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Abstract

Social distancing (SD) detection refers to the usage of technology, especially image processing and computer
vision techniques, to monitor and identify compliance with SD guidelines in public spaces. The objective is to
automatically analyze images or video feeds to identify individuals and measure the distances between them.
Leveraging convolutional neural networks (CNN) or similar deep learning (DL) methods, the system analyzes
images or video feeds to identify the presence of individuals and measure the distances between them. By learning
sophisticated spatial patterns and relationships, the DL algorithm identifies instances where safe distance is not
maintained, which provides real-time visualizations or alerts to assist in imposing public health measures. This
study develops an Archimedes Optimization Algorithm with Deep Learning Driven Automated Social Distancing
Detection and Classification (AOADL-SDDC) technique. The purpose of the AOADL-SDDC technique is to
exploit hyperparameter tuned DL model for SD recognition. Primarily, the AOADL-SDDC technique makes use
of Wiener Filter (WF) based noise removal and Dynamic Histogram Equalization (DHE) based contrast
enhancement. For pedestrian detection process, the UNet++ with RMSProp optimizer is used, which detects the
pedestrians accurately and the distance among them can be computed by the use of Manhattan distance. To detect
SD, Bi-directional convolutional LSTM (BiConvLSTM) model can be employed and its hyperparameters can be
adjusted by the use of AOA. A comprehensive set of experiments was carried out for examining the performance
ofthe AOADL-SDDC technique. The stimulation value stated that the AOADL-SDDC technique reaches superior
performance over other models.

Keywords: Social Distancing Detection; Deep Learning; Parameter Tuning; Dynamic Histogram Equalization;
Segmentation

1. Introduction

Social distancing (SD) is one of the effective public health actions that reduce virus spread by decreasing physical
interaction among people [1]. SD measure is definite and executed in numerous methods at dissimilar stages based
on country. WHO has explained rules and regulations for SD action based on circumstances and places like
factories, universities, malls, airports, and so on [2]. A European Centre for Display Prevention and Control
(ECDC) well-defined SD based on specific and cluster levels. The SD plans differ so there are many monitoring
systems obtainable [3]. It is mainly supervised by non-profit governments and understood as occurrence or grade
of execution of plan in dissimilar states [4]. Computer vision (CV) systems feature non-invasive data gathering
and nonstop observing, which procedures for handling composed videos and images are central modules [5].
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Usually, handling techniques are generated by employing image processing (IP), machine learning (ML)
techniques, or combination of both [6].

IP techniques are very simple to execute but subject to image or video with unpredictable backgrounds and
illuminations, flexible animal sizes and shapes, similarity amid animals, animal obstruction, and overlapping as
well as lowest resolutions [7]. Artificial intelligence (Al) techniques replicate the way humans increase certain
sorts of data and are most prevalent models for computer vision-based animal computation. ML methodologies
are a subset of Al that normally involves physically intended feature extractors for additional detection as well as
for enhancing portability and sturdiness for estimate [8]. However, creating feature extractors needs lengthy
alteration and practical knowledge, which bounds huge apps of ML-based computer vision systems in SD. DL
models established from ML are representation-learning techniques and can mechanically find data
representations or features from raw data deprived of wide physical feature extraction [9]. The models have been
gradually proposed in IP from SD because they can enhance exactness and portability for behavior detection, thus
resolving the above-mentioned problems of physical labeling and automatically determining space behavior [10].

This study develops an Archimedes Optimization Algorithm with Deep Learning Driven Automated Social
Distancing Detection and Classification (AOADL-SDDC) technique. The purpose of the AOADL-SDDC
technique is to exploit hyperparameter tuned DL model for SD recognition. Primarily, the AOADL-SDDC
technique makes use of Wiener Filter (WF) based noise removal and Dynamic Histogram Equalization (DHE)
based contrast enhancement. For pedestrian detection process, the UNet++ with RMSProp optimizer is used,
which detects the pedestrians accurately and the distance among them can be computed by the use of Manhattan
distance. To detect SD, Bi-directional convolutional LSTM (BiConvLSTM) model can be employed and its
hyperparameters can be adjusted by the use of AOA. A detailed set of experiments was conducted to examine the
performance of AOADL-SDDC technique.

2. Literature works

Dave et al. [11] concentrate on watching the individuals who keep social distancing from the video by employing
a pre-trained YOLOvV4 procedure. This method is used to identify manifold humans and estimate the distance
among dual objects, and if two humans are against the rules and regulations of SD, then an alert will be generated.
Besides, predefined YOLOvV4 techniques are equated with projected models. Walia et al. [12] developed a real-
time surveillance method. The projected method includes enchanting input t the CCTV feed and identifying people
in the frame, by employing YOLOv5 method. Then, these noticed aspects are handled by employing Stacked
ResNet-50 for identification of whether the individual can wear face mask or not. The DBSCAN was applied in
order to discover closeness in people noticed.

Hermina et al. [13] concentrate on defining the SD in educational institutions primarily in colleges. The people
are perceived from video clips by utilizing YOLOV3 model which is trained on a dataset of Common Objects in
Context (COCO). Then safe distance between people is found by utilizing a Euclidean distance. The minimum
threshold value is stable to the safe space recommended by WHO. Oztel et al. [14] developed an automatic tactic
for identifying SD as well as face masks. For this method, a two-cascaded YOLO is utilized. In addition, a dual-
part feature extraction technique employed with YOLO has been projected. An initial portion of developed feature
extraction model removes common features utilizing the TL method. The next portion removes superior features
exact to this present challenge by utilizing the layers of classification and LBP. Shete [15] concentrates and goals
its research near executing an SD and Face Mask Recognition Method. This will execute object as well as facial
detection in video streams of walkers. Pertained techniques like YOLOv3, ResNet Classifier, and DSFD have
been employed. People who are not at a minimum distance and faces without masks were discovered. In [16], a
DL-assisted drone is considered for face mask recognition as well as SD observing. This system chiefly efforts
on Industrial-IoT (IIoT) observing by employing Raspberry-Pi 4. This drone automation method will send alarms
to persons through a speaker to uphold SD. In addition, it takes images and spots uncovered people by employing
a faster R-CNN technique.
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3. The Proposed Model

In this study, we develop an innovative AOADL-SDDC system. The purpose of the AOADL-SDDC technique is
to exploit hyperparameter tuned DL model for SD recognition. The AOADL-SDDC technique comprises three
major processes namely pre-processing, segmentation, and classification. At the pre-processing stage, the quality
of the input images can be enhanced by the use of WF based noise removal and DHE based contrast improvement.
Besides, the segmentation process takes place where the UNet++ with RMSProp optimizer and Manhattan
distance based pedestrian distance calculation are involved. Finally, the AOA with BiConvLSTM model can be
exploited for accurate detection and classification of the SD. Fig. 1 represents the entire procedure of AOADL-
SDDC methodology.

3.1. Image Pre-processing

In the initial stage, the WF based pre-processing and DHE based contrast enhancement process is performed to
boost the quality of the input images.

3.1.1. WF based Pre-processing

The WF based pre-processing is utilized to eliminate the noises at the input images. In image processing, the WF
excels as a powerful mechanism for noise removal [17]. Tailored for scenarios where the signal and noise features
are known, the WF exploits a frequency-domain method for minimizing the noise while retaining the underlying
signal. In pedestrian detection applications, where image quality is predominant, the WF proved to be
advantageous for improving the overall accuracy, reducing unwanted artifacts, and enhancing the clarity of
features.

3.1.2. DHE based Contrast Enhancement

The DHE approach is exploited for contrast enhancement in the images. DHE is an effective tool for enhancing
contrast, especially while handling images with different illumination conditions [18]. Different from static
histogram equalization, DHE adapted to local variation in intensity, which ensures optimum contrast across
dissimilar regions of image. Applied to pedestrian detection, where scene presents different lighting scenarios,
DHE contributes to enhanced visibility of pedestrian and their surroundings. DHE has become paramount in
preparing images for subsequent processing by dynamically adjusting the histogram to enhance local contrast,
which enhances the overall efficiency of pedestrian detection algorithm and facilitates accurate feature extraction.

—_—— - ——————— — — — — — —————

Input: Training Images (Social Distance [Data)

e, T 2 Ry i, gt e e
ARy, - L S — #
SR TR FRE OOy SRR TNEDAS Py SR TR
L * ® ag® * LN |
4l i - - i8S ™ el g o PR L S . P
% adn - v a - il e
=T ! Noise Removal Process: E
] n
= Contrasi Enhancement Process H
1 n
! Dynamic Histogram Equalization H
°Z_ R

p e —
i

i FPedestrinn Detection Process: Hyperparametes Tuamin o =

H UNNet++ Model RMSProp Optin = o "

i

1

< H

-
- \.\— —— - ———
H
o i
' 1 Detecting Distance Between Pedestrimns:
'

Manhattan Distance Method

Detecting Social Distance Process Hyperparameter Tuning Frocess
s usiTisr
Bi - Dircctional Convolutional LS TR Avrchimedes Optimization Algorithi
u
e —_—_——— =

FPerformance VMicasures:

T =

Fig. 1. Overall procedure of AOADL-SDDC method

]

4490



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 3 (2024)

3.2. Image Segmentation

Once the input images are pre-processed, the next stage is to perform segmentation to detect the occurrence of
pedestrians and estimate the distance between them using Manhattan distance.

3.2.1. UNet++ With RMSProp Optimizer

UNet++ becomes a formidable choice for pedestrian detection, leveraging its advanced nested skip pathway
structure to capture multi-scale contextual information and enhance feature extraction [19]. In terms of pedestrian
detection, the UNet++ structure excels at handling complex spatial relationships and diverse appearances within
crowded scenes. The nested skip connection, intricately weaving features from dissimilar scales, enables one to
precisely describe pedestrians against different backgrounds, making it fit for the nuanced demands of these
applications. UNet++'s capability to capture hierarchical features plays a major role in accomplishing accurate
segmentation, essential for succeeding in tracking and recognizing pedestrians.

A, 7k

S ,r---'
== bl ) v
.................

\4 Down-sampling

/ Up-sampling
-=->  Skip Connection

X Convolution
Fig. 2. Architecture of UNet++

While applying UNet++ for pedestrian detection, the selection of optimizer plays a pivotal role in effective model
training. Fig. 2 depicts the architecture of UNet++. The RMSProp optimizer, with its adaptive learning rate
algorithm, proves advantageous in alleviating problems related to DNN. Particularly, the visual features of
pedestrians might differ considerably across dissimilar scenes, RMSProp adapts the learning rate for all the
parameters based on the historical gradient data. This adaptability allows more stable convergence, which prevents
problems such as exploding gradients or vanishing. The UNet++ model trained with RMSProp efficiently capture
intricate feature and perform in a stable and robust manner, which improves the overall reliability and accuracy
of pedestrian detection in different environments.

3.2.2. Distance Calculation Using Manhattan Distance

To compute the distance between the detected pedestrians, the Manhattan distance based distance calculation is
applied. Manhattan distance, also termed as city block distance or L1 distance, is a measure of distance between
two points in a grid-based system measured along the grid line [20]. It is frequently utilized in computer vision
and image processing for tasks like object detection.
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To utilize Manhattan distance for pedestrian detection, it usually represents the location of object or pedestrian as
point in the grid, and then evaluates the Manhattan distance between the points:

Represent Object Position: the pedestrian position or object in the scene is represented as point in a grid. Every
point represents a coordinate pair (X,y), where x and y are the horizontal and vertical positions in the grid.

Calculate Manhattan Distance: Assume a 2 points A(x1, y1) and B(x2, y2), the Manhattan distance (L1 distance)
can be evaluated by:

Manhattan distance = |x2 — x1| + |y2 — y1]| ¢))

Set Threshold for Detection: threshold distance defines when the pedestrian is regarded as detected. When the
evaluated Manhattan distance between the pedestrian and a reference point is below the threshold, then pedestrian
is considered as detected.

3.3. BiConvLSTM based Classification

For accurate detection of SD, the BiConvLSTM model is used. As the most basic RNN architecture, the RNN
unit has clear structure and the data transmission mode is given below [21]:

ht = tanh(Wh [ht_l, xt] + bh); (2)

In Eq. (1), the corresponding weights and biases are W), and by,. The output h, hidden state at time ¢t is collectively
defined by the input data x; and the h,_; hidden state at t — 1time. The LSTM model presents three gating
mechanisms for controlling the data flow and exploits a cell state to store the prior data, thus resolving the
exploding or vanishing gradient problems.

The internal architecture of LSTM has extremely complicated, and the computation process is expressed in the
following. The mathematical model of its data propagation is given below:

R () o
;<% = o(W;lhe—y, %] + b)), @
¢ = tanh(Welhe—1, x] + bc), ®
¢ =57 e + 57 5 G ©
I = a(W,[he_yxe] + by), @

h; = I;"% = tanh(c,), ®

Whereh, shows the hidden state at ¢ time produced by the output gate. I, I; and I;, are the forget, input, and
output gates that differ over time, ¢; indicates the candidate cell state calculated from the prior hidden state h;_4
and the novel input Xx;, c; shows the cell state updated by integrating ¢; and the prior cell state c¢;_;.

BiConvLSTM (Bi-directional convolutional LSTM) cell is used for accessing the long-range context to combine
the extracted hierarchical feature from the recursive inference blocks [22]. The input, which is the concatenation
of recursive inference block output based on the sequence, is represented by [F,, Fy,_1, ..., F;]. ConvLSTM and
BiConvLSTM are used for learning global, long-term spatiotemporal features of video. In this work, the recursion
of RIB is considered a temporal series.

(1) BiConvLSTM layer: A BiConvLSTM cell has multiple ConvLSTM cells with two cell states, separately a
forward and backward sequence cell, to model the sequence dependency from the past and present recursions, and
access long-term dependency feature in both directions of recursion series. The formula of backward or forward
ConvLSTM cell is given as follows:

n

L',’;=0(I/I§{*Fn+w,{i*Hf_1+b{) 9
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0n = 0(Wyo * Fy + Wiy x Hy_y + b,) (11)
Co = fn © Co—y + iy * tanh(Wy, * F, + Wy * Hy_y + b,) (12)

H! =0, © tanh(C,) (13)

Here" © " shows the Hadamard product, " * " indicates the convolution function; and "¢" represents the sigmoid
function. WfC and th* are the convolution kernel for the input and hidden stages in forward ConvLSTM cell,
correspondingly.

(2) Multi-BiConvLSTM layer: ConvLSTM layer of backward sequence hidden and cell states as (hl, c})and the
forward sequence is hidden and cell states are represented as (h}, c}) In the first layer, we concatenate the forward

and backward hidden states and pass them through 3x3 Conv layer to obtain the hidden representation as input of
next BiConvLSTM layer. Next, we concatenate the hidden representation of BiConvLSTM layer for the input of
upscaling layer.

3.4. AOA based Parameter Tuning

Finally, the AOA algorithm adjusts the parameters related to the BiConvLSTM model. Hashim et al. introduced
AOA arecent and powerful algorithm that drew their inspiration from the principle state of Archimedes [23]. The
study shows that AOA was the potential for resolving optimizer problems and get near optimum problems at a
shorter time. The mathematical formula of AOA has different steps:

Step 1: Initialization, a random number of individuals are created and stored in their location as given below:
Oi = lbl + rand X (ubi - lbl) (14)

In Eq. (14), O; is the it" agent’s location, ub; and Ib; are the upper and lower bounds of i** agents and rand
denotes the random vector within [0,1].

den; = rand
vol; = rand (15)
In Eq. (15), vol; is the volume of i*"agent, and den; is the density.
acc; = lb; + rand x (ub; — 1b;) (16)
In Eq. (16), acc; is the acceleration, ub; and Ib; are the upper and lower bounds of i*" agent correspondingly.
Step 2: Density and Volume, using Eq. (17), volume and density must be updated

t+1
i

denf*' = den! + rand X (deny,s; — den!)

volftt = vol! + rand X (Volyes — vOLY) (17)
In Eq. (17), volf and den! are the volume and density of j** agents at t point and Vol and den,,, denotes
the best-yet volume and density at t point.

Step 3: Density Factor and Transfer Operator, collision among each other and agent take place, and then the agent
attempts to reach equilibrium state. The transfer operator TF move between exploration and exploitation, as
follows:

t—t
TF = exp (ﬂ) (18)

max

In Eq. (18), t and t,,4, are the present and maximal iteration counter. In addition, a reduction of density factor
was included to get a near optimal solution (best):

t -t t
dttt = exp( max ) - ( ) (19)
tmax tmax
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Step 4: Exploration, collision of individual takes place. If TF is less than 0.5, then the random material is selected
and the agent i’s acceleration will be updated as follows:

den,,,. + vol, .. X acc
accit“ — mr mrlt+1 mr (20)
i

den; X vo

In Eq. (20), a random material’s volume, acceleration, and density are vol,,,, acc,,,, and den,,,. and the volume,
acceleration, and density of i*" agent is vol;, acc; and den;.

Step 5: Exploitation, no individual collisions occur. If the TF is higher than 0.5, then agent i’s acceleration will
be updated as follows:

t+1

_ denbest + UOIbest X ACCpest

acc [T 2D
L

den; X vo

In Eq. (21), the best individual acceleration, density, and volume are accCpeg:, deNpest, and VOlp gt
correspondingly.

Step 6: Normalize Acceleration, acceleration can be normalized using the following expression:

acct*' + min(acc)
=ux - +1 (22)
max(acc) — min(acc)

t+1
i—norm

acc,

In Eq. (22),! and u are the lower and upper boundaries of normalization set to 0.1 and 0.9 correspondingly.
accft} ... denotes the percentage of changing steps of all the individuals, and max(acc), and min(acc) is the

maximal and minimal acceleration correspondingly.

Step 7: Updating position, Eq. (21) update the distinct position if TF is lesser than 0.5, or else, Eq. (24) is applied.

xit+1 = xit +c¢ X rand X accitj#orm Xd x (xrand - xlt) (23)
t+1 _ ..t t+1 t
Xpost = Xpese + F X ¢z X rand X acc;Xprm X d X (T X Xpese — x;)  (24)

Where x{ and xf,, are i*" and best agent at t"

iteration, T is time function and equals c; X TF where c5 falling
within [c; X 0.3,1] and takes a fixed ratio in the optimum position. d denotes the dimensionality, the constants ¢,
and c, are equal to 2 and 6. Next, it gradually decreased to distance between the optimum and existing locations,

and F refers to the flag motion direction, p denotes the probability and is evaluated as follows:
F={+1ifp<05 —1ifp>05 (25)

The fitness selection is the significant factor which influences the performance of AOA technique. The
hyperparameter selection approach includes the solution encoding process to estimate the efficiency of candidate
solutions. Here, the AOA approach considers accuracy as the primary criterion for designing the FF.

Fitness = max (P) (26)
P = e 27
~ TP +FP @7

Where TP and FP are the true positive and the false positive values.
4. Result analysis

The SD detection analysis of the AOADL-SDDC system can be examined by employing the
SD dataset [24]. The dataset contains 1000 instances with two class labels as described in Table 1.

Table 1 Details on dataset

Classes No. of Instances

High Risk 500
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Low_Risk 500

Total Instances 1000
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Fig. 4. Detected Regions
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Fig. 3 displays the maked regions accomplished by the AOADL-SDDC technique and the corresponding SD
detected fields are presented in Fig. 4. These acquired outcomes confirms that the AOADL-SDDC system
precisely recognized the SD classes.

Fig. 5 displays the classifier analysis of the AOADL-SDDC system on 80:20 of training phase (TRPH)/testing
phase (TSPH). Figs. 5a-5b illustrates the confusion matrix accomplished by the AOADL-SDDC technique. This
figure signified that the AOADL-SDDC algorithm can be correctly identified and categorized with high risk and
low_risk classes. Additionally, Fig. 5S¢ shows the PR analysis of the AOADL-SDDC method. The figure indicates
the AOADL-SDDC technique gets higher PR performance with each class. Also, Fig. 5d represents the ROC
analysis of the AOADL-SDDC algorithm. The figure exposed the AOADL-SDDC methodology provides
effective outcomes with increased ROC values with diverse class labels.

Training Phase (80%) - Confusion Matrix Testing Phase (20%) - Confusion Matrix

E E 4
0 2
x x
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Fig. 5. 80:20 of TRPH/TSPH of (a-b) Confusion matrices (c) PR-curve and (d) ROC-curve

In Table 2 and Fig. 6, the SD detection analysis achieved by the AOADL-SDDC method on 80:20 of TRPH/TSPH
can be confirmed. The obtained values showcase the increased performance of the AOADL-SDDC system under
the SD detection process. According to 80% of TRPH, the AOADL-SDDC algorithm offers average accu,,
precy, reca;, Fyeore, and MCC of 97.25%, 97.25%, 97.25%, 97.25%, and 94.50%. In the meantime, with 20% of
TSPH, the AOADL-SDDC technique gives average accu,, precy, reca;, Fycore, and MCC of 98.00%, 98.13%,
97.94%, 97.99%, and 96.07%, correspondingly.
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Table 2 SD detection outcomes of AOADL-SDDC model on 70:30 of TRPH/TSPH

Class Accu,, Prec, Reca; Ficore Mmcc
TRPH (80%)

High Risk 97.25 97.04 97.52 97.28 94.50
Low Risk 97.25 97.47 96.98 97.22 94.50
Average 97.25 97.25 97.25 97.25 94.50
TSPH (20%)

High Risk 98.00 100.00 95.88 97.89 96.07
Low Risk 98.00 96.26 100.00 98.10 96.07
Average 98.00 98.13 97.94 97.99 96.07

929

I Training Phase (80%)
- [ Testing Phase (20%)

Avg.Values (%)
=

LY =]
wn
i

93 -

Accuracy Precision Recall F-Score McC

Fig. 6. Average outcomes of AOADL-SDDC algorithm on 80:20 of TRPH/TSPH

Fig. 7 demonstrates the classifier analysis of the AOADL-SDDC system under 70:30 of TRPH/TSPH. Figs. 7a-
7b represents the confusion matrix created by the AOADL-SDDC technique. This figure shows that the AOADL-
SDDC method can be appropriately identified and categorized with high risk and low_risk classes. Then, Fig. 7¢c
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displays the PR analysis of the AOADL-SDDC method. This figure specified the AOADL-SDDC methodology
achieves boosted PR performance with every class. In the same way, Fig. 7d illustrates the ROC analysis of the
AOADL-SDDC technique. The figure displayed that the AOADL-SDDC system gives proficient outcomes with
greater ROC values with diverse class labels.
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Fig. 7. 70:30 of TRPH/TSPH of (a-b) Confusion matrices (¢) PR-curve and (d) ROC-curve

In Table 3 and Fig. 8, the SD detection analysis accomplished by the AOADL-SDDC technique on 70:30 of
TRPH/TSPH can be examined. The obtained result displays the increased performance of the AOADL-SDDC
system on the SD detection process. Based on 70% of TRPH, the AOADL-SDDC algorithm provides average

accuy, precy, recay, Fyeore, and MCC of 96.55%, 96.69%, 96.55%, 96.57%, and 93.24%. Besides, 30% of

TSPH, the AOADL-SDDC technique offers average accu,, precy,, reca,, Fyore, and MCC of 97.71%, 97.73%,
97.71%, 97.67%, and 95.44%, respectively.

Table 3 SD detection analysis of AOADL-SDDC model under 70:30 of TRPH/TSPH

Class

Accuy

Prec,

Reca; Ficore Mcc

TRPH (70%)
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High Risk 98.87 94.58 98.87 96.68 93.24
Low_Risk 94.24 98.79 94.24 96.46 93.24
Average 96.55 96.69 96.55 96.57 93.24
TSPH (30%)

High Risk 100.00 95.45 100.00 97.67 95.44
Low_Risk 95.42 100.00 95.42 97.66 95.44
Average 97.71 97.73 97.71 97.67 95.44
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Fig. 8. Average outcomes of AOADL-SDDC system at 70:30 of TRPH/TSPH

For more validation of the improvement of the AOADL-SDDC methodology, an extensive comparison analysis
can be described in Table 4 and Fig. 9 [12]. The accomplished result revealed that the AOADL-SDDC model
displays excellent performance over other systems. According to accu,, the AOADL-SDDC system gives
boosting accu,, of 98% but, the CNN, MobileNet, Inception v3, ResNet-50, RF, LR, and Stacked ResNet-50
algorithms lead to decreased accu,, of 75%, 83%, 83%, 77%, 82.30%, 82.98%, and 87%, respectively. Similarly,
on prec, the AOADL-SDDC model provides raised prec,, of 98.13% whereas the CNN, MobileNet, Inception
v3, ResNet-50, RF, LR, and Stacked ResNet-50 approaches obtains minimized prec, of 51%, 56%, 66%, 54%,
64.40%, 69.12%, and 71%. Then, on reca; the AOADL-SDDC method gets higher reca; of 97.94% however,
the CNN, MobileNet, Inception v3, ResNet-50, RF, LR, and Stacked ResNet-50 techniques acquire lesser recq;
of 65%, 93%, 93%, 67%, 90.27%, 90.54%, and 92%, respectively.
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Table 4 Comparison analysis of the AOADL-SDDC model with other approaches

Model Accu, Prec, Reca, Fscore
CNN Model 75.00 51.00 65.00 52.00
MobileNet V3 83.00 56.00 93.00 59.00
Inception V3 83.00 66.00 93.00 65.00
ResNet-50 Model 77.00 54.00 67.00 59.00
Random Forest Model 82.30 64.40 90.27 71.23
Logistic Regression Model 82.98 69.12 90.54 74.57
Stacked ResNet-50 87.00 71.00 92.00 79.00
AOADL-SDDC 98.00 98.13 97.94 97.99
2= CNN Model — Random Forest Model
[ MobileNet V3 [ Logistic Regression Model
I Inception V3 B Stacked ResNet-50
: I ResNet-50 Model [ AOADL-SDDC
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Fig. 9. Comparison analysis of the AOADL-SDDC model with other algorithms

Finally, a wide-ranging comparative computation time (CT) analysis of the AOADL-SDDC technique can be
presented in Table 5 and Fig. 10. The acquired outcomes display the higher performance of the AOADL-SDDC

methodology with a decreased CT of 1.50s.
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Table 5 CT analysis of the AOADL-SDDC model with other existing systems

Model Computational Time (sec)
CNN Model 5.52
MobileNet V3 3.86
Inception V3 3.52
ResNet-50 Model 3.30
Random Forest Model 4.77
Logistic Regression Model 4.29
Stacked ResNet-50 4.13
AOADL-SDDC 1.50
7
] B CNN Model B Random Forest Model
1 B MobileNet V3 ™ Logistic Regression Model
— 6 B Inception V3 1 Stacked ResNet-50
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Fig. 10. CT outcome of the AOADL-SDDC algorithm with other models

Alternatively, the CNN, MobileNet, Inception v3, ResNet-50, RF, LR, and Stacked ResNet-50 systems gains
improved CT values of 5.52s, 3.86s, 3.52s, 3.30s, 4.77s, 4.29s, and 4.13s. These accomplished outcomes
confirmed the superior detection performance of the AOADL-SDDC method with respect to various metrics.

5. Conclusion

In this study, we develop a new AOADL-SDDC method. The purpose of the AOADL-SDDC technique is to
exploit hyperparameter tuned DL model for SD recognition. The AOADL-SDDC technique comprises three major
processes namely pre-processing, segmentation, and classification. At the pre-processing stage, the quality of the
input images can be enhanced by the use of WF based noise removal and DHE based contrast improvement.
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Besides, the segmentation process takes place where the UNet++ with RMSProp optimizer and Manhattan
distance based pedestrian distance calculation are involved. Finally, the AOA with BiConvLSTM model can be
exploited for accurate detection and classification of the SD. A detailed set of experiments was carried out to
examine the performance of the AOADL-SDDC system. The stimulation values stated that the AOADL-SDDC
technique reaches superior performance over other models.
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