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Abstract 

Elliptic Curve Cryptography (ECC) is a powerful method for securing data, especially in devices with limited 

resources. This paper compares two efficient FPGA-based cryptographic processor designs—one using Binary 

Edwards Curves (BEC) and the other using Binary Huff Curves (BHC). Both designs aim to speed up the scalar 

multiplication operation, which is a key part of ECC.The BEC-based design improves performance by using 

multiple hybrid Karatsuba multipliers and a parallel version of the Hex Itoh–Tsujii algorithm for field inversion. 

This approach also reuses hardware between point operations and inversion, saving area and improving speed. It 

achieves 233-bit scalar multiplication in 0.033 ms on a Virtex-4 FPGA and 0.025 ms on a Virtex-7, showing 13% 

and 17% latency improvements compared to earlier designsThe BHC-based design benefits from a unified 

structure that performs point addition and doubling in a similar way, which helps resist power-based side-channel 

attacks. It uses the Non-Adjacent Form (NAF) method for scalar multiplication to further reduce power use. With 

parallel field arithmetic and optimized hardware blocks, it achieves low latencies of 29.5 ns (Virtex-4) and 23.1 

ns (Virtex-7), reducing clock cycles by up to 59.6% and 42.3%, respectively.Overall, the BEC processor offers 

better throughput and efficient use of hardware, while the BHC processor provides strong security and fast 

computation. This comparison highlights the trade-offs between speed, area, and security in FPGA-based ECC 

designs. 
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1. INTRODUCTION   

Elliptic Curve Cryptography (ECC), introduced independently by Miller [2] and Koblitz [1], is widely used in 

secure communication systems due to its ability to offer strong security with smaller key sizes compared to 

traditional cryptosystems like RSA. This makes ECC an excellent choice for resource-constrained environments 

such as IoT devices and embedded systems [3], [4]. ECC can be implemented over prime fields or binary fields, 

with the latter being particularly efficient for hardware-based systems. However, traditional ECC operations—

point addition and point doubling—use different formulas, which results in irregular execution patterns and 

exposes implementations to side-channel attacks (SCAs), such as Simple Power Analysis (SPA) [6], [7]. 

Moreover, ECC's incomplete formulas often require special case handling, such as when points at infinity are 

involved, making implementations more complex and error-prone [8].To address these issues, unified point 

addition formulas have been proposed to use the same logic for both point addition and doubling, thereby 

enhancing regularity and side-channel resistance [4]. Two popular models that support unified operations are 

Binary Huff Curves (BHC) and Binary Edwards Curves (BEC). BHCs are known for their uniform execution 

paths, which reduce power-based leakage. Recent designs have adopted the Non-Adjacent Form (NAF) for scalar 

multiplication and incorporated parallel hybrid Karatsuba multipliers along with the Hex Itoh–Tsujii algorithm 

for efficient field inversion. These optimizations achieved latencies of 0.029 ms and 0.023 ms on Xilinx Virtex-4 

and Virtex-7 FPGAs, respectively [4], [5].On the other hand, BECs, introduced by Bernstein et al. [9], resolve 

ECC’s completeness issues and offer complete, unified point operations without special-case handling. Their 

algebraic structure enables highly parallel hardware implementations. Using parallelized scalar multiplication 

techniques, hybrid Karatsuba multipliers, and a modified Hex Itoh–Tsujii algorithm, BEC-based architectures 

achieved 233-bit scalar multiplication in 0.033 ms (Virtex-4) and 0.025 ms (Virtex-7), showing significant latency 

improvements over earlier designs [10]. In this comparative study, we analyze and evaluate the FPGA-based 

implementations of both BHC and BEC over GF(2233), focusing on latency, hardware resource usage, and 

resistance to side-channel threats. While BEC implementations offer better throughput and resource reuse, BHC 

designs excel in security-critical applications due to their consistent execution and reduced power leakage. This 

study helps guide the selection of appropriate curve models based on application-specific requirements in terms 

of performance, area, and security. 

II. PRELIMNARIES 
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A. Binary Edwards Curves (BECs) 

Binary Edwards Curves (BECs), designed for binary fields GF(2m) where m≥3, are a class of elliptic curves with 

properties favorable for cryptographic applications due to their completeness and unified addition laws [9]. The 

general affine form of a BEC is given by: 

                                                
222222

2

3

1 )()()( YXZYXXYXYZZYXdZYXd +++=+++                                             (1) 

Here, the constants d1,d2∈GF(2m) , with d1≠0 and d1≠d2. A key advantage of BECs is the efficient computation 

of the negation of a point, which has negligible overhead and results in a point of order two. Additionally, the 

curve supports complete addition laws that allow all point pairs to be processed through the same formula without 

exceptions [9]This unified approach ensures the same formula can be used for both point addition and point 

doubling. As a result, there is no observable difference in power usage, enhancing protection against side-channel 

attacks like Simple Power Analysis (SPA) [11]. Furthermore, BECs exhibit a symmetry such that if a point (x1,y1) 

lies on the curve, then (y1,x1) also lies on the same curve [11].To reduce the computational cost of field inversion 

in affine coordinates, BECs are typically implemented in projective coordinates using the Lopez–Dahab (LD) 

representation. In this format, an affine point (x,y) corresponds to a projective point (X:Y:Z), where: 

x=X/Z,y=Y/Z2 . The unified point addition formula for projective BECs with d1=d2 is expressed using the 

following intermediate variables [9]: 

Table 1.Projective Addition Points for BEC Curve. 

A=X1.X2
 

B= Y1.Y2
 

C= Z1.Z2
 

D=d1.C
 

E=C2
 

F=d1
2..E

 

G=(X1+Z1). (X2+Z2)
 

H=(Y1+Z1). (Y2+Z2)
 

I=A+G
 

J=B+H 

K= (X1+Y1). (X2+Y2)
 

L=d1.K 

U=C.(F+L.(K+I+J+C))
 

V=U+D.F+L.(d1.E+G.H+A.B)
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X3=V+D.(A+D).(G+D)
 

Y3= V+D.(B+D).(H+D) 

Z3=U 

 

This formulation requires approximately 17 field multiplications, offering constant-time operation and 

robustness against SPA [11]. 

  B. Binary Huff Curves (BHCs) 

Binary Huff Curves (BHCs) are a lesser-known family of elliptic curves originally proposed in classical number 

theory by Huff and later extended to binary fields. While early work on Huff curves focused on fields of odd 

characteristic [5], Devigne and Joye introduced a formal definition for binary fields in 2011 [12]. 

The general projective form of a BHC over GF(2m) is defined by: 

                                          𝐸𝐹2𝑚 : 𝑎𝑋(𝑌2 + 𝑌𝑍 + 𝑍2) = 𝑏𝑌(𝑋2 + 𝑋𝑍 + 𝑍2)                 (2) 

where 𝑎, 𝑏 ∈ 𝐹2𝑚 and a ≠ b. There are three points  satisfying the curve equation, namely (a :b : 0), (1 : 0 : 0) and 

(0 : 1 : 0). The affine form of the binary Huff curve, corresponding to “(1)”, is expressed as:   

                                𝑎𝑥(𝑦2 + 𝑦 + 1) = 𝑏𝑦(𝑥2 + 𝑥 + 1)                                                              (3) 

This equation is birationally equivalent to a Weierstrass-form elliptic curve, enabling useful transformations 

between different curve models for applications like digital signatures or key exchange [13]. The original unified 

addition formula by Devigne and Joye was designed to use a single computation path for both point addition and 

doubling, which provides inherent resistance to SPA [12]. However, in 2013, Ghosh et al. discovered that this 

approach could still leak information during doubling operations due to zero intermediate values. To overcome 

this, they proposed an updated unified addition formula with consistent intermediate computations, improving 

SPA resistance [14]. In projective coordinates, the improved point addition for BHCs involves: 

Table 2.Projective Addition Points for BHC Curve 

𝑚1 = 𝑋1𝑋2 

  𝑚2 = 𝑌1𝑌2, 

𝑚3 = 𝑍1𝑍2 

𝑚4 = (𝑋1 + 𝑍1)(𝑋2 + 𝑍2) + 𝑚1 + 𝑚3 

𝑚5 = (𝑌1 + 𝑍1)(𝑌2 + 𝑍2) + 𝑚2 + 𝑚3 

𝑚6 = 𝑚1𝑚3 
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𝑚7 = 𝑚2𝑚3 

𝑚8 = 𝑚1𝑚2 + 𝑚3
2 

𝑚9 = 𝑚6(𝑚2 + 𝑚3)2 

𝑚10 = 𝑚7(𝑚1 + 𝑚3)2, 

𝑚11 = 𝑚8(𝑚2 + 𝑚3) 

𝑚12 = 𝑚8(𝑚1 + 𝑚3) 

𝑋3 = 𝑚4𝑚11 + 𝛽 ⋅ 𝑚9 

𝑌3 = 𝑚5𝑚12 + 𝛾 ⋅ 𝑚10 

𝑍3 = 𝑚11(𝑚1 + 𝑚3) 

with constants 𝛽 =
𝑎+𝑏

𝑏
  and 𝛾 =

𝑎+𝑏

𝑎
 This formulation also uses approximately 17 field multiplications, aligning 

it with BEC’s computational cost and maintaining constant operation time across all inputs [14]. 

III. FPGA BASED ECC PROCESSOR ARCHITECTURE 

This section presents a unified FPGA architecture for elliptic curve cryptographic (ECC) processors implemented 

over binary curves, focusing on scalar multiplication, which is the most computationally intensive operation in 

ECC. The design facilitates a comparative evaluation of two prominent binary curve models—Binary Edwards 

Curves (BECs) and Binary Huff Curves (BHCs)—implemented within a common hardware framework. The 

processor architecture integrates optimized scalar handling, register management, and arithmetic operations 

tailored to support both curve types efficiently while highlighting their performance trade-offs in speed, area, and 

side-channel resistance [14], [15]. 

 

Fig. 1. Proposed FPGA Based ECC Processor Architecture 

A. Architectural Overview 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 3 (2025) 

__________________________________________________________________________ 

143 

The processor is composed of three major modules: a Key Modification Unit for transforming scalars into compact 

forms, a Register Module for storing intermediate variables and constants, and an Arithmetic and Logic Unit 

(ALU) for executing finite field operations. The architecture incorporates two hybrid Karatsuba multipliers that 

support parallel field multiplication, leading to reduced clock cycles during point computations [16]. Inversion is 

carried out using a modified Hex Itoh–Tsujii Algorithm, enabling efficient projective-to-affine coordinate 

conversion [17]. To maintain regular computation flows and suppress side-channel leakage, the architecture 

adopts a unified control logic that supports both BEC and BHC without requiring structural changes. This 

flexibility permits direct performance comparisons between the curves under identical hardware and control 

conditions. The processor achieves scalar multiplication for 233-bit keys in just 0.033 ms and 0.025 ms on Virtex-

4 and Virtex-7 FPGAs, respectively, demonstrating high throughput and low latency for both curve models [18]. 

B. Scalar Representation and Key Transformation 

The architecture employs Non-Adjacent Form (NAF) representation for scalar values to reduce the number of 

point additions and overall computation time [19]. Scalar transformation proceeds by analyzing each bit of the 

binary scalar; if the value is odd, a non-zero digit is computed as 2 minus the scalar modulo 4, then subtracted 

from the scalar. For even values, a zero is appended, and the scalar is halved. The result is a sparse sequence 

composed of {−1, 0, 1} elements. Scalar multiplication is then performed by iterating through the NAF digits, 

executing point doubling followed by conditional addition or subtraction based on the digit value. This technique 

reduces the effective number of point additions by nearly two-thirds [20]. Further optimization is introduced by 

encoding the scalar using ternary values with two-bit symbols, enabling simultaneous point computations and key 

processing [21]. The key modification logic is tuned such that for a 233-bit scalar, only 14 initial clock pulses are 

required before multiplication begins, in contrast to traditional designs that require up to 233 cycles for key 

loading. This optimization remains consistent across both BEC and BHC implementations, allowing meaningful 

architectural comparisons in terms of delay and resource usage. 

C. Register Module Design 

The processor includes ten m-bit registers for storing operands, intermediate results, and curve constants. To 

simplify the hardware design, both BEC and BHC implementations use equal constant parameters where 

applicable, facilitating a unified addition law that reduces register complexity [22]. The register module uses two 

input multiplexers (MC0 and MC1) and three output multiplexers to manage operand selection and routing to the 

ALU. A 24-bit control word governs register operations and multiplexer configurations, ensuring flexible and 

coordinated data flow for various scalar multiplication steps. The modular design allows the same register 
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framework to support both curves without requiring architecture-specific modifications, making it possible to 

evaluate the trade-offs in resource utilization and execution time [23]. 

D. Arithmetic and Logic Unit 

The ALU performs field addition using XOR gates and multiplication using hybrid Karatsuba logic optimized for 

FPGA implementations [24]. The availability of two multipliers allows concurrent evaluation of independent 

partial products during point addition and doubling. Field inversion, a traditionally expensive operation, is 

accelerated using a modified version of the Hex Itoh–Tsujii Algorithm, which exploits efficient squaring and 

multiplication sequences based on a precomputed addition chain [17], [25]. The ALU supports consistent 

execution timing by using regular control signals and minimizing data-dependent behavior, enhancing resistance 

to timing-based side-channel attacks [26]. The hardware-friendly implementation of field operations allows the 

processor to operate seamlessly for both curve models while maintaining high throughput and minimal latency. 

E. Comparative Analysis of Curve Implementations 

The architecture enables a direct performance comparison between Binary Edwards and Binary Huff Curves 

within a shared hardware framework. Both curves benefit from the same ALU, register structure, and key 

transformation module, allowing their computational characteristics to be evaluated under identical FPGA 

conditions. In practice, the Huff curve shows slightly lower register usage and improved doubling efficiency, 

while the Edwards curve offers stronger resistance to exceptional cases in point addition [27]. Despite minor 

algebraic differences, the unified processor design supports both with negligible reconfiguration. Experimentally, 

the processor achieves scalar multiplication for 233-bit keys in 0.033 ms and 0.025 ms for Virtex-4 and Virtex-7 

FPGAs, respectively, across both curve models [18]. These results highlight the architectural balance achieved by 

the design and validate its suitability for flexible, high-performance elliptic curve cryptography on reconfigurable 

hardware platforms. 

IV. PARALLELISM IN UNIFIED ADDITION 

Parallelism in unified addition plays a pivotal role in minimizing the latency associated with scalar multiplication 

in elliptic curve cryptographic systems. In our comparative analysis of Binary Huff and Binary Edwards Curves, 

we explored how parallel multipliers contribute to latency reduction and improved computational efficiency.For 

the Binary Huff Curve, employing two parallel multipliers in the unified addition stage significantly optimizes 

data dependencies, allowing both multipliers to operate concurrently. This configuration leads to high utilization 

and enhances throughput performance. As observed in Table I, this parallelism reduces the total number of 

computational steps from 20 to 12, resulting in a latency reduction of one delay unit (1D). Although the 
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architecture requires an additional multiplier unit (1M), the trade-off favors latency reduction and supports low-

latency, high-throughput cryptographic applications. The architecture’s parallel design also minimizes 

dependency chains, allowing for more efficient execution cycles, which is particularly beneficial in scenarios 

where rapid response is essential [29].In the case of the Binary Edwards Curve, a similar strategy of using two 

parallel multipliers is applied to the unified addition operation. Assuming SSS, MMM, and DDD represent the 

respective latencies for squaring, field multiplication, and constant multiplication, the latency for unified addition 

using a single multiplier is 21M + 1S + 4D [30]. However, by introducing a second multiplier, the latency is 

reduced to 16M + 2D, achieving a utilization factor of approximately 70%. Further optimization enables the 

reduction of delay to 16M + D, indicating that adding one multiplier eliminates the need for one constant 

multiplication. Notably, employing more than two multipliers offers no additional latency benefits. Furthermore, 

the architecture incorporates parallel addition storage to reduce the number of iterations, particularly evident in 

step-6 where intermediate values (RA2, A2, D1, B2, C2, E2, and E1) are processed in parallel. This architectural 

choice reduces the number of processing steps from 15 to 13, balancing area overhead with performance gains 

[31]. Overall, parallelism in unified addition enhances both Binary Huff and Binary Edwards Curve 

implementations, enabling faster scalar multiplication and supporting efficient cryptographic processing in 

FPGA-based systems. The comparative results highlight that while both curves benefit from dual multiplier 

setups, the internal architectural strategies and resource utilizations vary, offering flexibility for design trade-offs 

depending on the target application. 

Table 3 : Data dependency of unified point addition in BHC and BEC 

Step Operation C1 Operation C0 

 BEC BHC BEC BHC 

1 RA2 X2 RA1 X1 RB2 Y2 RA2 X2 

2 RC1 Z1 RB1 Y1 RC2 Z2 RB2 Y2 

3 RA1 X1 RC1 Z1 RB1 Y1 RC2 Z2 

4 RE1 A2.A1 RD1 C1.C2 RD1 B1.B2 
RD1 (A1+C1 ). 

(A2+C2 ) 

5 RE2 C1.C2 RE1 A1.A2 
RA2 (A1+B1). 

(A2+B2 ) 

RE2 (B1+C1). 
(B2+C2 ) 

6 
     RB2  ( B1+C1). 

(B2+C2 ) 
     RA1  B1.B2 

     RD2 (A1+C1). 
(A2+C2 ) 

     RA2 (D1.E1) 

7      RC1 d.A2      RB1 A1. D1 RD2 D2.E2 RB2 E1..A1 + (D1)2 

8 
     RB1   (B2+D2). 

(D1+D2 ) 
     RC1   (A1+D1) 

RA1

(E1+D1).(C2+A2 ) 
RC2 (E1+D1) 

   

   

   

  


 
 







   






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9 
     RA2

(D2)2+C1.A2 

     RD1 A2. (C1)2
 RE1 C2. B2

 RA1 B1. (C2)2 

10 RD1 E1. D1 RA2 B2. C1 
RD1 d1. (E2)2 

+D1+E1 
RB1 B2.C2 

11 RC2 A2.E2 RC2 A2.C2 RD1 C2+C1 .D1 

RD1  αD1+(E2+A2). 

A2       

                        +(A2)2    + C1
 

12 RD1 D1+D2. . (D2)2 

RB2  βA1+(E2+B1). 

B1   

                    +(B1)2  + C1
 

RC1 Z1 -- 

13. RA2  D1+D2.A1  RB2  D1+D2.B1  

 

V. ALU  OF THE BINARY EDWARD CURVE AND HUFF PROCESSOR  

The Arithmetic Logic Unit (ALU) is designed to support both Binary Edwards Curve (BEC) and Binary Huff 

Curve (BHC) operations using two parallel field multipliers to speed up scalar multiplication. This parallelism 

helps reduce clock cycles and improves performance. In the BHC processor, the use of two multipliers lowers the 

unified addition steps from 20 to 12, as shown in Table I. Although this adds one extra multiplier, it reduces delay 

due to fewer constant multiplications, improving speed and area efficiency [32]. For the BEC processor, the dual 

multiplier setup reduces the number of operations from 21 multiplications + 1 squaring + 4 constants to 16 

multiplications + 2 constants. This cuts down the steps from 15 to 13 (Table II). About 70% multiplier utilization 

is achieved, and step-6 is optimized with parallel addition storage [33]. The ALU is controlled by input 

multiplexers (MC0, MC1) and output multiplexers (MuxOUT1–3), ensuring fast and smooth data flow. An 

optimized FSM further reduces idle cycles by allowing some operations to run in parallel [34], [35].The design 

achieves 0.038 ms on Virtex-4 and 0.031 ms on Virtex-7, showing up to 17% improvement over earlier designs 

[36]. This unified ALU supports both curve types efficiently, offering flexibility and speed for secure, real-time 

systems like 5G and intelligent transport [32]–[36]. 

VI. IMPLEMENTATION RESULTS AND DISCUSSION 

The proposed Binary Edwards Curve (BEC) and Binary Huff Curve (BHC) architectures were developed using 

Verilog HDL and implemented on Xilinx Virtex-7 FPGAs using the ISE simulator. The primary goal of both 

designs was to minimize latency rather than area, by focusing on reducing the number of clock cycles required 

for scalar multiplication. This operation includes both point addition (PA) and point doubling (PD), which are 

critical for cryptographic computations. In both architectures, scalar multiplication was performed for a field size 


  

 




  








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of 233. The BEC-based processor required 3 clock cycles for initialization, 10 clock cycles per key bit, and 13 

cycles for inversion, totaling 2336 clock cycles. In contrast, the BHC-based design optimized unified addition to 

require only 9 clock cycles per bit, reducing the total to 2104 clock cycles. This reduction is primarily due to 

efficient scheduling and parallel execution of operations using dual multipliers [37]. Latency, calculated using the 

formula Latency, calculated as 𝑇 =
𝐶𝑙𝑜𝑐𝑘𝐶𝑦𝑐𝑙𝑒𝑠

𝑓
improved in both designs despite slightly reduced clock 

frequencies. The BEC-based design achieved a 233-bit point multiplication latency of 0.033 ms on Virtex-4 and 

0.025 ms on Virtex-7, improving upon previous designs by 13% and 17%, respectively [38]. Similarly, the BHC-

based processor achieved latency figures of 29.5 ns on Virtex-4 and 23.1 ns on Virtex-7. This translates to latency 

reductions of 59.6% and 42.3%, respectively, compared to earlier implementations, and further improvements 

of over 20% compared to the most 

 

FiG. 2. ALU of  FPGA Based ECC Processor 

recent FPGA-based ECC processors [39]. The key improvement in both processors stems from the use of parallel 

multipliers and optimized finite field arithmetic operations, including Hex and Quad-based Itoh–Tsujii 

Table-4:Performance Comparison of BEC and BHC Cryptoprocessors (233-bit Field) 
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Curve 

Type 

FPGA 

Platform 

Key 

Length 

(bits) 

Slices LUTs 
Gate 

Count 

Frequency 

(MHz) 

Latency 

(ms) 

Latency/bit 

(ns) 

BEC Virtex-4 233 33,504 64,058 479,766 70.216 0.033 141 

BEC Virtex-7 233 – 65,035 – 90.1 0.025 107 

BHC Virtex-4 233 – – – 71.3 0.0295 126 

BHC Virtex-7 233 – – – 90.9 0.0231 99 

 

inversion strategies. While this introduces a marginal increase in the number of logic units (LUTs), the trade-off 

results in significantly lower delay. Additionally, both designs benefit from reduced register usage—

approximately 2m fewer slice registers—which is valuable given the large field sizes typical in ECC-based 

cryptographic applications [40]. Table 3 summarizes and compares the performance of both BEC and BHC 

processors with existing works. The BEC architecture, with its unified structure for point operations, offers 

balanced resource usage and reduced latency. The BHC processor further enhances performance by lowering the 

unified addition latency and achieving better throughput using tightly scheduled parallel operations [41]. 

VII. CONCLUSION 

This work presents a comparative evaluation of FPGA-based cryptographic processors for Binary Huff Curve 

(BHC) and Binary Edwards Curve (BEC), with emphasis on latency, resource efficiency, and security. Both 

architectures adopt parallel multipliers and unified addition logic to enhance the efficiency of 233-bit scalar 

multiplication. The BHC implementation achieves 2104 clock cycles by optimizing point addition and inversion 

operations while minimizing register overhead, resulting in a compact area-time product. This makes it 

particularly suitable for resource-constrained applications, such as secure 5G systems, where side-channel 

resistance is also critical.In comparison, the BEC processor completes scalar multiplication in 2336 clock cycles, 

leveraging complete unified addition and inversion strategies to ensure both speed and side-channel protection. 

Despite a slightly higher cycle count, BEC demonstrates improved slice register usage and maintains competitive 

latency at reduced clock frequencies, validating its efficiency in secure and performance-critical deployments. 

Overall, the BHC architecture offers lower latency, while BEC provides greater uniformity and balanced hardware 

utilization. The results underscore the value of curve-specific architectural optimizations in achieving high-

throughput, low-power ECC designs suitable for modern cryptographic applications. 
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