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Abstract : 

The present work is devoted to analyze the Stagnation point flow of a Carreau fluid in the presence of 

nanoparticles over an exponential stretching sheet. Additionally we studied condition of zero normal flux of 

nanoparticles is introduced at the surface along with convective boundary condition. Moreover consideration of 

nanoparticles which are passively control at the surface is physically more realistic condition. The modeled 

equations for Carreau nanofluid are converted into nonlinear ordinary differential equations by utilizing suitable 

similarity transformations. The resulting equations were numerically solved using Runge Kutta method with 

shooting technique for various values of governing parameters. Obtained numerical results have been compared 

with previously published data and found in good agreement. The effects of various non dimensional parameters 

on velocity, temperature and concentration are discussed in detail and presented through graphs. It is found that 

velocity profile increases with increasing the Weissenberg number 𝑊𝑒. 

Keywords: Exponential stretching sheet, Stagnation point flow  Carreau fluid, convective condition, passive 

control, nanoparticles, Brownian motion, thermophoresis. 

Introduction: 

In past few years the boundary layer flow of Newtonian and non-Newtonian fluids over stretching sheet 

has gained much interest because of their vast applications in engineering processes. Some examples of practical 

applications of moving stretching surfaces are extraction of polymer sheet, wire drawing, paper production, glass-

fiber production, hot rolling, solidification of liquid crystals, petroleum production, continuous cooling and fibers 

spinning, exotic lubricants and suspension solutions. 

Crane [1] was the first who studied the boundary layer flow induced by a stretching sheet problem which 

moves with a velocity varying linearly with the distance from a fixed point. Then Carragher and Crane [2] 

discussed the heat transfer on a continuous stretching sheet. Most of the existing literature deals with the study of 

boundary layer flow over a linear stretching surface.  Gupta and Gupta [3] mentioned that stretching sheet may 

not necessarily be linear. Thereafter the pioneering work of Crane has been extended by several researchers [4-6] 

under different physical aspects. Flow and heat transfer characteristics due to an exponential stretching sheet have 

a wider application in technology. Magyari and Keller [7] considered heat and mass transfer characteristics of the 

boundary layer flow due to an exponentially stretching continuous surface and solved analytically and 

numerically. Then Elbashbeshy [8] studied the suction effects on heat transfer flow over an exponentially 

stretching continuous surface. Bidin and Nazar [9] analyzed the effect of thermal radiation on the steady laminar 

two-dimensional boundary layer flow and heat transfer over an exponentially Stretching sheet.  The study of 

boundary layer flow under various physical aspects over an exponential stretching sheet was conducted by few 

researchers [10-12]. 
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Conventional heat transfer fluids are inadequate to meet the present challenges in modern world since 

they are weak conductors. There are several methods to increase the heat transfer efficiency. Nanofluid is a new 

class of heat transfer fluid that contains small tiny particles and base fluid such as water, ethylene glycol, and 

propylene glycol. Thus such kind of tiny particle known as nanoparticle and which ranges from 1-100nm in 

diameter. The main vision of suspending the nanoparticles within base fluid is to enhance the thermal conductivity. 

The term nanofluid was introduced by Choi [13]. Nanofluid is homogeneous mixture of conventional base fluid 

and nanoparticles. Following the pioneering work of Choi, Buongiorno [14] proposed a model in which seven slip 

mechanism is considered namely, inertia, Brownian diffusion, thermophoresis, diffusionphoresis, Magnus effect, 

fluid drainage and gravity settling and according to him absolute velocity can be viewed as the sum of the base 

fluid velocity and a relative velocity, he revealed that massive increase in the thermal conductivity is due to the 

existence of two main velocity slip mechanisms namely Brownian motion and thermophoretic diffusion of 

nanoparticles. Using Buongiornos model Kuznetsov and Nield [15] have investigated the natural convective 

boundary layer flow of a nanofluid past a vertical plate analytically. Khan and Pop [16] firstly examined the 

classical problem of two dimensional boundary layer flow of nanofluid induced by stretching sheet. 

Heat transfer on the surface is influenced by convective boundary condition and as a result the quality of 

the final outcome of the manufacturing industries. To define the linear convective heat exchange condition for 

algebraic entities, the convective boundary conditions are considered. The study of convective heat transfer in a 

magnetic field is important in processes, such as in gas turbine, nuclear plants, and thermal energy storage. It is 

agreed that the convective boundary conditions are more practical in various industrial and engineering processes, 

for instance, transpiration cooling process, material drying, etc. Aziz [17] introduced the idea of using convective 

surface boundary condition to investigate the boundary layer flow of the Blasius problem over a at surface. 

Makinde and Aziz [18] addressed the boundary layer flow induced in a nanofluid by imposing the convective 

condition induced by stretching sheet. 

Nadeem and Lee [19] obtained analytic solutions of boundary layer flow of nanofluid over an 

exponentially stretching surface using homotopy analysis method (HAM). Later Bhattacharya and Layek [20] 

extended this problem by considering magnetic field effects on the boundary layer flow of nanofluid over an 

exponential stretching permeable stretching sheet. Several researchers [21]-[23] focused on the boundary layer 

flow of a nanofluid over an exponentially stretching sheet under different physical conditions. 

In recent years non-Newtonian fluid flows are encountered in various engineering and industrial 

applications. The theory of non-Newtonian fluid mechanics has been developed due to the inadequacy of the 

Newtonian constitutive equations in predicting the flow behavior of many fluids particularly the fluids which have 

large molecular weight. One can know that all the rheological characteristics of non-Newtonian fluids cannot be 

constituted in a single equation due to the flow diversity in nature. Hence various constitutive equations [24]-[25] 

are constructed to understand such type of fluids. In general the modeled equations for the flows of non-Newtonian 

fluids are much complicated, highly nonlinear and of higher order than the Navier Stokes equations.  Carreau fluid 

was first introduced by Carreau [26] in 1972. This model fits reasonably well with the suspensions of polymers 

behavior in many flow situations. Parti- cularly, the Carreau model is well-suited for certain dilute, aqueous, 

polymer solutions and melts. For example, the various polymeric solutions, such as 1% methylcellulose tylose in 

glycerol solution and 0.3% hydroxyethyl-cellulose Natrosol HHX in glycerol solution. It describes both shear 

thinning and shear thickening behaviors of many non-Newtonian fluids. 

 Unlike power-law fluid, the Carreau model is one of the non-Newtonian fluid models for which 

constitutive relationship valid for both low and high shear rates. Further, Khellaf and Lauriat [27] investigated the 

flow and heat transfer to Carreau fluid in the annular space between two concentric cylinders. Flow of a Carreau 

fluid down an inclined with a free surface was examined by Tshehla [28].  Hayat et al [29] studied the boundary 

layer flow of Carreau fluid over a stretching sheet with convective boundary condition. Olajuwon [30] addressed 

heat and mass transfer in hydromagnetic flow of Carreau fluid past a vertical porous plate with thermal radiation 

and thermal diffusion. Akbar et.al [31] examined MHD stagnation point flow of Carreau fluid toward a permeable 
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shrinking sheet and obtained dual solutions. Nonlinear radiation effects on MHD flow of Carreau fluid over a 

nonlinear stretching sheet with convective boundary condition is studied by Masood et.al [32]. 

In all the aforementioned studies discussed the boundary layer flow when nanoparticle flux at a surface 

is non-zero. Recently, Kuznetsov and Nield [33] reinvestigated their existing model and revised a model, in their 

investigation they proposed a new enhanced boundary condition for the nanoparticle volume fraction at the 

boundary which is passively controlled rather than an active control and the nanoparticle flux at the wall is zero. 

In such condition, they argued this model is more physically realistic as compared to the earlier model. Recently  

Prabhakar et al [34] examined passive control of nanoparticles of  tangent hyperbolic fluid past a stretching sheet 

with the effect of inclined magnetic field.   

To the best of author’s knowledge no study has been presented to analyze flow of a Carreau nanofluid 

over an exponentially stretching sheet with zero normal flux of nanoparticles, so we considered in this article. The 

prime objective of the present study is to discuss the analysis for the Carreau fluid model in the presence of 

nanoparticles over an exponential stretching sheet. 

Mathematical formulation 

Consider the steady two dimensional flow of a Carreau nanofluid over an exponential stretching sheet at the 

stagnation region. We considered Cartesian coordinate system and 𝑥-axis taken along the stretching sheet in the 

direction of the flow, 𝑦 -axis normal to the surface and we assumed that the sheet is stretched exponentially in the 

direction of  𝑥  , with the velocity 𝑈𝑤  =  𝑎𝑒𝑥/𝐿  defined at 𝑦 =  0 . The effect of Brownian motion and 

thermophoresis has also considered. The velocity of the external flow is 𝑈∞. Where as  𝑇𝑤 = 𝑇∞ + 𝑐𝑒
𝑥

𝑙  and 𝐶𝑊 =

𝐶∞ + 𝑑𝑒
𝑥

𝑙  be the temperature and nanoparticles concentration at the sheet where 𝑇∞ and 𝐶∞ denote the ambient 

temperature and concentration respectively. 

Extra stress tensor for Carreau fluid is  

𝜏𝑖𝑗 = 𝜂0 [1 +
𝑛 − 1

2
(Γ𝛾̅̇)2] 𝛾𝑖𝑗 

Where 𝜏𝑖𝑗 is the extra stress tensor and 𝜂0 is the zero shear rate viscosity, Γ is the time constant, 𝑛 is the power 

law index, 𝛾̅̇  is defined as 
1

2
ij ji

i j

  =   

Flow equations for Carreau fluid model after applying the boundary layer approximations can be defined as 

follows 
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2

}                                                                             (3) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵
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𝐷𝑇

𝑇∞
)

𝜕2𝑇

𝜕𝑦2                                                     (4) 

Here u and v are the velocity components in the x- and y-direction respectively,  𝜌𝑓 is the density of the base 

fluid, 𝜐 is the kinematic viscosity , 𝜎  is electrical conductivity, 𝛼 =
𝑘

(𝜌𝐶)𝑓 
 is thermal diffusivity  𝑇  is the 

temperature, 𝐶 is nanoparticle volume fraction, (𝜌𝑐)𝑝 is the effective heat capacity of nanoparticles, (𝜌𝑐)𝑓 is the 

heat capacity of the base fluid, 𝜏 =
(𝜌𝑐)𝑝

(𝜌𝑐)𝑓
 is the ratio of the 
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nanoparticle heat capacity and base fluid heat capacity, 𝑇 is the temperature, 𝑇∞ is the constant temperature of the 

fluid in the inviscid free stream, 𝐷𝐵 is the Brownian diffusion coefficient and  𝐷𝑇  is the thermophoresis diffusion 

coefficient. We consider that the magnetic field 𝐵(𝑥) is of the form  𝐵(𝑥) = 𝐵0𝑒𝑥/2𝐿 , 𝐵0 being constant. 

The boundary conditions corresponding to the problem are as follows. 

𝑢 = 𝑈, 𝑣 = 0, −𝑘
𝜕𝑇

𝜕𝑦
= ℎ𝑓(𝑇𝑓 − 𝑇), 𝐷𝐵

𝜕𝐶

𝜕𝑦
+

𝐷𝑇

𝑇∞

𝜕𝑇

𝜕𝑦
= 0 at 𝑦 = 0 

𝑢 → 0, 𝑣 → 0, 𝑇 = 𝑇∞, 𝐶 = 𝐶∞  as 𝑦 → ∞                                                       (5) 

𝑢 = 𝑈𝑤 = 𝑎𝑒
𝑥

𝐿𝑓′(𝜂), 𝑣 = −√
𝜐𝑎

2𝐿
𝑒𝑥/2𝐿 {𝑓(𝜂) + 𝜂𝑓′(𝜂)}, 𝜂 = 𝑦√

𝑎

2𝜐𝐿
 𝑒𝑥/2𝐿                                (6)                                    

By employing the similarity transformations (6), the governing equations (2)-(4) reduced to the following ordinary 

differential equations. 

 

𝑓′′′ + 𝑓𝑓′′ − 2𝑓′2
+

3(𝑛−1)𝑊𝑒2

2
𝑓′′′𝑓′′2

− 𝑀(𝑓′ − 𝜖) + 2𝜖2 = 0                                              (7) 

1

𝑃𝑟
𝜃′′ + 𝑓𝜃′ − 2𝑓′𝜃 + 𝑁𝑏𝜃′𝜙′ + 𝑁𝑡𝜃′2 = 0                                                                                    (8) 

𝜙′′ + 𝐿𝑒(𝑓𝜃′ − 2𝑓′𝜙) +
𝑁𝑡

𝑁𝑏
𝜃′′ = 0                                                                       (9) 

By using (5) the boundary conditions take the form 

𝑓(0) = 1, 𝑓′(0) = 1, 𝜃′(0) = −𝐵𝑖(1 − 𝜃(0)), 𝑁𝑏𝜙′(0) + 𝑁𝑡𝜃′(0) = 0                      (10) 

𝑓′(𝜂) → 𝜖 , 𝜃(𝜂) → 0, 𝜙(𝜂) → 0 as 𝜂 → ∞                          (11) 

where 𝑀 =
2𝜎𝐵0

2𝐿

𝑈𝜌
 is the magnetic parameter, the stretching parameter𝜖 =

𝑏

𝑎
  𝑊𝑒 =

𝑎3𝑒3𝑥/𝐿Γ2

𝜐𝐿
 is the Weissenberg 

number, 𝑃𝑟 =
𝜐

𝛼
 is Prandtl number, 𝑆𝑐 =

𝜐

𝐷𝐵
 is Schmidt number, 𝑁𝑡 =

𝐷𝑇(𝑇𝑓−𝑇∞)(𝜌𝑐)𝑝

𝑇∞𝜐(𝜌𝑐)𝑓
 is the thermophoresis 

parameter, 𝑁𝑏 =
𝐷𝐵𝐶∞(𝜌𝑐)𝑝

𝜐(𝜌𝑐)𝑓
 is the Brownian motion is parameter.  Physical quantity of interest are Skin friction 

coefficient and Nusselt number are given by 

 

𝐶𝑓 =
𝜏𝑤

𝜌𝑈𝑤
2where 𝜏𝑤 = (

𝜕𝑢

𝜕𝑥
) +

(𝑛−1)Γ2

2
(

𝜕𝑢

𝜕𝑦
)

3

, 𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘(𝑇𝑓−𝑇∞)
                                                   (12) 

where 𝑘 is the thermal conductivity of the nanofluid and 𝑞𝑤 , 𝑞𝑚  are the heat and mass fluxes at the surface 

respectively given by 

𝑞𝑤 = −𝑘 (
𝜕𝑇

𝜕𝑢
)

𝑦=0
                                                                                                                       (13) 

By substituting equation (6) into equations (12)-(13), we will get 

√𝑅𝑒𝐶𝑓 = [𝑓′′(𝜂) +
(𝑛−1)𝑊𝑒2

2
(𝑓′(𝜂))3]

𝜂=0
,√

2

𝑅𝑒
𝑁𝑢𝑥 = −𝜃′(0) 

Where 𝑅𝑒 =
𝑈𝑤𝐿

𝜐
 local Reynold number 

3. Results and discussion 

Numerical solutions of the nonlinear ordinary differential equations (7)-(10) with corresponding 

boundary condition (11) have been obtained by using Runge-Kutta method with shooting technique. the values of 

local skin friction coefficient  𝑓′′(0) and Nusselt number−𝜃′(0) are presented in table 1 and table 2 
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The theme of this section is to discuss the effects of various physical parameters such as magnetic 

parameter𝑀 , Weissenberg number𝑊𝑒 , Prandtl number𝑃𝑟 , thermophoresis parameter𝑁𝑡 , Brownian motion 

parameter𝑁𝑏 , Biot number𝐵𝑖 , Lewis number 𝐿𝑒 on the velocity profile𝑓′(𝜂), temperature profile 𝜃(𝜂)  and 

concentration profile𝜙(𝜂). In the present study we have considered the non-dimensional parameter values such 

as 𝑀 = 1.0,𝑊𝑒 = 1, 𝑛 = 1.5,  𝑁𝑡 = 0.1 𝑁𝑏 = 0.3, 𝑃𝑟 = 1, 𝐿𝑒 = 1.0, 𝐵𝑖 = 1.0, 𝐿𝑒 = 1.0 and these values are 

kept as  common in the entire graphical illustration  except for the varied values as shown in respective figures. 

 

 

Table.1 Values of skin friction coefficient for different values of 𝑀 and 𝑊𝑒 when 𝑛 = 1.5, 

𝑁𝑡 = 0.1, 𝑁𝑏 = 0.3, 𝑃𝑟 = 1.0, 𝑆𝑐 = 2.0, 𝐵𝑖 = 1.0  

𝑀 𝑊𝑒 𝑓′′(0) 

0.5 0.5  

1  -0.889985 

2  -0.971383 

3  -1.041963 

 0.5 -0.970281 

 1.0 -0.889985 

 1.5 -0.813219 

  

Table.2 Values of – 𝜃′(0) for different values of  𝑊𝑒, 𝑁𝑡, 𝑃𝑟, 𝐵𝑖 when 𝑛 = 1.5, 𝑁𝑏 = 0.3, 

𝑆𝑐 = 2.0 

 

𝑊𝑒 𝑁𝑡 𝑃𝑟 𝐵𝑖 −𝜃′(0) 

0.5 0.1 1.0 1.0  

0.5         0.585062 

1.0         0.586169  

1.5                          0.587463 

 0.1        0.586169 

 0.2        0.585201 

 0.3   0.584230 

  1.0       0.586169 

  1.5  0.638199 

  2.0  0.673123 

   0.3 0.247665 

   0.5      0.369692 
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   0.7   0.468603 

 

Figures 2-12 depicts the graphical representations of the various controlling parameters on the velocity, 

temperature and concentration profiles. Fig 2 Illustrates the effects of stretching parameter 𝜖 on velocity it is clear 

from the graph that whenever 𝜖 < 1 the velocity boundary layer thickness increases and when 𝜖 > 1 the velocity 

boundary layer thickness decreases.  

and it is also clear that velocity profile increases on both the cases. Effect of magnetic parameter 𝑀 on the velocity, 

is displayed in Fig.3 by keeping the other parameters fixed.  It is observed that an increase in magnetic field 

parameter decreases the velocity. Physically the magnetic field is associated with a force which is called Lorentz 

force and it is a retarded force which shows resistance to the motion of the fluid. Hence velocity of the fluid 

reduced but temperature and concentration enhances with strong magnetic field. 

 

Fig.4 is plotted to observe the influence of Weissenberg number 𝑊𝑒 on the velocity,.  It is evident from 

that the velocity profile enhances by increasing Weissenberg number𝑊𝑒. Fig.5-Fig.6 explores the variations of 

power law index 𝑛 on velocity. It is clear from the figures, the temperature distribution is reduced with increase 

in power law index but velocity distribution increases as we increase power law index 𝑛. 

      

  Fig2. Velocity profile for various values of 𝜖          Fig3. Effect of M on velocity profile 𝑓′(𝜂) 
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Fig4. Effect of 𝑊𝑒 on velocity profile 𝑓′(𝜂)              Fig5. Effects of 𝑛 on velocity profile 𝑓′(𝜂) 

 

Impact of Biot number 𝐵𝑖 on the temperature 𝜃(𝜂) is displayed in Fig.7.  A rapid increase is found on 

temperature profile 𝜃(𝜂)with rising the values of Biot number𝐵𝑖. Physically Biot number 𝐵𝑖 is expressed as the 

convection heat transfer at the surface of the body to conduction within the surface of a body.  In general it depends 

on characteristic length of the surface, thermal conductivity of the surface and convective heat transfer coefficient 

of the hot fluid below the surface. Higher Biot number 𝐵𝑖 represents less conductive substance such as plastic, 

paper, polymer etc, whereas smaller Biot number indicates higher conductive materials which include aluminum, 

iron, and steel etc.  In addition an increase in 𝐵𝑖, results higher surface temperature which significantly enhances 

the temperature and thickness of the thermal boundary layer.   

Fig.8is plotted to observe the influence of Biot number 𝐵𝑖 on concentration profile. It is clear from the 

figure nanoparticle concentration enhances with increase in Biot number.  Fig.9 reveals the variation in 

concentration profile with the effect of Brownian motion parameter 𝑁𝑏. As Brownian motion effect increase, the 

concentration gradient increases as a result the Brownian force increases which boot the nanoparticles 

concentration at the surface. Hence the concentration profile 𝜙(𝜂) increases at the stretching sheet wall up to a 

certain value of 𝜂 but after this point opposite trend is observed.        
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Fig 6. Effect of 𝑛 on temperature profile 𝜃(𝜂)                     Fig7. Effects of 𝐵𝑖 on temperature profile 𝜃(𝜂) 

                                    

 Fig8. Effects of 𝐵𝑖  on concentration profile 𝜙(𝜂)                Fig9: Effects of 𝑁𝑏  on concentration profile 𝜙(𝜂) 

 

Fig10. Effects of 𝑁𝑡 on concentration profile 𝜙(𝜂)       Fig11. Effects of 𝑃𝑟 on temperature profile 𝜃(𝜂) 
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Fig12. Effects of 𝑃𝑟 on concentration profile 𝜙(𝜂)                           Fig 13. Effects of Le on ϕ(𝜂)   

 

Fig.10 illustrates the influence of the thermophores is parameter 𝑁𝑡 on the concentration profiles. Since 

the impact of Brownian force is to counter balance the influences of thermophoretic force, as the influence of 

thermophoretic force increases the concentration gradient at the surface decreases, as result the concentration 

profile decreases at the stretching sheet wall up to a certain value of 𝜂 but after this point concentration profile 

increase which is opposite to Brownian motion effect. In both the above cases the nature of concentration profile 

may happened due to the condition of zero normal flux of nanoparticles at the wall for the stretched flow which 

is the revised nanoparticle concentration boundary condition. 

Fig.11-Fig.12 are prepared to show the effects of Prandtl number 𝑃𝑟  on the tempaerature and 

concentraton profile. It is observed from the Fig.11 that temperature profile 𝜃(𝜂) is a decreasing function of 𝑃𝑟.  

In fact by raising the Prandtl number 𝑃𝑟 thermal diffusivity decrease and thus the heat diffuses away slowly from 

the heated surface. It is clear from the Fig.12 nanoparticle concentration profile decreases by increasing the Prandtl 

number 𝑃𝑟  Fig.13   Illustrate the concentrate profile with respect  the various values of Lewis number. It is 

observed that there is increment near the wall and after that the concentration profile decreased.          

Conclusions 

The numerical study of the flow of a Carreau nanofluid over an exponential stretching sheet with convective 

boundary condition has been reported in this paper. The governing partial differential equations are converted into 

nonlinear ordinary differential equation by employing suitable similarity transformations and solved numerically 

by using Runge Kutta method with shooting technique for various values of governing parameters. It has been 

presented the influence of various governing parameters such as magnetic parameter𝑀, Weissenberg number 𝑊𝑒, 

power law index 𝑛, Prandtl number 𝑃𝑟, thermophoresis parameter 𝑁𝑡, Brownian motion parameter 𝑁𝑏, Schmidt 

number 𝑆𝑐 on velocity, temperature and concentration profiles illustrated graphically. The prime results of this 

numerical study are summarized as follows. 

• Increase in magnetic field  𝑀, leads to occurrence of Lorentz force decelerates the velocity. 

• Impact of Weissenberg number 𝑊𝑒 and power law index 𝑛 are similar on velocity.  

• Temperature  decreases with increasing  power law index  

• As the thermophoresis parameter increases concentration profile increases but opposite trend is observed in the 

case of Brownian motion parameter.  

• It was found that heat transfer rate was accelerated with the enhancing values of the Biot number.  

• Concentration profile is increases with   Lewis number. 
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