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Abstract

Cloud-based automatic colorectal cancer (CC) detection involves the usage of cloud
computing technology and system to help in the earlier and accurate diagnosis of CC in
medical images and patient information. This cloud-based technology aims to improve the
efficiency and reliability of CC screening, monitoring, and diagnoses. Automatic CC
detection refers to the use of computer-based technology and systems to aid in the earlier and
accurate detection of CC in patient data and medical images. This automated system aims to
increase the reliability and efficiency of CC monitoring, screening, and diagnosis. Deep
learning (DL) methods, especially convolutional neural networks (CNNSs), exhibit promising
results in automatic CC diagnosis. They can be trained on wide-ranging datasets of medical
images to learn patterns and features related to precancerous and cancerous lesion. This
study develops a new Reptile Search Algorithm with Deep Learning for Colorectal Cancer
Detection and Classification (RSADL-CCDC) technique. The main aim of the RSADL-CCDC
method focuses on the automaticclassification and recognition of the CC in the cloud
environment. Once the medical images are stored in the cloud server, the detection process is
carried out. In the presented RSADL-CCDC approach, the initial stage of preprocessing is
performed by bilateral filtering (BF) approach. For feature extraction, the RSADL-CCDC
technique applies ShuffleNetv2 model. Besides, the recognition and classification of CC take
place using convolutional autoencoder (CAE) model. Finally, the hyperparameter tuning of
the CAE technique takes place by utilizing RSA. The experimental validation of the RSADL-
CCDC system is performed on benchmark medical database. Extensive results stated the
enhanced performance of the RSADL-CCDC technique on CC recognition over other models
with respect tovarious actions.

Keywords: Colorectal cancer; Cloud environment; Computer diagnosis; Medical imaging;
Reptile search algorithm; Deep learning.
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Introduction

Cloud computing has become a game-changing technology in the healthcare field, offering wide array of
benefits that have revolutionized the way healthcare organization manage data, deliver services, and collaborate
with stakeholders [1]. With respect to healthcare, cloud computing refers to the delivery of computing services,
including storage, processing, and data access, over the internet, which allows healthcare providers and
organizations to remotely access and leverage these resources. One of the most important benefits of cloud
computing in healthcare is enhanced interoperability and data accessibility. Healthcare generates abundance of
data, including medical images, electronic health records (EHRS), research data, and patient histories [2].
Storing and managing this data on local servers can be inefficient, costly, and prone to data silos. Cloud-based
solutions standardize and centralize data, making it easily accessible to authorized users across various
healthcare sectors. This improved interoperability supports continuous data sharing amongst healthcare
providers, improving care coordination, enhancing patient outcomes, and ultimately reducing duplication of
tests [3]. Furthermore, cloud platforms enable real-time and secure access to patient data from anyplace,
enabling healthcare experts to make informed decisions at the point of care. Also, patients can benefit from
cloud-based personal health records (PHRs), gaining access to their medical information and taking a more
active role in their healthcare management. Fig. 1 shows the architecture of cloud computing in the healthcare
sector.
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Fig. 1. Cloud Computing in Healthcare

Colorectal cancer (CRC) is a majorcommon cancer that stands at third position globally. Even though, the
treatment techniques develop faster, earlieridentificationperforms a vital part in reducing mortalities[4]. In
addition to that, it is highly recognized that adenomas involve a 50% harmful alteration capability and almost
one-fourth of them could be lost in the conventional colonoscopy. Due to this reason, an effective colonoscopy
is very important to discover CRC and its potential signs [4]. The CRC risk factors are family history, sex, age,
pre-existing conditions like Lynch syndrome, inflammatory bowel disease, etc. and other unnecessary lifestyle
factors such as alcohol, physical inactivity, obesity, a diet high in red meat, low-fibre diet and smoking.
Moreover, CRC is said to be a serious health issue because it is symptomless until the later stages when the
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cancer is improved. In the initial stage, if CRC is determined as adenomatous polyps, it is a mainly curable
disease, which can benefit from curative surgery [5]. Presently, histopathological analysis plays an essential role
in evaluating cancer potential of a lesion.

With high resolution of diagnosis, screening and treatment approaches for CRC patients, the existing research
has proven that Artificial Intelligence (Al) plays an important role in clinical practice [5]. In recent days, the
researchers proposed an Al technique to decrease the neglected adenomas rates and then the risk of increasing
cancer by enhancing CRC screening results [6]. Characterization systems and Computer-aided detection have
gained more attention as well as interest. The Al helps with optical diagnosis and colorectal polyp detection in
colonoscopy which may aid endoscopists in making correct and on-time diagnoses. Al is one of the important
fields in computer science [7]. It is committed to developing smart machines, which are proficient in performing
tasks that usually need human-level intelligence. There are numerous Al applications around us, so it is very
difficult to recognize and estimate their effect on current society [8]. Recently, the impact of Deep Learning
(DL) and Support Vector Machine (SVM) model are played a vital role in healthcare and medicine structures. In
the medical domain, Al applications can be a two major parts namely physical and virtual. DL and Machine
learning (ML), which is a subcategory of ML establish the effective part of Al [9]. Further, ML techniques have
been categorized like supervised, unsupervisedlearning and reinforcement learning (RL). Most of the important
DL systems and Convolutional Neural Networks (CNNs) symbolize a certain category of multilayer artificial
neural network (ANN), which can be very effective for image classification [10].

This researchdesigns a new Reptile Search Algorithm with Deep Learning for Colorectal Cancer Detection and
Classification (RSADL-CCDC) technique in the cloud environment. The main aim of the RSADL-CCDC
method focuses on the automaticidentification and classification of the CC in the cloud platform. In the
presented RSADL-CCDC approach, the medical images are stored in the cloud server and the diagnostic
process take place in it. For feature extraction, the RSADL-CCDC technique applies ShuffleNetv2 model.
Besides, the recognition and classification of CC take place using convolutional autoencoder (CAE) model.
Finally, the hyperparameter tuning of the CAE systemoccurred by employing of RSA. The experimental
validation of the RSADL-CCDC approach can be performed on benchmark medical dataset.

Related Works

In [11],the two-determination DL network with self-attention mechanism (DRSANet) combines details and then
context for CRC binary detection and localisation in Computer-Aided Diagnosis (CAD) and Whole Slide
Images (WSIs) is proposed. Two input systems was mainly developed to learn context and details at the same
time, and then self-attention appliance was employed to learn dissimilar positions in the images to enhance
performance.In [12], a structure is established on several DL techniques are projected. The images are mainly
fed into the SqueezeNet, MobileNet as well as ShuffleNet methods. The features are decreased by employing
Principal Component Analysis (PCA) and then Fast Walsh—Hadamard Transform (FHWT) models. In addition,
Discrete Wavelet Transform (DWT) is mainly utilized to combine the FWHT’s removed feature acquired from a
3 DL methods. In addition to that, these DL techniques PCA features are connected. At last, results are fed to
the four separate ML methods.

Hamida et al. [13] considered animplementation of DL framework to identify as well as emphasize colon
tumour areas in lightly marked histopathological content information. Primarily, advanced CNNs comprising
the vgg, ResNet, AlexNet, DenseNet, and Beginning methods are revised and associated. This approach
employs the utilization of transmission learning methods. In [14],an highly-efficiency WSI inquiry method for
locating cancer areas precisely by a patch-related CNN method is projected. The research uses Monte Carlo
adjustable selection for a quick recognition of cancers at slide stage and a conditional random field (CRF)
method for mixing space association for well identification precision. Three datasets from The Cancer Genome
Atlas (TCGA) are employed to assess.
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In [15],a colon cancer recognition system employing a transmission-learning framework to remove top-level
features spontaneously from colon surgery images for automatic analysis of victims and diagnosis is projected.
In the research, the image features are removed from a pretrained CNN and employed to develop the Bayesian
enhanced Care Vector Device classification. Also, VGG-16, Alexnet, and InceptionV3 pretrainedNNcould be
employed.Dif and Elberrichi [16] target to invent a novel energetic collective DL approach. Initially, it produces
a group of methods based on transfer learning tactics from DNN. Then, applicable subclass of methods is
nominated by using the PSO technique and mixed of averaging or voting approaches. The projected method was
verified on a histopathological database for CRC identification depends upon seven kinds of CNN.In [17],a
ranking-based DNN for cancer grading in HI is used. By employing DNN, HI are charted in a hidden area. It
was created based on ranking loss, and triplet loss, as well as developed to optimize the inter-group space
between tumour positions in the hidden area regarding the violence of tumour, prominent to the precise
arrangement or grade of pathology images. A few colorectal pathology images have been used for assessment.

The Proposed Model

We have established an automated CC detection and classification employing the RSADL-CCDC technique in
the cloud environment. The main objective of the RSADL-CCDC system focuses on the automatic recognition
and classification of the CC. The cloud server executes the proposed model for the detection and classification
of CC. In the presented RSADL-CCDC approach, four stages of operations are involved namely BF-based
preprocessing, ShuffleNetv2-based feature extraction, CAE-based classification, and RSA-based
hyperparameter tuning. Fig. 2 depicts the entire flow of RSADL-CCDC approach.

3.1. BF based Pre-processing

Initially, the BF algorithm is applied to eliminate the noise.BF is a digital image processing approach to
denoiseor enhance images while retaining important details and edges [18]. It is especiallyhelpfulto
smoothimages without blurring sharp transitions and boundaries between regions or objects within the image.
The term "bilateral" represents the fact that the filter considers spatial and intensity datawhile implementing the
smoothing process. The bi-lateral filter evaluates the weighted average of the pixel value within the
neighborhood, where the weight can be defined by the spatial and intensity kernels. Pixels that are intensively
and spatially closer to the target pixel have high weight, while those that are different have lowweight. This
implies that the filter would retainfine details and edges meanwhile pixels with considerable intensity
differences will less contribute to the averaging.
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Fig. 2. Overall flow of RSADL-CCDC algorithm
3.2. Feature Extraction

The ShuffleNet_V2 architecture is utilized for producinga set of feature vectors. The major function of the
Shufflenet_V2 architecture is the residual block (unit), which comprises a 2 branches [19]. At first,it carries out
a channel division at input and splits the input feature maps into a 2subdivisions; the former has3
convolutionalfunctions and the next branch doesn’tcarry outany task, the input and output channel groups of all
the branches remain unchanged. Next, the feature map is divided into two branches, the initial branch with 3
convolutionalfunctions and the next branch has 1 depthwise convolution and 1lpointwise convolution. The
residual blockcombines the output feature map of bothsubdivisionswithmerging at the output and carrying out
channel combined to feature map. Variousbranches are extracted at random for rearranging into a new feature
mapsuch that the group convolution may combine the input feature in varioussets, enhancing the data flow
amongchannels and ensuringto be the input and output channel groupswereconnected. The ShuffleNet V2
architecturehasessentially comprised the MaxPool, Conv5, FC, Convl, Stage2, Stage3 layer, and Stage4 layers.
The Stage? layer, Stage3 layer, and Stage4 layer includes the superposition of residual units. Particularly, the
Stage2 and Stage4 layers are superimposed with overall of 4 residual blocks, as well as the Stage3 layer could
be superimposed with overall of 8 residual blocks. The stepsize of initial residual block in all the Stages is 2, the
primary objective is todownsample, and the stepsize of other residual blocks is 1. The network with various
complexitieswasintended by shifting the amount of output channel groups in network architecture. According to
ShuffleNet_V21, the amount of output channel groups in the Convl, Max-Pool, Stage2, Stage3, Stage4, Conv5,
and FC layersare 24, 24, 116, 232, 464, 1024, and 1000.

3.3. Image Classification

For image classification, the CAE model is exploited.By merging the encoder and decoder with the classifier,
CAE can be used for classification. The CAE and classifier are trained end-to-end to minimalize the classifier’s
classification error and the CAE’s reconstructed error [20]. This technique may result in higher performance
than directly training the classifier on the raw input dataset. The study aims to improve the classifier’s
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performance and train the classifier and the AE simultaneously. Fig. 3 depicts the infrastructure of CAE.
Typically, the loss function of CAE utilized for classification comprises classification and reconstruction loss.
The reconstruction loss is used to measure the distinction among the regenerated image and the input image
produced by the decoder. The MSE and binary cross-entropy (BCE) loss are the reconstructed loss function. In
this work, MSE Loss was used to measure the reconstruction loss of AE.

1 n
MSE =HZ(Yi —-Y;)? ey
i=1

In Eq. (1), the number of samples or observations in the databaseis n, the actual value of target parameter for the
it" sample is Y;, and Y;’ are the predictive value of the targeted parameter for the i™sample. A convolutional
layer assists in extracting the feature map through the filter on the input. w;represents the filter, andB; represents
the bias.

f, = ReLU (ZX*Wi +b,) )

The data is processed by the activation function after the convolution layer. Now, ReLU is utilized as an
activation function. ReLU output zero for negative input value and a similar value for the positive input values.
Now, x and f(x)can be the input and the output values.

f(x) = max (0,x) 3

The pooling layer reduces the feature maps’ size and reduces the computation difficulty. Various pooling
approaches are available;however, the Max-pooling method was preferred in this work. Max-pooling moves a
window across the feature map and outputs the maximal value of all the windows.

/
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Fig. 3. Architecture of CAE

The bottleneck layer is used to create compressed data representation. Deconvolution is the reverse process of
convolution, where the deconvolution kernel is denoted as w/,b is a bias, and i indicates the number of
channels.

D; = ReLU (Z Xew +b) (4)

The encoder layer is used to construct summaries for the hidden layer, the up-sampling model is used in the
decoder layer to recreate the original size image using those summaries. Once this classifier and AE are trained,
then the feature was learned to compress the data and make accurate class predictions. Thus, the AE feature is
expected to improve performance of the classifier performance.

3.4. Hyperparameter Tuning

Finally, the hyperparameter selection of the CAE model is implemented by the use of RSA.It is a new
metaheuristic optimization approach that seeks to emulate the natural habitat of crocodile [21]. This algorithm
stimulates the hunting strategy of crocodiles that mainly prefer regions with rich food and water sources and
capable of hunting inside and outside of the water. The steps for RSA are discussed in the following:
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Stage 1: RSA parameter initialization

It is crucial to initialize the algorithmic and control parameters before running the RSA algorithm. The control
parameter comprises T, the maximum number of iterations, N, the number of crocodiles (using count of
candidate solutions); «, and 8, which controls the exploitation and exploration capabilities. During the search
process, this parameter is used to balance exploitation and exploration.

Stage2: Population initialization of RSA
By using Eq. (5), a random set of solutions can be initialized:
Xij = rand * (UB—-LB) +LB,i=1,2...,N,and =1,2,...,n. (5)

Now, x;; represents the j" location of the i™solutions, n denotes the dimensional size of the problem, the
random integer within [0,1] is represented by rand, the lower and upper limits of the search space are LB and
UB. Therefore, N solution set is produced and stored in the matrix form;

X111 e Xy X1n-1 X1n ]
| X211 e X X2:n-1 X2 |
I. . . . . I
X|. . . . (6)
|XN—1f 1 - XN-1j XN-1'n-1 XN-1n |
XN/1 e XN XN'n-1 XN/n J

Stage 3: Fitness function assessment
Where X is the fitness values of solution y;; in the population, calculated asf (x;;y-
Stage 4: Exploration stage

RSA uses two different strategies namely belly walking and high walking to determine best solution by
exploring novel areas in the search range. The updating position of mathematical formula can be given below:

X t+1)= Bestj (t) * —Ni, ) *p— RL-J- (t) *randif (t <T/4), (7)
and
x;;(t + 1) = Best;(t) * x,., ; * ES(t) *x randif(T/4 <t < 2T/4) (8)

withx;; representing the search space of ithsolution at j**location. The value of Best;(t) corresponds to j
location in the optimum solution attained at t‘* iteration, t + 1 indicates the novel iteration, and t shows the
prior iteration. The hunting operators of j**location at i**solution, n;;(t). x,, jdenotes the search space at
jt*location in the i*"solution , where r; refers to a value within [1,N]. The belly walking strategy has controlled
with T/4 <t <2T/4, buta high walking strategy was controlled by t <T/4. The values of

i, M(x;), Pj, R;j and ES (t) are computed by the following expression:

n;; = Best;(t) * P;j, 9

n

1
M(x;) = ZZ X(ij) (10)

i=1
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P + Xiy — M) (11)
i,j =a ’
J Best;(t) * (UB; — LB;) + €
ES(t)=2*1r3x(1—-1/T), (12)
and
Best; (t) — x,..;
— }( ) 2'] (13)

YT Bestj(t)+e

Where, the percentage difference between the search space at j**location of the best solution (Best (t)) and the
search space at the location of the existing solution (x) is represented by P, ;, the parameter a controls the

exploration capability of RSA, with value of a = 0.1. Furthermore, e is a random integer range within [0,2],
and M(X) indicates the average value of each search space of the existing solutions. The R;; parameter lessen
the decision variable area of j**location in the i‘® solution. The evolutionary sense probability, ES(t), is
arbitrarily allocated a value reducing from 2 to—2, and is computed by Eq. (9). The parameter r,has a random
integer within [1, N] andr; is a random number that lies in (-1, 0, and 1).

Stage 5: Exploitation stage

Using hunting cooperation and hunting coordination strategies, this stage exploits present search area, to find
optimum solution as follows:

x;j(t +1) = Best; (t) = P,j * randif (2T/4 <t < 3T/4), (14)
and

x;j(t+1) = Best;(t) —n;; x€ — R;j *xrandif BT/4<t<T). (15)

iJ
The hunting cooperation is utilized at the time interval 3T /4 < t < T, while the hunting coordination is used at
the time interval 2T /4 < t < 3T /4.

Stage 6: Stopping condition
This procedure is reiterated, until the maximum iteration is attained.

The RSA method derives a FF to accomplishhigh effectiveness of classifier. It defines a positive integer to
characterize the superior valuesof the solution candidate. Here, the failure of classifier error rate can beassumed
as FF.

fitness(x;) = ClassifierErrorRate(x;)

number of misclassified samples

100 16
Total number of samples * (16)

4. Results and Discussion

The CC detection and classification performance of the RSADL-CCDC methodcould be validated on the
Kaggle datasets [22], comprising 10000 instances with two classes as defined in Table 1.
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Table 1 Details on database

Class Names Description No. of Instances
Col-Ad Colon Adenocarcinoma 5000
Col-Be Colon Benign Tissue 5000
Total Number of Instances 10000
Training Phase (80%) - Confusion Matrix Testing Phase (20%) - Confusion Matrix

g g
° °
o o
© ©
=] =
° ©
< <
@ 3979 @ 977
° 49.74% I 48.85%
o o
Col-Ad Col-Be Col-Ad Col-Be
Predicted Predicted
(a) (b)
Training Phase (70%) - Confusion Matrix Testing Phase (30%) - Confusion Matrix
g 3421 b 1517
° 48.87% o 50.57%
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© ©
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@ @ 1375
° ° 45.83%
(5] o
Col-Ad Col-Be Col-Ad Col-Be
Predicted Predicted
(c) (d)

Fig. 4. Confusion matrices of (a-c) TR phase of 80% and 70% and (b-d) TS phase of 20% and 30%

Fig. 4 shows the confusion matrices formed by the RSADL-CCDC technique at 80:20 and 70:30 of TR
phase/TS phase. The simulated values exhibit the effectual recognition of the Col-Ad and Col-Be samples with
all 2 classes.
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The CC detection results of the RSADL-CCDC technique with 80:20 of TR Phase/TS Phase are reported in
Table 2 and Fig. 5. The simulated values pointed out the RSADL-CCDC technique properly categorizes the
samples. With 80% of TR Phasg, the RSADL-CCDC system offers average accu, of 97.79%, prec, of 97.84%,
reca,of 97.79%, Fy.,.. 0Of 97.80%, and AUC,.. OF 97.79%. Along with that, based on 20% of TS Phase, the
RSADL-CCDC model offers average accu, of 97.97%, prec, of 97.96%, reca,of 97.97%, Fy.. 0f 97.95%,

and AUC,.... 0f 97.97% correspondingly.

Table 2 CC detection outcome of RSADL-CCDC algorithm on 80:20 of TR phase/TS phase

Class Labels Accuy Prec, Reca, Ficore AUCqore

TR Phase (80%)

Col-Ad 96.51 99.05 96.51 97.76 97.79
Col-Be 99.08 96.62 99.08 97.84 97.79
Average 97.79 97.84 97.79 97.80 97.79

TS Phase (20%0)

Col-Ad 96.65 99.29 96.65 97.96 97.97
Col-Be 99.29 96.64 99.29 97.94 97.97
Average 97.97 97.96 97.97 97.95 97.97

Avg.Values (%)

Accuracy Precision Recall F-Score AUC Score

Fig. 5. Average of RSADL-CCDC algorithm on 80:20 of TR phase/TS phase
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The CC detection results of the RSADL-CCDC method with 70:30 of TR Phase/TS Phase are described in
Table 3 and Fig. 6. The simulated values reported that the RSADL-CCDC system appropriately categorizes the
samples. With 70% of TR Phase, the RSADL-CCDC methodology offers average accu, of 96.13%, prec, of

96.20%, reca;of 96.13%, Fy Of 96.10%, and AUC,. Of 96.13%. Besides, with 30% of TS Phase, the
RSADL-CCDC methodology gives average accu, of 96.34%, prec, of 96.56%, reca;of 96.34%, Fy.. oOf

96.39%, and AUC,,r. Of 96.34% respectively.

Table 3 CC detection outcome of RSADL-CCDC algorithm on 70:30 of TR phase/TS phase

Class Labels Accuy Prec, Reca, Ficore AUCqore

TR Phase (70%)

Col-Ad 98.70 93.75 98.70 96.16 96.13
Col-Be 93.55 98.66 93.55 96.03 96.13
Average 96.13 96.20 96.13 96.10 96.13

TS Phase (30%0)

Col-Ad 98.89 94.34 98.89 96.56 96.34
Col-Be 93.79 98.78 93.79 96.22 96.34
Average 96.34 96.56 96.34 96.39 96.34

I Training Phase (70%)
[ Testing Phase (30%)

& 8 & & & 8
B o N & @ @

Avg.Values (%)

95.6 |

Accuracy Precision Recall F-Score AUC Score

Fig. 6.Average of RSADL-CCDC algorithm at70:30 of TR phase/TS phase

1067




Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 4 (2023)

Training and Validation Accuracy (80:20)

0980 7" —a— Training : I I ! : -—a—

ol \hndaﬂon‘ . s ® w®

0.975

0.970 +

0.965

Accuracy

0.960

0.955 +

0.950 +

Epochs

Fig. 7.Accuycurve of RSADL-CCDC algorithm on 80:20 of TR phase/TS phase

To calculate the performance of the RSADL-CCDC technique with 80:20 of TR Phase/TS Phase, TR and TS
accu, curves are determined, as illustrated in Fig. 7. The TR and TS accu, curves exhibit the performance of
the RSADL-CCDC method over numerous epochs. The figure offers important details about the learning tasks
and generalization capabilities of the RSADL-CCDC system. With an improvement in epoch count, it is
observed that the TR and TS accu,, curves acquire enhanced. It is noticed that the RSADL-CCDC algorithm
attains improved testing accuracy that can potentially recognize the patterns in the TR and TS data.

Fig. 8 shows the overall TR and TS loss values of the RSADL-CCDC system with 80:20 of TR Phase/TS Phase
over epochs. The TR loss reveals the model loss is reduced over epochs. Mainly, the loss values become
decreased as the model adapts the weight for diminishing the predicted error on the TR and TS data. The loss
curves exhibit the extent to where the model is fitting the training data. It is evidenced that the TR and TS loss is
gradually reduced and described that the RSADL-CCDC methodology successfully learns the patterns
represented in the TR and TS data. It is also remarked that the RSADL-CCDC approach changes the parameters
to lessen the difference among the actual and predicted training label.
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Training and Validation Loss (80:20)
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Fig. 8. Loss curve of RSADL-CCDC methodwith 80:20 of TR phase/TS phase

Precision-Recall Curve (80:20)
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Fig. 9. PR curve of RSADL-CCDC algorithm with 80:20 of TR phase/TS phase

The PR curve of the RSADL-CCDC technique with 80:20 of TR Phase/TS Phase is exhibited by plotting
precision against recall as shown in Fig. 9. The simulated values confirm that the RSADL-CCDC approach gets
improved PR values with each 2 class. The figure describes that the model learns to recognize different class
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labels. The RSADL-CCDC methodology achieves improved outcomes in the recognition of positive samples
with lower false positives.

The ROC analysis provided by the RSADL-CCDC method with 80:20 of TR Phase/TS Phase is exhibited in
Fig. 10, which has the ability the differentiation of the class labels. The figure specifies valuable insights into the
trade-off among the TPR and FPR rates over various classification thresholds and changing numbers of epochs.
It offers accurately predicted performance of the RSADL-CCDC system on the classification of separate 2
classes.

ROC-Curve (80:20)
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Fig. 10. Loss curve of RSADL-CCDC systemwith 80:20 of TR phase/TS phase

In Table 4 and Fig. 11, the comparative analysis of the RSADL-CCDC technique is confirmed. The simulated
values show that the mSRC model leads to poorer performance. At the same time, the ResNet-50, DenseNet169-
SVM, and VGG-16 models have shown slightly improved performance. Meanwhile, the CNN and DL
methodologies have gained considerable performance. Nevertheless, the RSADL-CCDC system illustrates
maximum performance with accu,, of 97.97%, prec, of 97.96%, reca, of 97.97%, and Fy. 0f 97.95%. These
simulated values confirmed the enriched performance of the RSADL-CCDC method over other models.

Table 4 Comparative analysis of RSADL-CCDC model with existing systems

Methods Accuy Prec, Reca, Fscore
mSRC Algorithm 88.21 85.21 91.78 86.78
RESNET-50 93.64 96.12 97.49 96.94
CNN method 97.11 97.07 97.44 97.61
DL technique 96.32 96.86 96.44 97.08
DenseNet169 and SVM 92.08 95.82 95.67 96.15
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VGG-16 Model 91.09 95.08 96.53 97.00
RSADL-CCDC 97.97 97.96 97.97 97.95
= mSRC Algorithm I DenseNetl69 and SVM
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] B DL Algorithm
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Fig. 11. Comparative outcome of RSADL-CCDC approach with existing methods

Conclusion

In this study, we have developed an automaticcloud assisted CC detection and classification by employing the
RSADL-CCDC technique. The main aim of the RSADL-CCDC technique focuses on the automated recognition
and classification of the CC in the cloud environment. In the presented RSADL-CCDC approach, four stages of
operations are involved namely BF-based preprocessing, ShuffleNetv2 based feature extraction, CAE based
classification, and RSA based hyperparameter tuning. In this work, the RSADL-CCDC technique applies
ShuffleNetv2 model for feature extraction and CAE is employed for CC classification. Furthermore, the
recognition and classification of CC take place using the CAE model and thehyperparameter tuning method is
carried out by the use of RSA. The experimental validation of the RSADL-CCDC technique can be performed
on benchmark medical dataset. Wide-rangingoutcomes stated the enhanced performance of the RSADL-CCDC
system on CC recognition over other models with respect tovariousassessment. In future, the performance of the
RSADL-CCDC methodis tuned by ensemble voting classifier.
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