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Abstract:- Using the zeros of the polynomials, the aim of this work is to create an interpolatory polynomial with 

Laguerre conditions, where )()( xL k

n
 is the Laguerre polynomial of degree n and whose derivative )()( xL k

n



 
is 

of degree 1−n . A unified study of a modified inverse Pál-type interpolation issue is conducted. We have 

proved the explicit interpolation equations and demonstrate the problem's regularity. Additionally, if the inner 

nodal points are the roots of the interpolatory polynomials and yield an estimate over the whole real number 

line, the polynomial's existence and uniqueness are demonstrated. 

Keywords: Lagrange interpolation, Laguerre abscissas, Pál-type interpolation, Explicit form, Order of 
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1. Introduction 

The Lagrange or Hermite-Fejér interpolation based on the zeros of Laguerre polynomials has been considered in 

the literature by Szegö [1] and Szabados [2], who studied the uniform convergence of this interpolation process 

under proper hypothesis on the function. 

M. G. de Bruin [4] introduced ‘incomplete’ Pál type interpolation problem where he omitted one or two real 

nodes from sets of non-uniformly distributed nodes. In the sequel, a number of problems will be treated where 

one or two of the zeros are omitted from the set of interpolation points. This type of problem is quite different 

from the problems where one or more zeros are added to the set of points that are used in the interpolation to the 

derivative. In his paper the regularity of nine Pál-type interpolation problems is proved where the nodes form a 

subset of the sets of zeros. He has also studied the regularity of some interpolation problems on non-uniformly 

distributed nodes on the unit circle. 

The study on Lacunary Polynomial Interpolation started with the evolution of Birkhoff interpolation. It is finely 

honed theory on real nodes. Lacunary Polynomial Interpolation at special nodes received attention after the 

investigations of P. Turán and his associates. A revolution in theory of polynomial interpolation at special nodes 

was due to L. G. Pál [3]. He introduced a new type of Lacunary Polynomial Interpolation on zeros of two 

different polynomials, referred as Pál-type interpolation. L. G Pál has introduced a modification of the Hermite-

Fejér interpolation, in which the function values are interpolated at the zeros of the polynomial )(xw
 
in Pál 

type interpolation, whereas the first derivative values are interpolated at the roots of )(' xw . The sole difference 

between )(xw
 
and )(' xw  in inverse Pál-type interpolation is that the derivative values are interpolated at the 

roots of )(xw and the function values at the roots of )(' xw . That is, the derivative of the function at the roots 

of )(' xw  or )(xw
 
is interpolated using the derivative of the interpolational polynomial. This interpolation 

feature highlighted the topic of what circumstances allow a simultaneous approximation to a differentiable 

function and its derivative to be obtained using the Pál -type interpolation.  
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Following Pál’s idea many authors [5], [8], [9], [10] researched this kind of interpolation.  In 2004, Lénárd [6] 

investigated the Pál-type interpolation problem on the nodes of Laguerre abscissas. Pál demonstrated that there 

is no distinct polynomial of degree 22 − n  when function values are dictated on one set of n points and 

derivatives values on another set of 1−n  points, but note that there is a unique polynomial having the degree 

12 − n when function value is defined at one more point that does not belong to the previous collection of n 

points. Srivastava [7] studied special problem of mixed type weighted interpolation on the mixed zeros of 

Hermite polynomial and its derivative. She has proved the existence, uniqueness and convergence of the 

theorem.  

In this paper we study the following interpolation problem: On the infinite interval ),0[  let 
n

iix 0}{ =
 and 

n

iiy 1}{ =
 be the arbitrary two sets of inter scaled nodal points: 

                                        
+ − nnn xyxxyx 1110 ...0 .                                         (1) 

For any fixed integer 1k , obtain a least degree polynomial )(xBm satisfying the )1;0(
 
                  

interpolation conditions:      

                                                             ( )nizyB iim ...,,1,)( ==                                                          (2) 

                                                                 
)1...,,1(')(' −== nizxB iim                                                      (3) 

with Hermite-type boundary conditions 

                                                       )...,,0(,)( )(

00

)( kjzxB jj

m == ,                                                    (4) 

Where ', ii zz  and 
)(

0

j
z  are arbitrary real numbers. 

Here we prove that, if 
n

iix 0}{ =
 and 

n

iiy 1}{ =
 are the zeros of the Laguerre polynomial )()( xL k

n
 and its derivative

)()( xL k

n


, respectively, and 00 =x , then there exists a unique polynomial )(xBm  of degree 12 −+ kn  that 

satisfies the above conditions. The interpolational polynomial )(xBm  is a modified Pál-type interpolational 

polynomial with )()( )( xLxxw k

n

k

kn =+
. Here we prove existence, uniqueness and explicit representation of the 

fundamental polynomials with weight function 
kx xexw −−=)( . 

 

2. Preliminaries 

 

We have used some well known results of the Laguerre polynomial )()( xL k

n
 which are as follows: 

The differential equation of the Laguerre polynomial is given by  

                                
0)()()1()( )()()(2 =+−++ xnLxDLxkxLxD k

n

k

n

k

n
,                                        (5) 

where n is a positive integer and  1−k . For the roots of )()( xL k

n
 we have                                                               

)9(,1))(O())(O(

)8(0),O({

),O({)(

)7(,...)3,2,1,0(,~)(

)6(]O(1)[
2

1

*

1

14

1

24

1

2)(

12

3

)'(

==

=

=

=

+=

−

−
−−−

+
−−

xlxl

cnxn

xcnnxxL

nxnjxL

j
n

x

jj

k

kk

k

n

j

k
k

j

k

n

j 

 

Now we also have some properties of fundamental polynomials of the Lagrange interpolation which are given 

in Szegö [1] as: 
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Here the degree of the polynomial )(xl j
 is 1−n  and the degree of the polynomial )(* xl j

 is 2−n . 

 

3. Explicit Representation of Interpolatory Polynomial 

      

Let the inter scaled nodal points be given by (1), where 
n

iix 0}{ =
 and 

n

iiy 1}{ =
 are the zeros of the Laguerre 

polynomials )()( xL k

n
 and )()( xL k

n


, respectively. Then, for the prescribed numbers 

n

iiz 1}{ =
 and 

1

1}'{ −

=

n

iiz  there 

exists a unique polynomial )(xBm of degree 12 −+ kn satisfying the conditions (2), (3), and (4). The 

polynomial )(xBm  is explicitly given by: 


==

−

=

++=
k

j

j

j
n

j

jj

n

j

jjm xWzxVzxUzxB
0

)(

1

'
1

1

)()()()(
0

                                 

(15) 

Where 
n

jj

n

jj xVxU 1

1

1 )}({,)}({ =

−

= , and 
k

jj xW 0)}({ =  are the polynomials having the degree 12 −+ kn . 

These polynomials are unique and satisfy the following conditions: 

for 1,,2,1 −= nj 
 

),...,1,0(,0)0(

),...,2,1(,0)]()([

)1,...,2,1(,)(

)(

'

klU

nixUxw

niyU

l

j

xxj

ijij

i

==

==

−==

=



                                          (16)
 

for nj ,,2,1 =  

),...,1,0(,0)0(

),...,2,1(,)]()([

)1,...,2,1(,0)(

)(

'

klV

nixVxw

niyV

l

j

ijxxj

ij

i

==

==

−==

=                                            (17) 

for kl ,,1,0 =  

),...,1,0(,)0(

),...,2,1(,0)]()([

)1,...,2,1(,0)(

)(

'

klW

nixWxw

niyW

lk

l

j

xxk

ik

i

==

==

−==

=



                                         (18) 

Here 
ij is a Kronecker delta, 

ji

ji

ij

ij

=

==

,0

,1




                                                                           (19) 

The explicit forms of the ),(),( xVxU jj
 and )(xWj

 are given in the following lemma. 
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Lemma 1: For k and n positive integers, on the nodal points (1) the fundamental polynomial 
1

1)}({ −

=

n

jj xU  of 

the interpolational problem in (1)-(4) satisfying the interpolatory condition (16) is given by: for 

1,,2,1 −= nj   













−

−
−= 


x

j

k

nj

k

n

j

k

n

k

n

k
k

nj

k

j

k

n

k

j

j dt
yt

tLxttL

yL

xLx
xLxlx

yLy
xU

0

)()'(

)"(

)(
)(*

)(

)()(

)(

)(
)()(

)(

1
)(                (20) 

Where )(xl j
is given by (10).  

Proof: For 1,,2,1 −= nj  , let 













−

+
+= 


dt

yt

tLuttL
xLxuxLxlxuxU

x

j

k

n

k

nk

n

kk

nj

k

j
0

)(

3

)'(
)(

2

)(*

1

* )()(
)()()()(                           (21) 

be a polynomial of degree 12 −+ kn . We can easily check that )(* xU j  satisfies the equation (16) provided 

   
)(

1
)(1

j

k

n

k

j yLy
u =

                                                                 (22) 

and 

        
)()"(

1
2

j

k

n yL

u
u

−
=                                                                 (23) 

Note that the )(* xU j  is a polynomial of minimal degree 12 −+ kn , so the integrand in (20) must be a 

polynomial which implies 0)()( )(

3

)( =+


tLuttL k

n

k

n
. Thus, by using the equations (14) and (11), we get 

jxu −=3
. Hence, 

                       
)()(* xUxU jj                                                            (24) 

which completes the proof of the lemma. 

Lemma 2: For k and n positive integers, on the nodal points (1) the fundamental polynomial
n

jj xV 1)}({ =  of the 

interpolational problem in (1)-(4) satisfying the interpolatory condition (17) is given by: for nj ,,2,1 = , 





=
x

j

j

k

n

k

j

k

n

kx

j dttl
yLy

xLxe
xV

j

0)(

)(

)(
)(

)(
)(                                                 (25) 

Proof: For nj ,,2,1 = , let 

                   


=
x

j

k

n

k

j dttlxLxvxV
0

)(

1

* )()()(                                                 (26) 

be a polynomial of degree 12 −+ kn . We can easily check that )(* xV j  satisfies the equation (17) provided 

                    
)()'(1

j

k

n

k

j

x

yLy

e
v

j

=                                                                  (27) 

Thus, 

                                
)()(* xVxV jj                                                                   (28) 

which completes the proof of the lemma. 

Lemma 3: For k and n positive integers, on the nodal points (1) the fundamental polynomial 
k

jj xW 0)}({ =  of 

the interpolational problem in (1)-(4) satisfying the interpolatory condition (18) is given by: for 

1,,1,0 −= kj   

 











 +
−+=  −

−
x

jk

k

njj

k

n

j

k

n

kk

n

k

n

j

jj dt
t

tLtbtatL
wxLxxLxLxxaxW

0

)()'(

)(1)()(
)()()()(

)()()()()(

          

(29) 
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)(
)0(!

1
)( )'(

)'(
xLx

Lk
xW k

n

k

k

n

k =

                                               

(30) 

where )(xa j
 and )(xb j

 are the polynomials of degree at most 1−− jk . 

Proof: For fixed }1,,1,0{ − kj   we will find the polynomial )(xWj
 in the form 

 ),()()()()()( )(1)()( xcxLxxLxLxxaxW n

k

n

kk

n

k

n

j

jj

−
+=

                            

 (31)

 where the degree of the polynomial )(xa j
 is 1−− jk

 
and the degree of the polynomial )(xcn  

is n. Also it 

is clear that for 0)0(,1,,1,0 )( =−= l

jWjl  . We know that 0)()( =i

k

n xL  and 0)()'( =i

k

n yL  so we get 

0)( =ij xW  and 0)( =ij yW  for ni ,,2,1 = . The coefficients of the polynomial )(xa j
 are determined 

by the system  

  jlx

k

n

k

n

j

jl

l
l

j xLxLxxa
dx

d
W ==

=



0

)()()( )()()()0(

                                    

 (32) 

where 1,, −= kjl  . Now for the constants 
jw , use the equation 0)0()( =k

jW  and get 

 
0

)()(

)'(
)()()(

)0(!

1
)0(:

=

−
=

x

k

n

k

n

j

jk

k

k

n

nj xLxLxxa
dx

d

Lk
cw                                (33) 

Now use the conditions 0)]([ ' ==

−−

ixxk

kx xWxe , and 

  )()()( )'(1)( xLxknxLx
dx

d k

n

kk

n

k −+=                                                 (34) 

we have 

)()()()(' )'(

iji

k

n

kj

iin xaxLxxc −−=                                                 (35) 

this will imply the value of )(' xcn  as:  

jk

k

njj

k

n

n
x

xLxbxaxL
xc

−

+
−=

)()()()(
)('

)()'(

                                           (36) 

where the polynomial )(xb j
is of degree 1−− jk . The function )(' xcn  will be a polynomial if and only if    

   0)()()()(
0

)()'( =+
=x

k

njj

k

nr

r

xLxbxaxL
dx

d

                                       (37)
 

for 1,,0 −−= jkr  . By using these equations, we can uniquely determined the coefficients of )(xb j
. 

Now integrate the equation (35) to get, +=
x

nnn dttccxc
0

)(')0()( , use the value of )0(nc  from (33) we 

get the desired result as the proof of the theorem. 

 

Theorem 1: For some fixed integers k and 1n  if 
n

ii

n

ii zz 1

1

1 }'{,}{ =

−

=
, and 

k

j

jz 0

)(

0 }{ =  are arbitrary real 

numbers, then on the nodal points (1) there exists a unique polynomial )(xBm  having the at most degree 

12 −+ kn  satisfying the equations (2), (3), and (4). The existing polynomial can be written as: 


==

−

=

++=
k

j

j

j
n

j

jj

n

j

jjm xWzxVzxUzxB
0

)(

1

'
1

1

)()()()(
0

                              (38) 

where the fundamental polynomials )(),( xVxU jj
 and )(xWj

 are defined in the previous Lemmas. 

 

Proof: By Lemmas 1, 2, and 3, the polynomial )(xBm , defined in the theorem’s statement, holds the equations 

(2), (3), and (4), it implies that the existence of the polynomial is valid. To prove the uniqueness let us consider 
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the following problem: Find the polynomial )(xSm  having the least possible degree 12 −+ kn  satisfying the 

following interpolatory conditions: 

for 1,,2,1 −= nj 
 

),...,1,0(,0)0(

),...,2,1(,0)]([

)1,...,2,1(,0)(

)(

'

klS

nixSxe

niyS

l

m

xxm

kx

im

i

==

==

−==

=

−−
 

After taking into consideration of these equations it can be seen that 

)()()( )'(1 xLxbxxS k

nn

k

m

−= ,

 
where )(xbn  is a polynomial of degree at most n. Use the equation (34) and get 

0)()()]([ ')'(' ==
−

=

−−

ini

k

n

x

xxm

kx xbxLexSxe i

i
, 

from which 0)(' =in xb  implies 0)(' xbn , thus cxbn )( . Therefore, )()( )'( xLcxxS k

n

k

m = , 

but 

0)0(!)0( )'( == k

nk

n

k

Lck
dx

Sd
. 

Since 0)0()'( k

nL , therefore 0=c , hence 0)( xSm . This proves that the polynomial )(xBm  is unique. 

Now we state our main theorem. 

 

Theorem 2: Assuming that the interpolatory function RRf →:
 
is continuous as well as differentiable such 

that }; as)(O)(:)({)( →== xxxfxfmC m
 where m is a non negative integer, f is continuous 

function in the interval ),0[  , then for each )(mCf  and a non negative k,  


==

−

=

++=
k

j

j

j
n

j

jj

n

j

jjm xWzxVzxUzxB
0

)(

1

'
1

1

)()()()(
0

                                     (39)        

satisfies the relation: 

   

( )
n

n

m fnxfxB log1 ,)O()()( −=−

     

for 
10 − cnx
    

         (40)

                     ( )
n

n

m fnxfxB
log1 ,)O()()( −=−                                    for − xcn 1

             (41) 

here ω represents the modulus of continuity. 

Before proving the theorem 2, first estimate the values of the following fundamental polynomials, which are 

listed below: 

 

4. Estimation of the Fundamental Polynomials 

 

First estimate the values of the following fundamental polynomials, which are listed below: 

 

Theorem 3: Let us assume the fundamental polynomial )(xU j
, for 1,,2,1 −= nj   is presented by: 

 

 −

−
−=


x

j

k

nj

k

n

j

k

nj

k

n

k

j

k

n

k

j

k

n

k

j

k

nj

k

j dt
yt

tLxttL

yLyLy

xLx

yLy

xLxlx
xU

0

)()'(

)"()(

)(

)(

)(* )()(

)()(

)(

)(

)()(
)(                   (42)   

then we have 

        

= −
−

=

 xnxUxe
n

j

j

k

j

x j 0for  )(O)( 2
1

1   

                           (43)                             

Proof: From the polynomial )(xU j  
we have 
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



−

−

+
−

=


−

=

−

=

x

j

k

nj

k

n

n

j j

k

nj

k

n

k

j

k

n
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j

x
n

j j

k

n

k

j

k

nj

kk

j

x
n

j

j

k

j

x

dt
yt

tLxttL

yLyLy

xLxxe

yLy

xLxlxxe
xUxe

jj

j

0

)()'(

1

1
)"()(

)(
1

1
)(

)(*
1

1

)()(

)()(

)(

)(

)()(
)(

                 (44)

 

Let  −

−
=

x

j

k

nj

k

n
dt

yt

tLxttL
I

0

)()'( )()(
. To evaluate I, let 

0,

3

3,

2

2,

1

1,

)( )(
j

n

nj

n

nj

n

nj

j

k

n dxdxdxd
xx

xL
++++=

−

−

−

−

−

−

−                                     (45) 

( )0,

3

3,

2

2,

1

1,

)( )()( j

n

nj

n

nj

n

njj

k

n dxdxdxdxxxL ++++−= −

−

−

−

−

−                        (46)

  

To find the values of the coefficients, use the general form of the Laguerre polynomial 

 ( )
=

−+

−=
n

xkn

n

k

n xL
0

!

)()( )(






                                                     (47) 

and get, 

!

)1(
1,

n
d

n

nj

−
=−  and )]([

!

)1(
2, knnx

n
d j

n

nj +−
−

=− . 

Now let,  

 


=

=
−

− n

i

k

iij

x

j

k

nj

k

n
xLAdt

yt

tLxttL

0

)'(

,
0

)()'(

)(
)()(

,

                                         

(48)

                

 

on comparing the coefficient with the equation (44) we have 

n

x
A

j

nj +=1, . 

Thus, by substituting the value of coefficient and using the equations (6), (7), (8) and (9), we get the desired 

result. 

  

Theorem 4: Let us assume the fundamental polynomial )(xV j
, for nj ,,2,1 =  is presented by:

 

 





=
x

j

j

k

n

k

j

k

n

kx

j dttl
yLy

xLxe
xV

j

0)(

)(

)(
)(

)(
)(                                                 (49) 

then we have 

                            )(O)( 1

1

−

=

= nxV
n

j

j ,              for  x0                                     (50) 

Proof: From the polynomial )(xV j
we have: 






x

j

j

k

n

k

j

k

n

kx

j dttl
yLy

xLxe
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                               (51)                                    

by using the equations (6), (8), and (13) we get the desired result, 
=

−=
n

j

j nxV
1

1)(O)( , for  x0 . 
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Remark: Let :)({)( xfmC =  f is continuous in ),0[  , }; as)(O)( →= xxxf m
where 0m

 
is an 

integer. Then, by Szegö [12] Theorem 14.7, 

0),()(lim )( =−→
I

nn xfHxf 
                                              (52) 

where ),0( I  for 0 , or ),0( I  for 01 −  . Also note that there is a function in )(mC  

such that )},({ )( xfHn


 diverges for 0  at 0=x . And for the convergence rate, we have: 
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
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n

f
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xfHxf                                 (53) 

Proof of the main theorem 2: 

Let us suppose that )(xAn  be a polynomial of degree 12 −+ kn and )(xBm  be given by (15). Note that 

)(xBm  is exact for every fundamental polynomial of degree 12 −+ kn ; therefore, 
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from equations (15) and (54) we get 

                      )()()()()()( xBxAxAxfxBxf mnnm −+−−                       (55) 
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Thus, equation (55) and the conclusions of theorem 3, and 4 complete the proof of the theorem 2. 

  

5. Conclusions 

The findings in this work demonstrate the existence, uniqueness, explicit representation, and order of 

convergence of the given interpolatory problem when the roots 
n

iix 1}{ =
 and ,}{ 1

1

−

=

n

iiy  are specified on the 

Laguerre polynomials )()( xL k

n
 and its derivative )()( xL k

n


, respectively. If the interpolatory function 

RRf →:  is continuously differentiable, then the equations (2), (3), and (4) are held by a polynomial 

)(xBm  of degree 12 −+ kn . 
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