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Abstract A regular function f(z) defined in ®: |z|] < 1 is said to be univalent in &, if it assumes no value more
than once in it. But f(z) becomes Bi-univalent function in & if f(z) and its inverse are univalent in &. These Bi-
univalent functions are of great interest in recent research of Geometric Function Theory. The main focus of this
work is to bring out the upper bound of the symmetric Toeplitz determinants T,(2) and T;(1) for the classes

So*(B) and F+(B). The novelty of this work lies in analyzing their geometric behavior. MSC 2020: Primary
30C45, Secondary 11C20
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1 Introduction
Let S indicate the class of f(z) which takes the power series form
f@=z+ 35, apz" (1.1)

z = x + iy, which convergent in ®: |z| < 1. See [2, 8, 9, 11] for brief history of univalent and analytic functions.
The Koebe i theorem [4] guarantees that the image of the unit circular disk & under every f(z) € S contains a
disk of radius 1/4.

So, every f € S has inverse f~*(z) such that f~f (z) = z, |z| < 1 and
fFUETTW) =w (Iwl <r(f), n(f) = i) where the inverse function is defined to be
f_l(W) =w—a,w? + (2a§ — a3)w3 4o

The function f(z) is said to belong to g, the class of bi-univalent functions, if and only if (i) f(z) belongs to the
class S and (ii) there exists a function g(z) such that f(g(z)) = g(f(z)) = z in some neighborhood of the origin.
The functions e? — 1, —— are some examples for bi-univalent functions in b but the amicable Koebe function

z
(1-2)2

(1-2)
is not a bi-univalent function.

Lewin. M [13] pioneered the estimation of coefficient bounds for bi-univalent functions in 1967. H.M Srivastava
et al. in 2010 (see [18]) renewed the investigation in this direction. Seminal work on the class ¢ can be found in
the articles [12, 13, 17]. Among univalent functions, the most popular subclasses are $*(8) and K(8) (0 < 8 <
1), the classes of starlike and convex functions of order 8. By definition we have,

zf'(2)
f(@)

x(B)={fes:R(1 +%) > Bilzl < 1,0 <p <1}

S*(,B)={feSzR< )>ﬁ;|z|<1;osﬁ<1}
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And we get §* = §*(0). When g =0, $*(B) and K (B) become S*and K respectively, which are the familiar classes
of starlike and convex functions of order 0.

The classes Ss*(8) and ¥ s(B) are Bi-starlike and Bi-convex of order 8 (0 < B < 1) if f € g, which were
introduced by Brannan and Taha [3] in 1985. Especially the classes §5*(0) = 8o, K+(0) = K, are Bi-starlike and
Bi-convex classes reduced to zero order. See [6] for synopsis of Bi-univalent functions.

Deniz et al.[6] obtained the second hankel determinants for these two classes in 2015 and Chinthamani et al. [5]
extended the results to find third hankel determinants in 2017. This work was inspired by those works and is
developed on estimating the upper bounds of the Toeplitz determinants for these two notorious bi-univalent
classes.

The estimation of the bounds of Hankel matrices has received considerable attention in geometric function
theory and have numerous applications. Hankel determinants H,(n) are more related to Toeplitz determinants.

For exploring interesting applications of the Toeplitz determinants, see [1].

The Hankel determinants H,(n) (n > 0,...q > 0, ...) of f(z) are defined in [21] as

Hy(n) = [an g S P SN ¢ TIE ¢ ST PO ¢ MU SN APPSR 1 S

[ .an+2q_2 ] (al = 1)

The symmetric determinants T, (n) are introduced by Thomas and Halim in [19] and defined as

T,(n) = |an 1 N ¢ MU ¢ NP SRR MRS AP ¢ M SR | (GRS
N\1, n €N) (1.2)

The Toeplitz determinants study has caught the interest of many researchers in recent days (see [1, 15, 19, 20]).
The Toeplitz determinants are involving coefficients a,, of the class of functions. The special case of T, (n) by

takingn = 2,q = 2, leads to

T,(2) = layaz az a; |

andn =1,q = 3, gives, T3(1) = |a, a, as a, a; a, az a, a, | and so on.

The heart of this work is estimating the best bound of the symmetric Toeplitz determinants T, (2) and T;(1) for
the classes So*(B) and K +(8) which are not often taken for consideration in the literature.

Let P be the class of functions with positive real part consisting of all analytic functions p mapping unit disk |z| <
1 to the complex plane satisfying the conditions p(0) = 1 and Re p(z) > 0.

Lemma 1.1. [14] for the functions p € P , represented by the expression
p(2) =14 ciz+cz% + - (1.3)
We have the sharp result |c, | < 2 (k = 1,2,...).

Lemma 1.2. [10] for the functions p € P , given by the series (1.3), then
2c, = ¢t +x(4—-cd) (1.4
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des =3+ 24— cP)ox — (A —c)x?+2(4 — cH(1 — |x|?)z (1.5)

where |x] < 1and |z] < 1.

Main Results
Treatment for Bi-Starlike Class of functions:

a-p)*

Theorem 2.1. If f(z) € §:*(B), 0 < B < 1, then upper bound of Toeplitz determinant T,(2) is —

Proof. Letfe So*(8)and g = f~1. Then,

zf'(2) _
LE = g+ (1- P 21)
and ”;L"(—V(V“)” = B+(1-B)gw) 2.2)

Where p(z) =1+ ¢,z + ¢,z ++- gw) =1+ dyw + dyw? + -+ in 2,

As per the treatment done by chinthamani et al. in [5], we obtain the following relations and coefficients

— 23)
a; =1 -8 (2.4)
a; = (1-p)2ct + L (e, - dy) (25)

Since T,(2) = (a3 — a2), using (2.4) and (2.5), we can establish that

1-p)3 1—p)?
@3~ a3l = 10— et + T e - ) + TP (e, -y
- (1 -l (2.6)
By using lemma (1.2) and (2.2), we derive
20, =c} +x(4 — ¢}) 2d,=d? +x(4 — d?)} 2.7
_.2
implies cy—dy = (‘LZ—Cl)(x -) (2.8)
for some x, y with [x| < 1, |y| < 1.
Substituting (2.8) in (2.6), we obtain,
2 2 4.4, 1-B3 , 2
lag —az|l = (1 = B)*er +——ci (4 —cD)(Ix] + [yD)
+(1 —[3)2[6§(4—012)(le2 +1y1%) + cf] (2.9)

Since p € P, S0 |c;| < 2. Assuming ¢; = ¢ and ¢ € [0,2] without restriction. Thus, for A = |x| <land u=|y| <1,
we get,

la3 — a3l < F(4, )

where

FOLp) = (1= p)tct + (1 - p)2c? + S 24— ) + )
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+(1 = B[ (4 = DX + )] (2.10)
Let F(L ) = t; + t,(A + p) + t3(A2 + u?) (2.12)
here tt= A=PB*%*+ (1 -p)3*c%?=0
t, = @CZM -c3)=0

4

_ 2
QB (4 —2)>0

t, =
3 64

Let the closed square S={(4,u) : 0<A1<1;0<pu <1}

Now, we investigate the maximum of F(4,u) in S:

Case (i): ForA=0,0<u<1,wearrive at

FO,1) =U(u) =ty + tou + tau®

In this case, for 0 < u < 1, itisclear that U'(u) = t, + 2tsu > 0 that is U(u) is an increasing function. Hence
the maximum occurs at U =1.

Case (ii): Now, for A=1and 0 <pu <1, we obtain
FALW =V =t + t;+ts+ tou+ tap®

Similarly, itisclearthat V'(u) = t; + t, + t3 + ty,u + 2tsu > 0. Thisestablishes that it is an increasing function
and it attains its maximum at u =1.

max V() = V(1) =t; + 2(t, + t3)
Since U(1) < V(1) for c € [0,2], F(A, 1) = F(1,1) is on the boundary of S.
Thus, F attains its maximumatA=1, u=1o0nS.

To find Critical points, let $[0,2] - R

P =Aw=FAQ,1) =t; + 2(t, + t3) (2.12)
Inputting t,, t, and t; values in ¢(c), yield
1-2 95 — 64 1-p)?
o) = S _pyerpq-pr B0 02D

2 32 8

Assume that ¢(c) reaches its maximum at an interior point c € [0, 2], then by applying first derivative test, we
find ¢'(c) >0 for ¢ € [0, 2). Hence ¢'(c) = 0 implies the critical points ¢ = 0 and

c= —(95-64pB)
T 16(-28)(1-p)D)’
By applying the second derivative test on the function ¢(c), we come to know that the function ¢(c) does not

. . .. . —(95-64p) . . . .
= [———————— r of the interval 2] for
attain maximum at the critical point ¢ /16(1_23)(1_B)Z)and hence in the interior of the interval [0, 2] for 8 €
[0,1). Since ¢"'(c) < 0, the maximum points of ¢(c) is c = 0. So, we get,

(1-p)?

$(©) = $(0) = —

_p2
Hence |T,(2)| < -2, o

Note. It is evident that the case i) u=0,0<A<1andcase ii) u=1,0 <A <1 can be similarly discussed and
obtained the same result.

1356



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 46 No. 1 (2025)

Remark 2.2. If £(z) is in the class So*, we obtain [T, (2)] < -.

Theorem 2.3. If f(z) € $*(B), 0 <pB <1, then upper bound of Toeplitz determinant T;(1) is 1+

—R)2
CPBEEE where y () = [32(1 - B)? + 11.

Proof: To reach the goal, we substitute (2.3) and (2.12) in Toeplitz determinant
T3(1) = (1 4 2a3(asz — 1) — a3), After simplifications as

1+ (1—B)'et +2(1 - Br2c? + LB (4 — )22 +412) = G (A p) (say)

To check maxima of F(A,u) : After a careful application of second derivative test, we see Gy,Gyy, — Gy >
0 Vc €[0,2] and G(4, ) attains maximum on the boundary of S={(1, 1) : 0 <A1 <1; 0 <y <1}. Hence,
A=1,u=1implies

¢ =1-p2a-pr+Li]ct+Ia-pr+9 4 1 (213)

= R(c) (say)

Taking X'(c) = 0 = critical point ¢ = ﬁ at which X(c) attains maximum. The maximum value of

N(c) is
a-p? 9 a-py
2 8la-pyr+qy]

_ (1-pB)*[32(1 — B)* + 393]
R(co) =1+ 2[32(1 — )2 + 1]

R(cg) =1+

Hence the required result is established. o

Note. It is evident that the case i) u=0,0 <A< 1)and case ii) u =1, 0 < A <1 can be similarly discussed and
obtained the same result.

Remark 2.4. If f(2) is in the class So*, then |T5(1)| < 250 < B < 1.

ped
N
=]

40

L
.o®
a®
.
o®
.
*,
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bay
Yoo
ooy

o]
=}
¥
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20

(1.1)

L0 20 o[ (1.0) 20 40 40 2

Fig 1 shows max of T, (2), max of T; (1) for Bi-Starlike functions respectively
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1.0
1

10

Fig 2 shows max of T,(2) and T5(1) for §5*(B) respectively with the range restriction 0 < 8 < 1.

Treatment for Bi-Convex class of functions

Theorem 25. If f(z2) € Hs(B) ,0<B <1. Then upper bound of Toeplitz determinant T,(2) is
%(18[;2 — 398 + 22).

Proof: Given f € #+(B) and g = f~* then we make use of the treatment done by chinthamani et al. in [5], we
obtain the following relations and coefficients

_a-p
2

2 c1 (2.14)

—_R)2 _
ay = + B, —dy) (2.15)

Substituting (2.14), (2.15) and (2.8) in T,(2) = (aj — a3), and applying triangle inequality subsequently, we
obtain,
a-p*, a-p)y

204 _ 2
b+ et — D lxl + Iy

laZ —aj| <

_p\2
+(1 = B = (4= PP (Ixl? + Iy + 2 (216)

Since p € P, 50 |c;| <2. Assuming ¢; =c and ¢ € [0, 2]. Thus, for A= |x| <1and u = |y| <1, we get

la3 — aZ| < H(A, 1) where

HOL ) = (1 163)4 . (1 —43)2 24 (1 165)3 204 — ) (A + 1)
+(1 = )2z (4 = ¢)2(22 + D] (2.17)
Let HA, ) = my + my(A + p) + my (A% + p?) (2.18)
here m; = %c‘* +¥c2 >0

—m3
m, = %cz(él—cz) >0

2
5= %(4—&)220

To Maximize H(A, u) :

we investigate the maximum of H(A, ) inS={(A, u):0<1<1;0<u<1}:

Case (i): ForA=0,0<u <1, we arrive at

1358



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 46 No. 1 (2025)

HO,u) = U(W) = my + mppu + myp®
In this case, for 0 < u < 1, itisclearthat U'(u) = m, +2mszu >0
This implies that the maximum occurs for the increasing function U(y) at p =1.
Max U(uw) =U(1) =m; + m, + my
Case (ii): Now, for A=1and 0 <y <1, we obtain
H(1,p@) = V() =my + my +mg + mpp + map?
Similarly, itis clear that V'(u) = m; + m, + mg + myu + 2mzu >0
It is obvious to have the maximum value at 4 =1 as it is an increasing function.
max V(u) = V(1) =m; + 2(m, + m3)
Since U(1) < V(1) for c € [0,2], H(A, 1) = H(1,1) is on the boundary of S.
Thus, the maximum of F occursat A=1,u=1o0nS.
CRITICAL POINTS: Let7:[0,2] = R, then
t(c) = maxHA,u) = H1,1) =my + 2(m, + m3) (2.19)

Inputting Ty, T, and T5 values in t (c) yield

1-p)* 1-p)? 1-p)3 1
(0) = E et 2 B 24— ) 4 (1- )P S (4—c?)? (220)

A detailed investigation on maximum values for T, T,, T; separately yields

2
(c) = —(115) (1882 — 398 + 22) -

Note. It is obvious that the case i) u=0,0<A<1)and case ii) u =1, 0 <A <1 can also be similarly discussed
and obtained the same result.

Remark 2.6. If f(z) is in the class %o, then |T,(2)] < 1—91

Theorem 2.7. If f(z) € class Ks(B8) ,0 < B < 1, then upper bound of Toeplitz determinant |T5(1)| is 1 +

(1-B)*(8(B)+1734) _ Y
T where §(8) = [36(1 — B)* + 1].

Proof : With the knowledge of ¢; = —d;,a, = %(1 - Bcy,

az = 3(1 - B %+ %(1 — B)(c, — d,) as obtained by the authors in [28] for Bi-convex functions of order
B, and applying in
T;(1) = 1+ 2a%(a; — 1) — a?), we get

(1-p7

1 1
L+2a3(a; — 1) - ad) = 1+ ————cf[GG (1~ pc} + 5 (1= ez = dy) — 1]

2
—[Fa =gt + - B)e; — dy)] (2:21)
Using (2.8) in above equation, we obtain

1+ 2a3(a; — 1) —a?)
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—1_0=B" 41 _pyzez_ L
=1 g ¢ 2(1 p) 144

(- [ (x y2 222)
For some x, y with |x| < 1, |y| < 1. Taking triangle inequality implies

1T < 1+ 85200 1 20— py2e? + (11— B)*(4 = ) (Ix + [yID)

Since p € P, S0 |c;| < 2. Assuming ¢; = ¢ and ¢ € [0, 2] without restriction.

Thus, for A= |x| <1and u = |y| <1, we get

IT3(1)] < J(4, 1) where

](ﬂ #) =1+ (1- ﬁ) (1—2ﬁ)zc (1S7ﬁ: (4 2)2()'2 +#2) (223)

After a careful application of second derivative test as followed in theorem 2.5, we see that J(A,u) attains
maximum at the boundary of S={(4,u) : 0 <A1 <1; 0 <u <1}. Hence,A = 1,u = Limplies J(1,1) = 9(c)

9 =1+ 1 11— By2c? + 2 (1 - B)?(4 — c2)? (2.24)
- 8 2 288 )
_ A-p* A=-p?%\ ,, (A=p* A-p)?%\ , 16(1-p)*
19(6)_1+< g ' 28 )¢ T\ 2 36 )¢ T 288
(1- 3)2 1-p)°
— _ 2 _ 2.2
’9<C)_1+[(1 2 36] +36( Ay e+ 388
To find the maxima of 9(c), we apply the derivative test to 9(c), we arrive
9'()=0>c=00rc - —%%8
c) = c=0o0rc; = 7= —
o[1-pyz | B6A-AF+1]
These are the critical points. At c,, we get
9" = 36 1 2<0
(o) = —75(1=B)
Hence 9(c) attains maximum at this critical point.
. .289  (-p) (1-p)°
) =1+ 3 mea—prr1 18
3 (1-p)2[36(1 — B)? + 1735]
=9 =1 g B =z + 1]
This establishes the result. o

Remark 2.8. If f(z) is in the class K, then |T5(1)| < 3.659159159...
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20

Fig 3 shows max of T, (2), max of T;(1) for Bi-Convex functions respectively

1

N\

| |

-10 0 10
-1 0 1
10
-1
Fig 4 shows max of T, (2) and T3 (1) for K(f) respectively with the range restriction 0<p<1L

3. Future work

In this work, the upper bounds of T,(2) and T5(1) are arrived. Similar extension to any higher order can be done.
Since non-sharp bounds are obtained here, the problem remains open for further exploration by emerging
researchers to unlock the sharper bounds.
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