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Abstract. Numerous industrial applications rely on induction motors due to their numerous advantages, 

especially three-phase induction motors. Their safe and reliable operation is, thus, very important. The motor is 

prone to problems and breakdowns, which can lead to long periods of inactivity and substantial operational and 

financial losses. So, early fault detection is critical for vehicle safety. Precise sequentially is required throughout 

the method selection, preprocessing, feature extraction, and model training processes. One non-linear signal 

processing method used in data preparation is Cepstrum analysis, which is the integral derivative of the logarithm 

of the input signal's absolute value of its DFT. With the use of ICA, a multivariate random signal can be converted 

into a signal with components that are statistically completely independent of each other. This process is known 

as feature extraction. When training a CNN-CLSTM model, feature extraction takes precedence. This new method 

outperforms two cutting-edge algorithms: CNN and CLSTM. Accuracy improved significantly, reaching 97.38%, 

according to the results. 

Keywords: Induction Motors Faults · Independent component analysis (ICA) · Motor Current Signature 

Analysis. 

1 Introduction 

One may say that the induction motor is the lifeblood of the industrial sector. Electrical and mechanical fatigue 

are two of the many potential causes of IM failure. Any delay in detecting these errors increases the likelihood 

that they will develop to catastrophic failures. It follows that condition monitoring is superior to other methods 

for detecting defects early on. This test finds out how terrible the motor is by applying a broad variety of external 

defects and analyzing each one thoroughly. The induction motor was about to see widespread use in industry. 

Engine vibration and excessive noise were two topics that drew the attention of many engineers in the early. A 

number of countries published the seminal works. A basic mechanism for the generation of vibration and noise 

by electrical motors was uncovered. Electromagnetic vibrations in the stator core due to rotational electromagnetic 

forces are the key finding of these investigations. The most important finding is that the mechanical behavior of 

the motor's structure and the possibility of different types of spinning forces stimulating a resonance situation 
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directly affect the levels of vibration and noise. When it comes to diagnosing issues with induction motors and 

keeping tabs on their state, modern industry relies heavily on vibration analysis. The dependability of vibration 

analysis in machine diagnostics relies on the ability to precisely evaluate vibration data, especially frequency 

spectra. Using examples from the author's own work in a variety of fields, this book presents a number of case 

studies. In order to better diagnose electromagnetic anomalies in induction motors, this study will try to explain 

what symptoms might be present. The author's vast experience in vibration diagnostics for electrical devices across 

multiple industries, along with current research and classical theory of electromagnetic vibration, are all utilized. 

Induction motors (IMs) have grown into an indispensable part of the industrial world due to their role in producing 

mechanical power, manufacturing, and transportation. Machine tools, electric vehicles, pumps, compressors, 

blowers, fans, conveyors, and electric instruments are among of the most common applications of IMs. About 

60% of industrial electricity use and more than half of all electrical energy generated globally comes from 

induction motors (IMs). The adoption of IM is spreading across all industries due to its resilience, low cost, high 

power-to weight ratio, and adaptability. Instant messaging's dependability and accessibility are critical to the 

industry's seamless operation. Inevitably, IMs will experience mechanical, electrical, thermal, and environmental 

stressors during the operation. Natural ageing, variations in external loads, power supply fluctuations, excess heat, 

inadequate lubricants and poor sealing, a dusty atmosphere, and manufacturing faults are some of the many 

potential sources of these stresses. Consequently, the engine is prone to unexpected failures in a number of its 

parts. People frequently fail to notice the most critical stage of these abnormalities, which can result in devastating 

motor failure. The industry bears a disproportionate share of the cost associated with process shutdowns and, in 

the worst-case scenario, catastrophic harm to individuals. Therefore, in order to prevent catastrophic motor failure, 

the industry finds and analyses IM components that begin to deteriorate early on. As an IM continues to serve its 

purpose, condition monitoring continuously assesses its many components. Detects IM issues early on, performs 

condition-based maintenance with minimal downtime, and gives enough warning of imminent failures. For this 

sector to function, induction motors (IMs) are needed. Operating IM in a safe and continuous manner is crucial 

for it to achieve the high reliability standards. Monitoring IM is essential for avoiding unplanned shutdowns, 

making sure the system is running safely, and cutting down on maintenance and operation expenses. There are 

online and offline ways to monitor IM's health status. Improved motor reliability, reduced maintenance costs, less 

downtime, and optimal maintenance based on failure prediction are all aims of condition monitoring. Condition-

based monitoring as the "mother" of condition-based maintenance. The IM may become flawed in many ways as 

time goes on. If the induction motor unexpectedly ceases functioning, the process that is now going will come to 

a halt, costing you both time and money. Because of its maturity, dependability, durability, and adaptability, the 

induction motor is one of the most frequent electric devices used in industrial applications. Maintaining close 

observation of the patient's condition is of utmost importance. The key to quickly resolving upcoming issues is to 

spot them early on. Preventing more costly equipment problems through rapid, unscheduled maintenance reduces 

downtime and financial loss. Typically, motors can experience mechanical issues such bearing failure, air gap 

eccentricity, or shaft bending, as well as electrical issues including stator and rotor failures. Rotor defects, such 

as bar and end-ring breaking, account for only about 5% of induction machine mistakes, but their detection is 

critical. Because stator design has evolved so much, machines can now only tolerate stator defects causing a few 

seconds of downtime at most. Rotors, on the other hand, tend to rely on more conventional layouts, such as the 

squirrel cage. 

2. Literature Survey 

More and more cars and industry are using induction motors (IM) since they can run on electrical energy, the best 

energy source. [1]Availability of these devices is dependent on the prime mover's condition. The diagnostics and 

prognostics it provides are thus more vital than ever in this era. The purpose of this analysis is to learn more about 

how IM diagnoses have developed through time, with a focus on EVs. [2]Any failure in the motor components 

would be catastrophic for an all-electric vehicle that relies on an integrated motor (IM) for propulsion. All industry 

equipment that uses an IM is subject to this as well. As their popularity skyrockets, so does the dependence on 

instant messaging. Both single-phase and poly-phase IMs are possible, depending on the machinery. [3]Electrical 

and mechanical components of an IM include the stator, rotor, bearings, winding, end rings, and so on. When 

working in challenging industrial and environmental environments, IM meets a wide variety of strains. It shows 
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the several kinds of IM faults that these stresses can create. [4]Extreme weather, improperly rated power or 

voltage, and an imbalanced or overload load are the three most typical causes of these difficulties problems with 

contamination and rust, in addition to improper installation. Because the physics behind each flaw is different, the 

vibration, current, and acoustics that result from them are also different. It is important to monitor specific factors 

in order to identify these issues. [5]To keep tabs on the IM's primary parts, a plethora of physical measures and 

condition monitoring techniques were employed.Motors, gearboxes, wind turbines, generators, and engines are 

all examples of rotating machinery that are vital to modern industrial applications .These critical machines need 

to work consistently, accurately, and without any problems [6]. A great deal of research and analysis has focused 

on this critical issue in recent years, exploring several approaches to improving the CM and FDD of rotating 

machinery. Human data extraction of diagnosable information is required by model and signal methods, data-

based methods, classic CM and FDD procedures [7], and all of these methods combined. Once the features vector 

was prepared, the following stage was to develop pattern recognition models. Complex feature extraction 

techniques and a high level of skill are required in this case [8]. Artificial intelligence (AI) techniques and methods 

for RM CM and FDD have been widely used as modern solutions to this challenge. When it comes to industrial 

processes and applications, induction motors (IMs) are indispensable. The process of continuously checking the 

health of an induction motor is called "condition monitoring" (CM). Reducing expenses while increasing machine 

availability, efficiency, and productivity are the aims here [9]. The most crucial prime movers in industrial 

applications, IM are an integral aspect of industrial processes due to their durability and ease of production [10]. 

Many different types of businesses depend on IMs, including railways, mining, woodworking equipment, cars, 

chemicals, and paper mills. Centrifugal pumps, blowers, home appliances, and industrial gear all make heavy use 

of single-phase IMs due to their efficiency and reliability. Research on induction motor issues has focused on a 

wide range of topics, including rotor corrosion, imbalanced stator windings, eccentricity, bearing problems, and 

misalignment [11]. It is common practice to perform IM maintenance at regular periods. On the other hand, 

operational and environmental factors may cause IM's performance to decline at regular periods. So, if you want 

more efficiency, you need to monitor the online IM. New methods rely heavily on predictive maintenance using 

CM. Its objective is to ascertain the maintenance schedule in relation to the state of the process or facility [12]. 

The purpose of condition-based monitoring is to enhance the efficiency and performance of IM, increase its 

lifespan and productivity, and decrease its internal and external damages [13]. It is now crucial to have CM and 

fault detection of IMs in order to eliminate unexpected breakdowns and decrease unplanned downtime. Despite 

induction motors' reputation as reliable rotary machinery, they can still experience unanticipated issues such as 

rotor bar breaks, bearing failure, stator interterm shorting, etc. [14] The sector is vulnerable to unexpected failures 

caused by these defects, which can lead to human deaths and a chain reaction affecting production safety and 

quality. Therefore, it would be prudent to think about implementing a system that could stop these types of 

situations from occurring in this field. [15] Current protection systems are designed to isolate the faulty 

component; however, they cannot be relied upon to give warnings before the actual fault occurs; hence, these 

systems are unable to avoid flaws. [16] Condition monitoring is one kind of preventative strategy that can notify 

you before the physical symptoms of a disease even appear. Thus, condition monitoring would enable the 

equipment to be securely turned off, preventing any potential loss of time due to unforeseen breakdowns. 

Technologies that have been created utilizing the fast Fourier transform (FFT) [17], wavelet transform, leaky flux 

sensing, and stator. An assortment of concepts, including partial discharge, voltage and current harmonics, and 

others, have been proposed by different scholars. Using fuzzy logic and field-programmable gate arrays (FPGA) 

based devices, the three line currents can be used to analyze the health of a motor [18]. On the other hand, fuzzy 

logic-based schemes have a few flaws, like a limited knowledge base, the time-consuming process of building 

fuzzy rule bases, and insufficient data regarding the correlation of error symptoms. Think of a huge power plant 

in Taiwan. [19] It uses an auxiliary system with a bunch of high-voltage motors to power all those huge thermal 

generator sets. When the auxiliary system fails, it can have a domino effect on the whole power system, lowering 

reliability and power quality and potentially leading to huge economic losses. [20] This highlights the critical 

nature of induction motor status monitoring and auxiliary system trouble diagnoses. A wide variety of damage 

types were identified, including interterm short-circuits, broken rotor bars, bearing inner ring failure, bearing outer 

ring failure, ball failure, cage failure, and eccentricity [21]. Several research have proposed ways to classify stator 

failures and other types of damage. Among these techniques are magnetic pendulous oscillation, motor current 
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signatures, total harmonic voltage, and assessments of instantaneous active and reactive power. The most common 

issues with induction motors include broken rotor bars, stator inter-turn failure, and bearing failure. Bearing failure 

accounts for almost 41% of induction motor defects [22].  About 11% of failures are related to other components, 

whereas 13% are related to the stator and 39% are related to other parts. For a more comprehensive look, you 

might refer, which classifies induction motor breakdowns as either mechanical or electrical. Bearing failures (from 

inadequate lubrication, mechanical stresses, incorrect assembly, misalignment, etc. [23]), gearbox failures (when 

the rotor is not centered with regard to the stator and/or its rotation is not aligned with the stator's central axis), 

and eccentricity are all examples of mechanical faults that can manifest in motors that employ gearboxes. The 

electrical components known as the stator and rotor could both be malfunctioning. Failure of the stator might be 

caused by damage to the insulation of the stator windings or the speed controller of the drive. Damage to the 

windings, end rings, or rotor bars can indicate rotor problems. There has been extensive research into several 

sensing modalities for the aim of fault identification. In [24], an assessment found that axial electromagnetic flux, 

current, and voltage monitoring were all Heat, infrared, vibration, and sound sensors, as well as sensors for 

chemical analysis of motor oil [25] had all been considered. A large number of these are being used now as we 

speak. Rather than a Using new magnetic flux sensors to monitor stator-rotor air-gap flux and leakage flux is a 

novel approach. The most recent details on this method can be found. These additional methods, together with 

partial-discharge analysis, are presented, even though vibration analysis was included. Recent years have seen a 

surge in interest in non-invasive in-operational techniques like current analysis, and more especially current 

harmonics. Experiments using inferential sensors that use current analysis tend to be accurate, and machine 

physics has yielded typical frequency responses for various defects. Because induction motors spin, many of the 

signals that point to current or future issues with these devices are periodic. Consequently, frequency-domain 

analysis has played a significant role in the detection of motor problems for a really long time. Previous approaches 

relied on Fourier transforms, while newer ones take a look at signals across the frequency and temporal domains 

as well. 

3. Proposed System 

Condition monitoring induction motors is a challenging process that engineers and researchers, especially those 

working in industrial settings, have encountered. Unlike other condition monitoring methods like chemical, 

vibration, acoustic emission, and thermal monitoring all of which require expensive sensors or specialized 

equipment current monitoring does not require any extra sensors. Modern monitoring methods can identify a wide 

range of issues with induction motors, including but not limited to: load, air gap eccentricity, rotor, bearing, and 

short winding. 

3.1 Preprocessing 

       Cepstrum analysis is a non-linear signal processing method that takes the integral derivative of the logarithm 

of the absolute value of the input signal's DFT. This document provides a detailed outline of the techniques needed 

to achieve the cepstrum analysis of an input signal. For the creation of the term "cepstrum," the first four letters 

of the word "spectrum" were reversed, representing the spectrum of wavelengths [26]. We are able to separate the 

impulse response from the excitation forces by cepstrum analysis, a vibration analysis specialist. It is possible to 

express the fault signal 𝑑(𝑗) as follows, presuming that it is composed of two convoluted sequences, 𝑎(𝑗) for the 

excitation function and 𝑚(𝑗)for the basic wavelet: 

 

                                                            𝑑(𝑗) = 𝑎(𝑗) ∗ 𝑚(𝑗)                                                           (1) 

 

It is possible to express (1) in terms of frequencies as: 

 

                                                            𝐷(𝜎) = 𝐴(𝜎). 𝑀(𝜎)                                                          (2) 
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Obtaining the magnitude spectrum of the given signal requires taking the absolute value of 𝐷(𝜎), which may be 

expressed as: 

 

                                                               |𝐷(𝜎)| = |𝐴(𝜎)|. |𝑀(𝜎)|                                              (3) 

The expression (3) expressed as a logarithmic form is: 

 

                                        𝑙𝑜𝑔|𝐷(𝜎)| = 𝑙𝑜𝑔|𝐴(𝜎)|. 𝑙𝑜𝑔|𝑀(𝜎)|                                                (4) 

 

From its frequency domain form, the signal is transformed into a linear sum of its components using the 

logarithmic function [22]. It can now obtain the equation for the cepstrum analysis that intends to use IDFT to (4): 

 

                                                𝑔(𝑗) = 𝐼𝐷𝐹𝑇(𝑙𝑜𝑔|𝐴(𝜎)|. 𝑙𝑜𝑔|𝑀(𝜎)|)                                      (5) 

 

The inverse Fourier transform of linear spectra converts the signal back to its original form in the time domain, 

which the author named the "quefrency" domain (the term "frequency" is derived from it). There is another form 

that the cepstrum analysis equation can take: 

 

                                                               𝑔(𝑗) = 𝐾−1[𝑙𝑜𝑔|𝐾{𝑑(𝑗)}|]                                          (6) 

 

Real, power, complex, and phase cepstrum analyses are only a few of the many options available for this type of 

investigation. According to its original definition, the power cepstrum 𝑔𝑏(𝑗) is what cepstrum analysis is all about. 

 

                                                       𝑔𝑏(𝑗) = |𝐾−1[𝑙𝑜𝑔|𝐾{𝑑(𝑗)}|2]|2                                         (7) 

A definition for the complicated cepstrum would be: 

 

                                                       𝑔𝑔(𝑗) = 𝐾−1[𝑙𝑜𝑔|𝐾{𝑑(𝑗)}|] + 𝑛2𝜋ℎ                                (8) 

 

Unwrap the imaginary part of the complex logarithmic function is an operation that can only be performed with 

the integer ℎ. It was the real cepstrum analysis that we used to preprocess the fault signals; it is obtained by taking 

the real component of (6) or by setting the phase to zero in the complex cepstrum equation. In other words, the 

real cepstrum analysis could be expressed as: 

 

                                                   𝑔𝑞(𝑗) = 𝑟𝑒𝑎𝑙(𝐾−1[𝑙𝑜𝑔|𝐾{𝑑(𝑗)}|])                                        (9) 

3.2 Feature Extraction 

3.2.1 ICA 

The application of ICA allows for the statistical transformation of multivariate random signals into signals with 
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completely independent components. It was recently shown that the approach can differentiate between mixed 

signals and independent ones. To say that one component is independent, it means that the data transmitted by 

that component cannot be deduced from the data transmitted by other components. The combined probability of 

two independent quantities can be calculated by multiplying their probabilities, according to statistical 

interpretation. One way to represent a generic ICA model is as 

 

                                                                      𝑑 = 𝐸𝑤                                                                 (10) 

 

with A being an unknown full-rank matrix called the mixing matrix, and 𝑤 and 𝑑 being the data matrices 

representing the independent components and the measured variables, respectively. Finding an approximation for 

the mixing matrix 𝐸 or the independent component matrix s given the measured data matrix 𝑑 is the primary 

obstacle of independent component analysis (ICA) [27]. The real problem of ICA is to find a separation matrix 𝑆 

that, taking into account the following, makes the components of the reconstructed data matrix 𝑤̂ as independent 

as possible: 

 

                                                                        𝑤̂ = 𝑆𝑑                                                               (11) 

Requiring that components be independent of one other is equivalent to assuming that they do not follow a normal 

distribution [23]. Thus, it is possible to determine the independent variables that, when applied to the vector 𝑆𝑑, 

maximize a non-Gaussianity yardstick. Here, there is a fast fixed-point approach to minimize or maximize the 

fourth-order cumulant in order to determine the ICA. Statistical independence is more rigorous than uncorrelation 

and requires first transforming the measured variables into uncorrelated variables with unit variances. So might 

hear this pre-whitening process referred to as sphering. 

3.2.2 PCA 

Typically, m is smaller than l, and PCA takes an input set of m-dimensional vectors 𝐷𝑖 =

(𝑑𝑖(1), 𝑑𝑖(2), … . , 𝑑𝑖(ℎ))𝐼 and uses linear transformations to create new vectors 𝑤𝑖  by 

 

                                                                        𝑊𝑖 = 𝑍𝐼𝐷𝑖                                                           (12) 

𝑍 is an orthogonal matrix with size ℎ × ℎ, and 𝑧𝑡 is the eigenvector of the sample covariance matrix. 

 

                                                                    𝐺 =
1

𝑙
∑ 𝐷𝑖𝐷𝑖

𝐼

𝑦

𝑖=1

                                                     (13) 

To rephrase: PCA initially fixes the eigenvalue problem 

 

                                                                    𝜏𝑖𝑧𝑖 = 𝐺𝑧𝑖 , 𝑡 = 1, … . , ℎ                                      (14) 

Being an eigenvalue of 𝐺, 𝜏𝑖 corresponds to the eigenvector 𝑧𝑖. To get the components of 𝑤𝑖 , we first estimate 𝑧𝑖, 

and then we apply the orthogonal transformations of 𝑑𝑖. 

 

                                                                        𝑊𝑖(𝑡) = 𝑧𝑡
𝐼𝐷𝑖                                                      (15) 

This new structure is defined by its principal components. 

By sorting the eigenvectors in ascending order, we can use the first few to reduce the number of primary 
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components in 𝑤𝑖 . Therefore, PCA has the ability to reduce the number of dimensions. Among the characteristics 

of PCA features are: With minimal mean squared error, the initial principal components give a respectable 

estimate of the initial inputs. Furthermore, the variances of 𝑤𝑖(𝑡) increase in a progressive manner, and they are 

uncorrelated. 

3.3    To Model Train 

3.3.1 CNN-CLSTM 

Deep learning methods, especially convolutional neural networks (CNNs), have shown remarkable success on a 

number of computer vision tasks, such as rotor fault, air gap eccentricity fault, short winding fault, load fault, 

bearing fault, etc. An example of CNN architecture is a stack of fully connected layers followed by several 

iterations of the convolution and pooling layers. At different points throughout a CNN's training process, 

convolutional layers perform the local feature extractor function. In the first stage of a CNN, for instance, layers 

extract important details including edges, counters, and gradients [24]. Data required for image classification at a 

high level is fed into the networks via convolutional layers later on. On the other hand, max-pooling operations 

reduce the feature resolution. The FC layers are then used to perform a non-linear transformation on the image 

features. Classification of CNN and accompanying convolutional processes can be 2D, 1D, or 3D, depending on 

the data complexity. Similarly, max-pooling processes can be categorized as either 2D, 1D, or 3D. Although 1D 

and 2D convolution are also applicable for computing spatial information, 3D convolution may learn features in 

both the spatial and temporal dimensions. 3D convolution is the best method for image and video analysis 

problems since it gives information about both space and motion. Through the use of a convolution kernel 

𝑆(𝑑, 𝑙, 𝑖)with dimensions (𝑒 × 𝑝 × 𝑔), the 3D convolution output 𝑈(𝑑, 𝑙, 𝑖)can be generated for a specific image 

cube  𝑇(𝑑, 𝑙, 𝑖)according to Equation (12). 

         𝑆(𝑑, 𝑙, 𝑖) = ∑ ∑ ∑ 𝑇(𝑡, 𝑛, 𝜇). 𝑆(𝑑 − 𝑡, 𝑙 − 𝑛, 𝑖 − 𝜇)
𝑔

𝜇=−𝑔

𝑝

𝑛=−𝑝

𝑒

𝑡=−𝑒
              (12) 

 

An all-connected layer, a ConvLSTM block, and a softmax classifier layer are the three components that comprise 

the proposed model. In order to execute the non-linear transformation of features between the layers, the 3D 

convolution blocks are followed by Rectified Linear Unit (ReLU) activation functions. A second max-pool layer 

feeds data into an 18-unit ConvLSTM layer [28]. Output from the ConvLSTM layer is fed into the final fully 

linked layer. The softmax layer precedes the fully-connected layer and sorts the output from various induction 

motor issues (such as rotor, short winding, air gap, load, bearing, etc.). While LSTM excels at dealing with 

temporal data, it loses spatial data essential for modeling the spatial-temporal data involved in fault diagnosis in 

induction motor because full connections in input-to-state and state-to-state transitions do not consider spatial 

data. The Convolutional Long Short-Term Memory (ConvLSTM) algorithm solves this issue by substituting 

convolution operations for the LSTM's state-to-state transition operations. Multiple articles have now argued that 

ConvLSTM is effective for tasks that require human intervention. Equations (13)–(18) explain the key 

mathematical computation and illustrate the internal elements of the ConvLSTM layer. 

 

                                          𝐾𝑖 = 𝜔(𝑆𝑑𝑘 ∗ 𝐷𝑖 + 𝑆𝑚𝑘 ∗ 𝑀𝑖−1 + 𝑝𝑘)                                      (13) 

 

                                                   𝑇𝑖 = 𝜔(𝑆𝑑𝑡 ∗ 𝐷𝑖 + 𝑆𝑚𝑡 ∗ 𝑀𝑖−1 + 𝑝𝑡)                                (14) 

 

                                              𝐶𝑖 = 𝜔(𝑆𝑑𝑐 ∗ 𝐷𝑖 + 𝑆𝑚𝑐 ∗ 𝑀𝑖−1 + 𝑝𝑐)                                     (15) 

 

                                                𝐺𝑖 = 𝐺𝑖−1 ⊝ 𝐾𝑖 + 𝐶𝑖 ⊝ 𝑇𝑖                                                      (16) 
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                                                   𝑉𝑖 = 𝜔(𝑆𝑑𝑣 ∗ 𝐷𝑖 + 𝑆𝑚𝑣𝑀𝑖−1 + 𝑝𝑣)                                    (17) 

 

                                                         𝑀𝑖 = 𝑡𝑎𝑛𝑚(𝐺𝑖) ⊝ 𝑉𝑖                                                      (18) 

 

Here are the definitions of the various terms used in the equations: input feature map 𝐷𝑖 , hidden state 𝑀𝑖, cell 

output 𝐺𝑖, input gate 𝑇𝑖 , forget gates 𝐾𝑖, and output gate 𝑉𝑖. from one to six. Signs ∗ and ⊙ denote the convolution 

operator and Hadamard product, respectively. The 2D convolutional kernels 𝑆𝑑𝑡  & 𝑆𝑚𝑡 , 𝑆𝑑𝑣  & 𝑆𝑚𝑣 , 𝑆𝑑𝑐& 𝑆𝑚𝑐 , and 

𝑆𝑑𝑘  & 𝑆𝑚𝑘represent the input gates, output gates, input modulation gates, and forget gates, respectively, and their 

hidden states. 

4. Result and Discussion 

Various methods for diagnosing faults in a single-phase induction motor's bearings, stator, and rotor are specified 

in this proposed. These approaches rely on sound waves. The single-phase induction motor was examined in five 

different states: healthy, with shorted main and auxiliary winding coils, with damaged rotor bar and faulty squirrel 

cage ring, and with bad bearing. 

 

Fig. 1. Classification Rate of the Proposed CNN-CLSTM Model and CLSTM Model 

Fig. 1 displays the categorization rates for the two models. Faster convergence and a higher classification rate are 

characteristics of the CNN-CLSTM model, according to the comparison. Since DBN models experience 

fluctuations when learning, it's possible that the architecture isn't stable enough to acquire a model that accurately 

performs the classification task. 
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Fig. 2. Training Error With the Epochs 

Figure 1 displays the training error. We have achieved the lowest loss compared to other models with our CNN-

CLSTM training model. 

 

Fig. 3. Vibration Accuracy 

The accuracy of the model's validation is shown in figure 3. The suggested model performs better on the vibration 

dataset during testing, suggesting it has poor generalizability when faced with current signals. 

 

Fig. 4. Vibration Loss 

There is a difference in model loss between the training and testing sets, suggesting a modest overfitting issue in 

the current signals, even though the suggested model achieves faster convergence in those signals. 

5. Conclusion 

The induction motor could vibrate if its alignment, balance, or clearances are off. Bearings are the most prone to 

failure and fault development when continuously subjected to fatigue loading. These defects cause the vibration 

signature to shift over time. When diagnosing mechanical issues like stator rotor rub or bearing faults, vibration 

monitoring techniques are a lifesaver. The most typical issues with induction motors, as well as innovative 

diagnostic methods based on advanced signal processing and their applications in EV systems are covered in this 

review article. The evaluation also identifies possible research gaps and opportunities to make a contribution based 

on its results in the field of condition monitoring. The Cepstrum analysis is a non-linear signal processing 

technique that is employed for data preparation. It is the integral derivative of the logarithm of the absolute value 

of the DFT of the input signal. Through the application of ICA, a signal with components that are statistically 

fully independent of each other can be transformed from a multivariate random signal. During the training process, 
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the CNN-CLSTM algorithm considers all of the available parameters. While both the CNN and CLSTM models 

get an average accuracy of 97.38%, the suggested method consistently outperforms them. 
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