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Abstract - Epilepsy, a widespread neurological disorder, has a substantial global impact, especially in low- and 

middle-income countries. Early and precise epilepsy detection could prevent around 70% of seizures. The 

Electroencephalogram (EEG) is a vital tool for recording neurological data in epilepsy patients. Recent 

advancements in automatic epilepsy detection methods, including signal processing, machine learning and deep 

learning, has gained significant attention. This paper provides a thorough examination of the most effective and 

precise method for detecting epilepsy, with a specific emphasis on utilizing EEG-based machine learning and 

deep learning approaches for diagnosing seizures. 
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1. Introduction  

Epilepsy is a neurological condition marked by abnormal brain activity, leading to recurrent involuntary 

movements and associated symptoms. This can result in complications such as depression and cardiovascular 

problems, affecting both patients and their families. With approximately 50 million affected individuals 

worldwide, early detection is crucial for effective seizure management through medication [1]. Various tests, 

including EEG, high-density EEG, CT scans, MRI, fMRI, PET, and SPECT are used to diagnose epilepsy and 

determine the cause of seizures. 

While EEG is a common diagnostic tool, it can be time-consuming for neurologists. Therefore, automated seizure 

detection methods have emerged, utilizing signal processing, machine learning, and deep learning algorithms. 

Analyzing and classifying EEG data are essential for epilepsy diagnosis, as EEG patterns offer real-time insights 

into the brain's electrophysiological state. EEG has advantages such as portability, affordability, high temporal 

resolution, tolerance to subject movement, and no radiation exposure risks. However, it has limitations in spatial 

resolution and signal-to-noise ratio. 

Currently, epilepsy detection involves manual examination of EEG recordings, a process that can take several 

days. Diagnosis relies on intricate and lengthy EEG tests, with results subject to interpretation by the examining 

physician. Discrepancies may arise between novice and expert assessments, making this method time-consuming 

and error-prone. To address these challenges, robust and reliable techniques for detecting epileptic activity in EEG 

signals are crucial. Accurate identification of seizure type and location is vital for effective treatment. 

Epilepsy detection methods, which encompass signal processing, machine learning, and deep learning, typically 

involve four key stages: 1. Signal pre-processing (including artifact removal), 2. Segmentation, 3. Feature 

extraction, and 4. Classification. The below figure-1 illustrate the overall system for epilepsy detection from EEG 

signals, incorporating all the techniques discussed. These methods primarily differ in the feature extraction stage. 

Traditional signal feature extraction with manual features is one category. Another involves automatic feature 

extraction combined with machine learning classifiers, falling under supervised or unsupervised machine learning 

algorithms. For methods that encompass data pre-processing, automatic segmentation, and the automatic feeding 

of self-learned features to classifiers, classifying epilepsy signals as black box classifiers, they are categorized as 

a deep learning approach. 
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Fig.1 Overview of epilepsy detection process [23] [26] 

Epilepsy detection follows a structured approach, beginning with data acquisition, often using EEG data that may 

contain significant noise. The next step is signal pre-processing, which focuses on noise removal. Segmentation 

comes next, where appropriate algorithms are used to extract segments.  The subsequent phase is feature 

extraction, where crucial statistical features play a vital role in distinguishing EEG signals. Recent efforts aim to 

create stable representations of seizure presence to improve detection accuracy. Feature extraction condenses 

extensive EEG data into a feature vector while retaining information (feature reduction and selection). 

Classification follows, involving the prediction or categorization of unknown observations based on criteria 

derived from known observations in the training group. Lastly, performance evaluation relies on standard 

measures like accuracy, sensitivity, specificity, and the area under the ROC curve, among others. The EEG 

analysis involves these stages, and the subsequent section provides a brief review of the related literature for each 

stage, followed by a discussion of the most effective technique employed within them. 

2. Literature review 

This section provides a concise overview of the literature review concerning the most prominent technique that 

excels in each stage of epilepsy detection. 

Anchal Yadav et.al [2] discussed ocular artifacts in EEG data collected from scalp electrodes and introduces an 

innovative method that combines Ensemble Empirical Mode Decomposition (EEMD) and Spatial Constraint 

Independent Component Analysis (SCICA). to effectively remove these artifacts while preserving EEG signals. 

The method involves EEMD to extract IMFs, distinguishing between artifactual and artifact-free IMFs using a 

correlation-based approach. Artifactual IMFs are then used to derive ICs through ICA with an Inverse Mixing 

Matrix. Thresholds for discrimination are set using Kurtosis and mMSE, with spatial constraints applied to adjust 

the mixing matrix. This approach outperforms existing methods in removing ocular artifacts, as shown in 

comparisons using Mutual Information, Correlation Coefficient, and Coherence measures. 

Chao-Lin Teng et al [3] introduced EICA, a novel method for handling common EOG artifacts in EEG signals. 

EICA combines EEMD and ICA to address this challenge. In EICA, EEG signals are decomposed into ICs using 

ICA, EOG-related ICs are identified using kurtosis, and the EEMD algorithm targets these EOG-related ICs to 

remove EOG-related IMFs. Clean EEG signals are then reconstructed through ICA inversion. EICA's 

effectiveness is demonstrated on both simulated and real EEG data, offering an improved solution with higher 

signal-to-noise ratios and reduced errors in EOG artifact removal. This method enhances multichannel EEG signal 

processing and analysis by effectively eliminating blink artifacts. 

Jakub Jirka et. al.[4] has developed the concept of adaptive segmentation, which was initially introduced by Silin 

and Skrylev in 1986, involved sliding Fast Fourier Transform (FFT) windows but proved inadequate for non-

stationary EEG signals. Varri later improved this approach by incorporating two windows with variable signal 

amplitude summations, serving as a foundation for subsequent techniques named as modified varri. Various 

methods, including FFT, fuzzy c-means, linear prediction, autocorrelation, and fractal dimensions, are available 

for adaptive segmentation. Among these, fractal dimensions have shown remarkable efficiency in rapid signal 

segmentation. An advanced approach integrates fractal dimension (FD) with evolutionary algorithms (EAs) to 

address dynamic signals like EEG. This method utilizes discrete wavelet transform (DWT) and sliding windows 

to enhance segmentation accuracy. 

https://www.frontiersin.org/people/u/1380813
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Automatic epilepsy classification using EEG data was first presented by Mădălina-Giorgiana Murariu et al. [5]. 

It makes use of empirical mode decomposition (EMD) to extract EEG data and then analyses the spectral power 

density of the resulting intrinsic mode functions (IMFs). These IMF characteristics can tell the difference between 

localised and distributed EEG activity. K-nearest Neighbour (KNN) and Naive Bayes (NB) classifiers are used 

for classification, with impressively high accuracy: 99.90% and 99.80% for focal and non-focal data, and 99.49% 

and 99.20% for focal and generalized epilepsy data during wakefulness and sleep stages, respectively. This 

technique offers a major advancement in the classification of EEG signals for epilepsy, which may benefit in the 

making of clinical decisions for patients. 

Muzaffer aslan et.al.[6] used Hilbert Huang Transformation (HHT) to extract distinctive features like mean 

Instantaneous Amplitude (IA) and mean Instantaneous Frequency (IF) from EEG signals. These features are 

classified using Extreme Learning Machine (ELM), resulting in highly accurate seizure detection. Furthermore, 

the method outperforms recent techniques with 0.5-1% higher classification accuracy and superior seizure 

detection accuracy. 

Mokhtar Mohammadi et. al. [7] proposed a method which combines MEMD and the Hilbert transform, forming 

HHT, to analyse the spectral energy of IMFs in the signal. EMD adaptively breaks down signals into multiple 

IMFs based on their characteristics. Hilbert transforms (HTs) are then used to convert these IMFs into 

instantaneous frequencies (IFs), providing time-frequency-energy distributions. Detection of epileptic seizures in 

EEG signals is performed using a support vector machine. The algorithm was tested on intracranial EEG records 

from patients with refractory epilepsy and validated by the Epilepsy Center at the University Hospital of Freiburg. 

Experimental results show that this method efficiently identifies epileptic seizures in EEG signals with reasonable 

accuracy. 

C.Jamunadevi et.al [8] has found that rising interest among researchers in developing automated methods to detect 

EEG signal abnormalities has led to an increased prevalence of EEG seizure detection. However, this endeavor 

demands a higher temporal resolution and is often constrained by limited data availability. Machine learning offers 

a promising avenue for extracting crucial information from EEG signals to aid in seizure detection. In this study, 

they conducted a performance analysis using different classifiers, including Random Forest, Gaussian Boosting, 

and AdaBoost. The findings demonstrate that Random Forest stands out as the most accurate classifier, delivering 

a high level of precision. 

Raveendra kumar t. H. et.al. [9] Proposed an automated classification method using a modified XGBoost classifier 

with a focal loss function to improve efficiency since diagnosis of epilepsy is a challenging task, often relying on 

time-consuming manual seizure detection guided by neurologists. This model evaluation, based on the CHB-MIT 

Scalp EEG dataset from all 24 patients, compares 2-class seizure results with state-of-the-art approaches. Cross-

validation experiments determine seizure or non-seizure predictions, resulting in nearly 100% average sensitivity 

and specificity. Importantly, this model enhances average sensitivity by 0.05% and boosts average specificity by 

1%, outperforming existing seizure detection techniques. 

As described by Puja Dhar et al. [10], due to their superior categorization abilities, Machine Learning and Deep 

Learning techniques have lately gained traction in the automatic identification of epileptic episodes. Neurologists 

can benefit greatly from the precise categorization of different seizure disorders in large EEG datasets by means 

of ML and DL algorithms. Using many features, researchers in this study implemented a convolutional neural 

network (CNN) to detect seizures in EEG data. The classification performance of the hybrid CNN-RNN model is 

thoroughly examined by simulation analysis, proving its efficacy in seizure detection using measures like 

accuracy, precision, recall, F1 score, and false-positive rate. 

In brief, the review of the literature on epilepsy EEG signals reveals a common practice of using ICA in the 

preprocessing stage, modified varri for segmentation, and EMD-HHT for feature extraction. Further details 

regarding the utilization of XG Boost for classification will be elaborated in the subsequent section. 

3. A comprehensive overview of best techniques employed at various stages. 

3.1 Stage-1 

https://www.researchgate.net/profile/Mokhtar-Mohammadi-2?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
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3.1.1 EEG Pre-processing or the elimination of artifacts: 

EEG signals are pre-processed to enhance quality by eliminating noise, correcting baselines, filtering, and 

handling artifacts. Decisions regarding artifact management prioritize preserving clinical information for visual 

signal interpretation. Noise reduction, while essential, must not compromise overall artifact removal. EEG's high 

temporal resolution makes it prone to noise and diverse artifacts from instruments and subjects, excessive 

electrode impedance, line noise, and defective electrodes are all potential causes. Physiological artefacts such as 

eye movements, blinks, heart activity, and muscular activity can affect EEG data but are difficult to manage 

despite advances in instrumentation and systems and methods. 

Artifacts can be classified as internal (physiological) and external (non-physiological). Handling internal artifacts 

like ocular electro-oculogram (EOG) and muscular (EMG) artifacts is challenging due to their signal 

characteristics. Effective artifact management is crucial in EEG-based research, particularly in diagnosing 

neurological disorders. While numerous artifact removal methods exist, a consensus on optimal approaches to 

enhance signal quality remains elusive. Recent developments focus on refining algorithms, combining techniques, 

and automating denoising. Traditional methods like regression, ocular artifact correction, and blind source 

separation remain prevalent. However, static filtering approaches struggle with noise elimination due to subject-

specific EEG sub-band variations. The following section briefly discusses used EEG artifact removal method. 

 

 

Fig. 2 (a) Brain Rhythms    (b) Artifacts 

In Fig.2 (a), we see the full range of frequencies that make up the background EEG spectrum, from Delta through 

Theta, Alpha, Beta, and Gamma. Most physiological disturbances in EEG artefact removal investigations fall into 

one of three categories: (b) ocular artefacts, (c) muscle artefacts, or (d) cardiac artefacts. [11]. 

3.1.2 Independent component analysis (ICA) 

Blind source separation techniques, such as ICA and PCA, process data from all electrodes simultaneously (X), 

whereas methods like without managing source separation explicitly, channels can be processed via regression, 

filtering, empirical mode decomposition, and the wavelet transform. ICA is commonly used to remove EEG 

artifacts by breaking down multi-channel EEG data into temporally independent components with fixed spatial 

patterns. In epilepsy research, ICA assists in separating EEG signals into distinct components, improving artifact 

removal, and identifying abnormal sources associated with seizures. However, ICA may inadvertently remove 

eye-related signals from the electrooculogram (EOG), potentially impacting brain activity in the EOG. Detecting 

and eliminating transient artifacts like muscle spasms and movements with ICA can be challenging. Real-time 

processing with ICA demands substantial computational resources but offers the advantage of not requiring a 
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reference channel. 

 

Fig. 3. Block diagram of standard independent component analysis [12] 

In summary, Independent Component Analysis (ICA) is a machine learning technique used to decompose 

multivariate signals into independent, non-Gaussian components. It assumes that the signals result from a linear 

combination of distinct, non-Gaussian sources. Its primary goal is to identify a linear transformation that produces 

independent components, achieved by utilizing an unmixing matrix (W) to reconstruct the original sources. 

S = W X  (1) 

In this context, S represents the ICA source activity, with dimensions of components multiplied by time. W 

represents the ICA unmixing matrix, characterized by components multiplied by channels, and X denotes the data 

matrix with dimensions of channels multiplied by time. 

3.2 Stage-2 

3.2.1 EEG Signal Segmentation 

EEG signal segmentation is essential for exploring brainwave data systematically. It divides continuous EEG data 

into shorter segments, enabling in-depth analyses like event-related potentials and spectral assessments. Various 

methods are employed; each chosen based on research objectives and data features. 

The Adaptive Segmentation technique, particularly the Modified Varri method, customizes segment lengths 

according to EEG signal characteristics. It adapts to non-stationary EEG data, typical during changes in brain 

states. This technique uses two sliding windows to create segments, focusing on amplitude summation and 

frequency analysis. The adaptation ensures that segments capture relevant signal properties, making it especially 

useful for events like epileptic seizures that alter signal characteristics [04]. 

Modified-Varri enhances EEG signal understanding, catering to non-stationary signals and aiding research in 

EEG-based studies. This method is pivotal for precise analysis and interpretation of EEG data. 

3.2.2 Adaptive Segmentation (Modified Varri): 

Adaptive Segmentation adapts segment lengths based on signal characteristics like peaks or spectral shifts. On 

the other hand, Sliding Window Segmentation uses a continuous, fixed window that moves along the EEG signal, 

providing a balance between time and frequency for ongoing analysis. 

The Modified Varri technique utilizes two sliding windows and is based on the summation of amplitude values 

within these windows. It also incorporates a frequency measure derived from the summation of differences 

between consecutive signal samples [13]. 

𝑨𝒅𝒊𝒇 = ∑ |𝑿𝒌| 𝑵
𝒌=𝟏   (2)  

𝑭𝒅𝒊𝒇 = ∑ | 𝑿𝒌 − 𝑿𝒌−𝟏 | 𝑵
𝒌=𝟏  (3) 

 

Here, N represents the window length, and Xk corresponds to the kth signal point. Consequently, the difference 

function (G) is defined as follows: 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 2 (2024) 

__________________________________________________________________________________ 

7138 

 

Gm = Al | Adifm+1 – Adifm | + Fl | Fdifm+1 – Fdifm  (4) 

In this context, "m" represents the window number, while the constants A1 and F1 may vary in different 

applications. Segment boundaries are determined by detecting local maxima in the G function exceeding a 

predefined threshold. 

Fractal dimension is a valuable metric for assessing signal complexity and identifying new segments when it 

surpasses a predefined threshold. In EEG analysis, the Hilbert-Huang Transform (HHT) is chosen for its ability 

to handle EEG data's nonlinearity. Singular Spectrum Analysis (SSA) is vital for noise reduction, enhancing data 

quality. However, for precise EEG analysis, the Modified Variability (mVAR) method excels. This statistical 

approach specializes in capturing signal variability, proving advantageous, especially in noisy EEG data, and 

enhancing our understanding of brain dynamics. 

Modified Variability (mVAR) is a customized and indispensable technique for EEG analysis. Its enhancement of 

variability estimation provides deeper insights, particularly in complex scenarios. This technique significantly 

contributes to the progress of neuroscience research and clinical applications. Following segmentation, each 

segment allows for a multitude of analyses, such as exploring frequency components, studying temporal patterns, 

and making statistical comparisons across different conditions or subjects. 

3.3 Stage-3  

3.3.1 EEG Feature extraction and feature selection 

In this section, we explore distinct approaches to extract features from EEG signals, primarily for the purpose of 

seizure detection. Feature extraction can be categorized into two main methods: manual and automatic extraction. 

Manual extraction involves the creation of features through manual processes, spanning various forms within both 

frequency and temporal domains. In contrast, automatic feature extraction relies on the utilization of parameters 

like mean, kurtosis, skewness, entropy, statistical moments, variance, correlation, and more. These features are 

often analyzed within common feature domains, consisting of not only the time domain but also the time-

frequency domain and the frequency domain.  

The Fourier transform (FT), discrete wavelet transforms (DWT), and continuous wavelet transforms (CWT) are 

often used for this purpose. In the feature extraction stage of epilepsy detection, literature suggests the utilization 

of EMD, PCA, Hilbert Huang Transform (HHT), and DWT methods as highly suitable choices. These techniques 

excel in extracting essential features from EEG signals, which can then be applied in the subsequent classification 

phase. The following section provides detailed explanations for HHT used for feature extraction [6]. 

3.3.2 Hilbert Huang Transform (HHT): 

The utilization of the Hilbert-Huang Transform (HHT) for feature extraction is a powerful method for analyzing 

intricate and non-linear signals, including EEG data. HHT dissects these signals into Intrinsic Mode Functions 

(IMFs), effectively capturing their inherent oscillatory components. These IMFs serve as a foundation for feature 

extraction across various applications, particularly in the domain of epileptic seizure detection. HHT-based feature 

extraction facilitates the identification of crucial characteristics like signal energy, frequency distribution, and 

temporal patterns, all contributing to the distinction between normal and abnormal brain activity. This approach 

provides valuable insights for understanding EEG signal dynamics, making it a valuable asset in both neuro-

scientific research and clinical applications [6]. 

The Hilbert Huang Transform (HHT) is carried out in a two-step procedure, combining the Hilbert transform (HT) 

with the empirical mode decomposition (EMD) technique. In the first step, EMD disassembles the signals into 

intrinsic mode functions (IMFs), each representing distinct time scales. In the second step, the Hilbert transform 

is individually applied to each IMF, resulting in the creation of the Hilbert spectrum. This spectrum serves as the 

fundamental source for subsequent feature extraction processes [6][7]. 

The Hilbert Transform H[X(t)] of a signal X(t) is defined as, 
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1
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     (5) 

The Hilbert transform of X(t) is obtained by convolving X(t) with the signal 1/πt, representing the reaction of X(t) 

to a linear time-invariant filter known as a Hilbert transformer with an impulse response of 1/πt. After applying 

the Hilbert transform to every intrinsic mode function (IMF), features, including statistical parameters (mean, 

median, standard deviation, minimum, maximum, energy) and Hjorth features (activity, mobility, complexity), 

are extracted. Cumulative features (cumulative mean, cumulative minimum, cumulative maximum), and 

additional metrics (Shannon entropy, Rényi entropy, approximate entropy, Sample entropy, Higuchi fractal 

dimension, Katz fractal dimension) are computed from both the IMFs and residual waves. The averages of these 

features are determined across segments. These features are calculated for each Hilbert-transformed signal and 

then averaged across the segments. 

3.3.3 Mutual Information (MI) Score: 

Mutual Information (MI) is derived from information theory and functions as a valuable tool for feature selection, 

akin to the concept of information gain in constructing decision trees. MI measures the reduction in uncertainty 

of one variable when the value of another variable is known. While it is inherently suitable for discrete variables 

like categorical data, it can be adapted for numerical data as well. MI quantifies the decrease in entropy related to 

the target value. The MI score ranges from 0 to ∞, with higher scores indicating stronger associations between 

features and the target variable, underscoring their significance in model training. Conversely, lower scores, 

including 0, imply weaker associations [5]. 

3.4 Stage-4  

3.4.1 EEG Classification and epilepsy detection 

Numerous studies have been devoted to the identification of epileptic seizures by analyzing EEG data, examining 

a wide array of approaches encompassing statistical, nonlinear, and machine learning methods. These methods 

include diverse classifiers like Artificial neural networks (ANN), convolutional neural networks (CNN), recurrent 

neural networks (RNN), and autoencoders (AE) have all been tested and compared to traditional methods like 

random forests, SVMs, K-NNs, and Gradient Boosts. Conducting a comprehensive assessment of various factors 

is crucial for epilepsy classification. The selection of metrics relies on specific application needs. Notably, 

Random Forest (RF) and XG-Boost have exhibited strong performance, and the subsequent section delves deeper 

into their exploration. 

3.4.2 X-treme Gradient boost classifier 

Gradient Boosting (GB) is a potent machine learning approach, creating robust ensemble models by combining 

multiple weaker prediction models, often in the form of decision trees, primarily focusing on improving 

classification tasks. It operates iteratively, training new models to rectify previous model deficiencies, with each 

subsequent model predicting gradients or residuals of the loss function associated with prior models' predictions. 

The final classification decision aggregates all models' predictions [9]. 

The Gradient Boosting Classifier's mathematical foundation involves step-by-step loss function reduction by 

fitting weak classifiers to negative gradients. This iterative process progressively improves model accuracy errors 

in prediction. 
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Fig. 4. Flow diagram of gradient boosting machine learning method [14] 

Gradient Boosting (GB) is a robust ensemble machine learning method, primarily focused on enhancing 

classification tasks by combining multiple weak prediction models, often in the form of decision trees. This 

process involves iterative model training to address deficiencies in prior models, with each model predicting 

gradients or residuals of the loss function tied to previous predictions. The ultimate classification result is an 

aggregation of predictions from all the models [14]. 

GB's mathematical foundation relies on sequentially reducing a loss function by fitting weak classifiers to the 

negative gradients, leading to gradual improvements in model accuracy. These core principles underlie Gradient 

Boosting, systematically enhancing prediction accuracy by iteratively reducing residual errors through weak 

classifier fitting. The final prediction combines their forecasts, with the combination weighted according to the 

learning rate.  

XGBoost, or eXtreme Gradient Boosting, is an advanced evolution of gradient boosting, tailored for enhanced 

efficiency and precision. It prioritizes gradient information and integrates multiple optimizations while building 

upon the fundamental principles of gradient boosting with its unique refinements. 

 

 

Fig. 5 XGBoost (extreme gradient-boosting) algorithm structure [15] 

3.4.3 Evaluation Metrics for Epilepsy Detection Classification Methods 

The evaluation of epilepsy classification encompasses a diverse set of machine learning metrics, collectively 

providing insights into the model's ability to distinguish between epileptic and non-epileptic signals. 

In the mathematical assessment of a classifier model, performance metrics occupy a pivotal role. This section is 

dedicated to evaluating the model's effectiveness and quantifying its predictive accuracy using quantitative data. 
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Specifically, four metric functions - accuracy, precision, F1 score, and recall - are employed for this purpose [5]. 

Having previously provided detailed explanations of the stages and techniques commonly utilized in typical 

epilepsy detection methods, along with a brief overview of relevant literature, we now shift our focus to delve 

into deep learning -an advanced machine learning approach that holds relevance in epilepsy detection. 

4.1 Deep Learning (DL) Approach 

Epilepsy detection initially relied on traditional signal processing and human expertise. The term "machine 

learning" (ML) emerged in computer science and AI in the 1950s and 1960s, with pioneers like Arthur Samuel 

introducing algorithms that allow computers to learn from experience rather than explicit programming.  Over the 

time, the machine learning especially deep learning, transformed epilepsy detection, automating feature 

extraction, enhancing EEG analysis accuracy, and fostering automation. This evolution, driven by computational 

progress and data availability, established machine learning as a fundamental component in various applications. 

Machine learning comprises diverse algorithms that facilitate learning from data and making predictions without 

explicit programming, significantly impacting contemporary technology. However, it thrives in structured data 

tasks but may face limitations in unstructured domains like images, audio, and text. 

Deep learning (DL) is a subfield of machine learning that uses convolutional neural networks (ANNs) with many 

hidden layers, as shown in the figure, to autonomously extract hierarchical features from raw data. This approach 

is particularly effective for handling unstructured data, such as images, audio, and natural language. In natural 

language processing (NLP), notable deep learning architectures include transformer-based models and recurrent 

neural networks (RNNs). CNNs are used for image analysis[10]. 

It's worth mentioning that deep learning typically requires a significant amount of labeled data and substantial 

computational resources, such as GPUs or TPUs. In summary, deep learning, a subset of machine learning, excels 

in automatically learning relevant features from unstructured data through deep neural networks. In contrast, 

machine learning encompasses a broader range of algorithms, often requiring manual feature engineering and 

being better suited for structured data.  

 

Fig. 6. ML vs DL vs AI: Overview [16] 

4.1.1 CNN model: 

CNNs, initially designed for visual data, have showcased their adaptability in handling non-image data, especially 

in NLP and text classification. While sharing core neural network principles with multilayer perceptron’s (MLPs), 

CNNs differ in design, drawing inspiration from the animal visual system for exceptional image processing 
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capabilities. In deep learning, CNNs have become prominent, excelling in one- and two-dimensional applications, 

such as disease prognosis from biological signals and the detection of epileptic seizures in EEG data. 

Two-dimensional Convolutional Neural Networks (2D-CNNs) utilize visualization techniques like spectrograms 

and wavelet transforms to convert one-dimensional EEG signals into two-dimensional representations. In contrast, 

convolutional networks analyze one-dimensional EEG signals in their raw format. This distinction warrants a 

separate examination of both 2D and 1D-CNNs in the context of epileptic seizure detection [17]. 

 

Fig. 7. Convolutional-neural-network-an-overview [17] 

 

4.2 Contrast Between Deep Learning (DL) and Traditional Machine Learning (ML) in Epilepsy Detection 

In traditional machine learning, feature and classifier selection often require a trial-and-error approach, making it 

suitable for small datasets but less effective with large volumes of data. On the other hand, deep learning methods, 

which depend on extensive training data, operate across multiple feature spaces, posing challenges with limited 

data availability. Historically, traditional machine learning models were developed primarily using Mat-lab, while 

deep learning models rely heavily on Python, often supported by open-source toolboxes. Python's accessibility 

and cloud computing resources have facilitated the creation of sophisticated automated systems [18]. 

To summarize, epilepsy detection has transitioned from traditional machine learning to deep learning due to 

increased data availability and the pursuit of precision. Traditional machine learning excels with small datasets 

but struggles with larger ones, requiring manual feature extraction and classifier selection. Deep learning 

streamlines these processes, benefiting from extensive data for complex models [18] [19].  

Deep learning's demand for ample training data aligns with its exploration of various feature spaces, promoting 

data-centric research. This shift to deep learning is marked by the use of Python and open-source toolboxes, 

making it more accessible and conducive to system development. Implementing deep learning in epilepsy 

detection enhances accuracy and efficiency, potentially revolutionizing epilepsy pattern identification. Staying 

current with technological advancements in medical signal analysis is crucial. 

Conclusion  

Epileptic seizure detection bridges the realms of traditional signal processing and deep learning. Although there 

is no universally accepted framework declaring one approach superior in epilepsy detection, this review study 

aims to identify effective techniques within deep learning and signal processing to optimize epilepsy diagnosis 

based on multiple investigations. This thorough review study has made researcher to get insight of superior 

technique which is used in each stage of the epilepsy detection techniques.  
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