs contain thousands of cores tailored for parallel computation, making them ideal for rendering and data-

intensive operations [6]. Their architecture allows simultaneous execution of many threads, enabling faster and 

more efficient Ray Tracing [7]. 

2.3 GPU Programming with CUDA 

CUDA, developed by NVIDIA, is a platform that enables general-purpose GPU programming [8]. It supports 

high-level languages and offers memory-sharing features such as Unified Memory, simplifying data exchange 

between CPU and GPU [9].Tasks are structured into grids and blocks for parallel execution (Figure 3), and 

synchronization functions ensure coordinated processing. 

 

Fig.3: CUDA abstractions mapped to the GPU hardware [10]. 

2.4 Performance Profiling 

Profiling tools assess performance metrics such as memory usage and execution time, helping identify 

bottlenecks [11]. This is crucial in Ray Tracing and GPU computing, where small optimizations can yield 

significant performance gains [5]. 
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2.5 Related Work 

Norgren [12] showed GPUs outperform CPUs in Ray Tracing due to parallelism, though future CPUs may close 

the gap. Liljeqvist [13] explored hybrid CPU-GPU setups but found them less effective due to communication 

overhead.This study builds on these works by benchmarking Ray Tracing performance on raw CPU and GPU 

hardware without relying on external libraries or engines. 

3 Methodology 

This section describes the structured approach to implement and evaluate a ray tracing algorithm on CPU and 

GPU hardware. The methodology covers rendering techniques, performance benchmarking, dataset handling, 

implementation specifics, profiling, and verification processes. 

3.1 Rendering Process 

Rendered images were saved in Portable Pixel Map (PPM) format for its simplicity and wide compatibility. 

Each pixel’s RGB values (0–255) were calculated based on light interactions in the virtual scene and stored in 

plain-text format with.ppm extensions. This lightweight approach allowed for straightforward viewing and 

debugging using tools like GIMP. 

3.2 Benchmarking and Scene Setup 

Performance testing involved rendering scenes with 1 to 9 spheres arranged in a grid and illuminated by a single 

light source (Figure 4). Spheres were chosen for their geometric simplicity and ease of intersection testing.  

 Scene Complexity: Increased by varying the number of spheres. 

 Resolution Range: From 11×11 to 1000×1000 pixels with a 1:1 aspect ratio. 

 Timing: Execution times were recorded using MATLAB’s Chrono library [14], with each 

configuration tested 50 times to ensure consistency. 

 

Fig. 4: Example Render Created with the GPU Implementation. 

3.3 Dataset Collection 

Render times, sphere counts, and resolutions were stored in CSV format for easy analysis. Separate datasets 

were created for CPU and GPU, then merged using a Python script with a hardware identifier for comparison 

(see Table 1). 

Table 1: Example Data Set. 

 

3.4 Implementation Strategies 

3.4.1 CPU Implementation (MATLAB) 
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The CPU version used sequential execution, handling one ray per pixel. It supported recursive reflections (up to 

5 bounces) and basic shading. MATLAB’s high-level functions facilitated development but limited parallelism. 

3.4.2 GPU Implementation (CUDA) 

The CUDA version is executed in parallel, assigning rays to individual threads. Core tasks—ray intersection and 

shading—were handled inside kernels. cudaMallocManaged was used for unified memory allocation, 

minimizing data transfer between CPU and GPU. This approach significantly improved performance but 

required careful synchronization and memory handling. 

3.5 Profiling and Optimization 

The NVIDIA Visual Profiler was used to analyze GPU performance: 

 Memory Overhead: Detected during allocation via cudaMallocManaged, especially for small 

resolutions. 

 Kernel Insights: Identified computation bottlenecks and highlighted areas for optimization. 

 Resolution Scaling: Larger images have better-amortized memory costs, revealing improved GPU 

scalability. 

3.6 Verification 

Correctness was validated by comparing rendered outputs: 

 Visual Accuracy: Images were inspected for lighting, shadows, and reflections. 

 Cross-Validation: CPU and GPU outputs were compared to ensure consistent results. 

 Debugging Aid: Render anomalies helped locate logical errors in code. 

3.7 Hardware Configuration 

Experiments were conducted on: 

 CPU: Intel Core i7-6700K (4.00 GHz, 4 cores/8 threads). 

 GPU: NVIDIA GTX 1070 (8GB GDDR5, 1920 CUDA cores). 

While sufficient for testing, the older hardware may impact rendering performance at higher resolutions. Newer 

GPUs could offer better efficiency and scalability. 

4 Ray Tracing on the GPU 

Advancements in hardware and algorithmic efficiency have driven the evolution of real-time ray tracing. Early 

implementations relied on CPU-based approaches, with Muuss (1995) demonstrating distributed ray tracing for 

missile tracking, followed by Parker et al. (1999) and Wald et al. (2001), who optimized ray tracing for CPUs. 

The shift toward GPU-based ray tracing began with Purcell et al. (2002), utilizing programmable GPU 

pipelines, and was later enhanced by custom accelerators such as SaarCOR (Schmittler et al., 2004) and RPU 

(Woop& Schmittler, 2005). Recent improvements, including Foley’s kD-Tree optimizations (2005) and Popov 

et al.’s spatial indexing techniques (2006), have significantly boosted GPU efficiency in ray tracing applications.  

4.1 Iterative Ray Tracing 

Traditional recursive ray tracing is inefficient for GPU architectures due to stack memory constraints and the 

high cost of deep recursion. An iterative ray tracing algorithm was developed to address this, replacing recursion 

with an explicit stack. This approach stores secondary rays, such as reflections and refractions, and processes 

them iteratively until all rays have been traced. By eliminating deep recursive calls, iterative ray tracing 

significantly reduces memory overhead, ensuring efficient GPU execution. 

4.2 Parallelization Strategies 

Ray tracing inherently lends itself to parallelism, with each pixel or ray being processed independently. On 

CPUs, parallel execution is achieved through multi-threading, SIMD (Single Instruction, Multiple Data) 

optimizations, and packet traversal, where grouped rays share computations to enhance cache efficiency. On 

GPUs, workloads are divided among thousands of threads, with each thread handling a ray or pixel, structured 

in warps and blocks to optimize execution. 

The TRACE function governs ray processing, handling intersections, shading, and reflection/refraction 

calculations while leveraging depth and refraction stacks for efficient traversal. This function ensures the 
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computational workload is distributed efficiently, maximizing GPU utilization for real-time applications. he 

following pseudo-code outlines the iterative ray tracing approach: 

FUNCTION TRACE(primary_ray) 

color ← BLACK 

    ray ← primary_ray 

refractionStack ← NEW STACK 

depthStack ← NEW STACK 

treeDepth ← 0 

continueLoop ← TRUE 

 

    WHILE continueLoop DO 

        hit ← INTERSECT(ray, scene) 

 

        IF hit THEN 

color += SHADE(ray, hitPoint) 

treeDepth += 1 

 

            IF material is REFLECTIVE AND treeDepth ≤ maxDepth THEN 

                IF material is TRANSPARENT AND NOT TOTAL_INTERNAL_REFLECTION THEN 

refractionStack.PUSH(RAY(hitPoint, refracted(ray.direction))) 

depthStack.PUSH(treeDepth) 

                END IF 

                ray ← RAY(hitPoint, reflected(ray.direction)) 

            ELSE 

continueLoop ← FALSE 

            END IF 

        ELSE 

color += BACKGROUND_COLOR 

continueLoop ← FALSE 

        END IF 

 

        IF NOT continueLoop AND refractionStack is NOT EMPTY THEN 

            ray ← refractionStack.POP() 

treeDepth ← depthStack.POP() 

continueLoop ← TRUE 

        END IF 

    END WHILE 

 

    RETURN color 

END FUNCTION 

 

This iterative approach ensures that reflections and refractions are processed efficiently without deep 

recursion, making it well-suited for GPU execution. Each thread in a GPU processes a single ray 

independently, storing reflection and refraction rays dynamically in a stack-based data structure. By 

leveraging explicit stack management, the algorithm efficiently tracks ray interactions while avoiding costly 

function call overheads associated with recursion. 

Compared to recursive implementations, this approach achieves higher memory efficiency, reduced stack 

overflow risks, and better parallel scalability, making it ideal for real-time GPU ray tracing. 

4.3 kD-Trees for Efficient Ray Tracing 

Spatial acceleration structures such as kD-Treesare crucial in optimizing ray-object intersection tests. 

Implementing kD-Trees on GPUs presents challenges related to stack management and traversal efficiency. 

Stack-based iterative traversal methods explicitly track traversal states, allowing for efficient navigation 

through spatial hierarchies. However, stack-based approaches can be memory-intensive, necessitating 

alternative techniques. 
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4.3.1 Stackless Traversal Methods 

Two notable stackless traversal techniques, kD-Restart, and kD-Backtrack, have been developed to mitigate 

memory constraints. The kD-Restart algorithm restarts traversal from the root whenever an intersection is 

missed, reducing stack usage but introducing redundant calculations. An improved variation, kD-Backtrack, 

utilizes parent links to resume traversal at the lowest ancestor node, minimizing unnecessary computations and 

improving performance. 

4.3.2 Hybrid Approaches 

Hybrid techniques such as Short-Stack and Push-Down balance stack-based and stackless methods. Short-

stack traversal employs a small, fixed-size stack, defaulting to restart behavior if exceeded, while Push-Down 

optimization allows traversal to resume deeper within the hierarchy, reducing redundant computations. These 

methods provide a trade-off between memory efficiency and traversal speed, making them suitable for GPU-

based ray tracing. 

4.4 The Uber-kD-Tree: A Unified Spatial Hierarchy 

To further optimize spatial partitioning, the Uber-kD-Tree integrates multiple object-based kD-Trees into a 

global hierarchy, reducing traversal redundancy and memory overhead. This structure significantly improves 

scalability in complex scenes by merging redundant nodes and optimizing traversal paths. The Uber-kD-Tree 

enhances ray tracing efficiency by structuring spatial data more effectively, enabling real-time rendering in 

applications requiring high geometric complexity. 

4.5 Advancements in GPU Architecture for Ray Tracing 

Recent GPU advancements have significantly improved real-time ray-tracing capabilities, including high-

bandwidth memory (HBM), cache hierarchies, and dedicated ray-tracing cores. Combined with algorithmic 

optimizations, these enhancements enable applications in computer graphics, gaming, virtual reality, and 

scientific visualization to achieve unprecedented levels of realism and interactivity. The combination of 

iterative ray tracing, parallel processing, and optimized spatial data structures continues to drive the 

performance and feasibility of real-time ray tracing on modern GPUs. 

5 Results and Analysis 

This section presents a comparative analysis of CPU and GPU rendering performance, focusing on two critical 

factors: resolution and scene complexity. Graphs and statistical results provide insights into execution time 

variations across different configurations. The findings help assess the efficiency of hardware in rendering tasks, 

particularly for real-time applications. 

5.1 Impact of Resolution on Rendering Performance 

Resolution is key to rendering time, as higher pixel counts require increased computational effort. This 

subsection explores how resolution scaling affects execution time while keeping scene complexity constant. A 

single sphere was used across all resolution tests to ensure a controlled study, as shown in Figure 7. This 

standardization ensures that variations in rendering time are attributed solely to changes in resolution rather than 

scene composition. 
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Fig. 7: Sphere 1 to 9 Rendered on The GPU with a Resolution of 1000x1000 Px. 

5.1.1 CPU vs. GPU Execution Times 

Figure 8 illustrates the relationship between rendering time and resolution for CPU and GPU 

implementations. The resolutions tested range from 1×1 to 20×20 pixels, where an intersection between CPU 

and GPU execution times occurs at approximately 14×14 to 15×15 pixels. 

At lower resolutions (1×1 to 15×15 pixels), the CPU outperforms the GPU, with execution times remaining 

stable across multiple runs. In contrast, GPU execution times exhibit higher variability, likely due to thread 

scheduling inefficiencies at such low workloads. The GPU demonstrates its advantage beyond 15×15 pixels, 

where parallelism compensates for initial latency, resulting in a steady decrease in execution time relative to the 

CPU. 

 

Figure 8: CPU-GPU execution time intersection at 14×14 pixels. 

Figure 9 extends the resolution range to 1000×1000 pixels to further analyze this trend, with a logarithmic time 

axis for clarity. At high resolutions, GPU execution times stabilize, reflecting efficient workload distribution. 

Conversely, CPU execution time increases exponentially, indicating limited parallel scalability. Beyond 

600×600 pixels, the CPU struggles to maintain linear scaling, confirming that GPUs are better suited for 

high-resolution rendering tasks. 

 

Figure 9: Execution time vs. resolution for CPU and GPU (logarithmic scale). 
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5.2 Impact of Scene Complexity on Rendering Performance 

Beyond resolution, scene complexity significantly influences execution time, particularly due to increased ray-

object intersection calculations. To analyze this, a series of tests were conducted where the number of spheres 

in the scene varied from one to nine while maintaining a constant resolution of 1000×1000 pixels. 

Figure 10 presents bar graphs showing execution times across different numbers of spheres and resolutions. 

The results highlight that scene complexity heavily influences CPU performance, while the GPU exhibits 

variable behavior across different configurations. 

5.2.1 CPU vs. GPU Performance Trends 

CPU Performance: 

o The CPU shows a linear increase in execution time as more spheres are added. 

o The CPU is relatively efficient for lower numbers of objects, but performance degrades as 

ray-object intersections increase. 

GPU Performance: 

o The GPU demonstrates inconsistencies at lower sphere counts, where rendering time 

fluctuates due to thread execution overhead. 

o As scene complexity grows, the GPU’s parallelization becomes more effective, showing less 

variation in execution time. 

o Beyond 600×600 resolution, GPU consistently outperforms CPU, validating its scalability 

in complex rendering tasks. 

 

(a) Execution Time for 100x100 Pixel Resolution. 

 

(b) Execution Time for 200x200 Pixel Resolution.  

 

(c) Execution time for 400×400 px resolution. 

 

(d) Execution time for 600×600 px resolution. 
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(e) Execution time for 800×800 px resolution. 

 

(f) Execution time for 1000×1000 px resolution. 

 

Figure 10: Execution time for different sphere counts at multiple resolutions. 

 

5.3 Key Findings and Comparative Analysis 

1. Resolution Impact: 

o The CPU is more efficient at low resolutions but fails to scale as resolution increases. 

o The GPU benefits from increased resolution, stabilizing execution times beyond 600×600 

pixels. 

2. Scene Complexity Impact: 

o CPUs exhibit predictable scaling, with execution time rising consistently as scene 

complexity grows. 

o GPU performance fluctuates at low object counts but stabilizes at higher complexities due 

to effective parallelism. 

3. CPU vs. GPU Trade-offs: 
o CPUs are better suited for low-resolution, low-complexity rendering tasks. 

o GPUs provide superior performance for high-resolution and high-object-count scenes, 

making them ideal for real-time applications. 

This study confirms that while CPUs perform efficiently for simple rendering tasks, their scalability is 

limited as resolution and complexity increase. Despite initial performance inconsistencies, GPUs 

significantly outperform CPUs for high-resolution, complex scenes, reinforcing their role in modern 

rendering applications. The findings emphasize the importance of parallelization in graphics computing, 

highlighting the GPU’s strengths in high-performance rendering tasks. 

6 Conclusion and Future Work 

This study demonstrates that while CPUs perform efficiently in low-resolution, low-complexity scenes, they are 

limited by their sequential processing model in scaling up to more demanding rendering tasks. In contrast, 

GPUs—despite initial latency and execution variability—excel in high-resolution and high-complexity 

environments due to their extensive parallelism. The intersection point where GPU performance overtakes the 

CPU was observed around 14×14 pixels, and beyond 400×400 pixels, the GPU achieved speedups of several 

orders of magnitude. Scene complexity further emphasized the GPU’s ability to manage parallel workloads 

effectively, whereas CPU times increased linearly. These findings confirm the GPU’s dominant role in modern 

rendering pipelines and suggest that CPU-based rendering may still be relevant for lightweight, cost-sensitive 

applications such as indie games. Future work will explore CPU multi-threading, real-time implementations, 

and hardware acceleration through VLSI and FPGA integration to further enhance ray tracing performance. 
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