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Abstract:- Using the zeros of the polynomials, the aim of this work is to create an interpolatory polynomial with
Laguerre conditions, where ijk)(x) is the Laguerre polynomial of degree n and whose derivative Lﬁk)’(x) is

of degree N—1. A unified study of a modified inverse Pal-type interpolation issue is conducted. We have
proved the explicit interpolation equations and demonstrate the problem's regularity. Additionally, if the inner
nodal points are the roots of the interpolatory polynomials and yield an estimate over the whole real number
line, the polynomial's existence and uniqueness are demonstrated.
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1. Introduction

The Lagrange or Hermite-Fejér interpolation based on the zeros of Laguerre polynomials has been considered in
the literature by Szegd [1] and Szabados [2], who studied the uniform convergence of this interpolation process
under proper hypothesis on the function.

M. G. de Bruin [4] introduced ‘incomplete’ Pal type interpolation problem where he omitted one or two real
nodes from sets of non-uniformly distributed nodes. In the sequel, a number of problems will be treated where
one or two of the zeros are omitted from the set of interpolation points. This type of problem is quite different
from the problems where one or more zeros are added to the set of points that are used in the interpolation to the
derivative. In his paper the regularity of nine Pal-type interpolation problems is proved where the nodes form a
subset of the sets of zeros. He has also studied the regularity of some interpolation problems on non-uniformly
distributed nodes on the unit circle.

The study on Lacunary Polynomial Interpolation started with the evolution of Birkhoff interpolation. It is finely
honed theory on real nodes. Lacunary Polynomial Interpolation at special nodes received attention after the
investigations of P. Turan and his associates. A revolution in theory of polynomial interpolation at special nodes
was due to L. G. Pal [3]. He introduced a new type of Lacunary Polynomial Interpolation on zeros of two
different polynomials, referred as Pal-type interpolation. L. G P&l has introduced a modification of the Hermite-
Fejér interpolation, in which the function values are interpolated at the zeros of the polynomial W(X) in Pal

type interpolation, whereas the first derivative values are interpolated at the roots of W'(X) . The sole difference
between W(X) and W'(X) in inverse Pél-type interpolation is that the derivative values are interpolated at the
roots of W(X) and the function values at the roots of W'(X) . That is, the derivative of the function at the roots

of W'(X) or w(X) is interpolated using the derivative of the interpolational polynomial. This interpolation

feature highlighted the topic of what circumstances allow a simultaneous approximation to a differentiable
function and its derivative to be obtained using the Pal -type interpolation.
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Following Pal’s idea many authors [5], [8], [9], [10] researched this kind of interpolation. In 2004, Lénérd [6]
investigated the Pal-type interpolation problem on the nodes of Laguerre abscissas. P4l demonstrated that there

is no distinct polynomial of degree <2Nn—2 when function values are dictated on one set of n points and
derivatives values on another set of N—1 points, but note that there is a unique polynomial having the degree
< 2n—1when function value is defined at one more point that does not belong to the previous collection of n
points. Srivastava [7] studied special problem of mixed type weighted interpolation on the mixed zeros of
Hermite polynomial and its derivative. She has proved the existence, uniqueness and convergence of the
theorem.

In this paper we study the following interpolation problem: On the infinite interval [0, oo) let {)(i}i"=0 and

{y.}.., be the arbitrary two sets of inter scaled nodal points:

0<X, <Y, <X <o <X 4 <Y, <X, <+00. 1)

For any fixed integer k>1, obtain a least degree polynomial B, (X) satisfying the (0;1)
interpolation conditions:

B,(y)=2, (i=1..n) )]
B,'(x)=2z"' (i=1..,n-1) (3)

with Hermite-type boundary conditions
BD(x,) =z, (j=0,...,k), 4)

Where Z;, Z;" and zo(j) are arbitrary real numbers.

Here we prove that, if {x }, and {y,}", are the zeros of the Laguerre polynomial L) (x) and its derivative
L;k)' (X), respectively, and X, =0, then there exists a unique polynomial B (X) of degree 2n+k —1 that
satisfies the above conditions. The interpolational polynomial B, (X) is a modified Pal-type interpolational
polynomial with W, (xX)= XX Lﬂ‘) (X) . Here we prove existence, uniqueness and explicit representation of the

fundamental polynomials with weight function W(X) = e *x ¥ .

2. Preliminaries

We have used some well known results of the Laguerre polynomial L(nk) (X) which are as follows:
The differential equation of the Laguerre polynomial is given by

xD?LY (x) + (L+k —x)DLY (x) + nLY (x) = 0, (5)
where n is a positive integer and K >—1. For the roots of L) (x) we have
1 ..
X. =——=[]J7+0(1 6
i =5 =Lz + O] (6)
: 2
LY (x)[~ 2", (0<x;<Q,n=123..) (7)
k1 k1
LY (x)|={x Z “O(n? *), en <x<Q
—{o(n"), 0<x<cn™ (8)
O(l;(x)) =0l (x)) =1, 9)

Now we also have some properties of fundamental polynomials of the Lagrange interpolation which are given
in Szegod [1] as:
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I N ¢
Ij(X)_ L(nk)v(Xj)(X—Xj)’ (10)

. L%(x)
17 (X) = 11
0 LY (y)(x=;) )
Ij(xi)zéi" I}r(yi):é‘ij (12)
JX‘I ()t = Ilj (t)dt{=0(n™) (13)
L (%) = Ly () - Ly (%) (14)

Here the degree of the polynomial Ij (X) is n—1 and the degree of the polynomial I;(X) isn—2.

3. Explicit Representation of Interpolatory Polynomial

n

Let the inter scaled nodal points be given by (1), where {Xx}, and {y,}, are the zeros of the Laguerre
polynomials L*(x) and LY (x), respectively. Then, for the prescribed numbers {z,}", and {z,"}";' there
exists a unique polynomial B (X) of degree <2n+k —1satisfying the conditions (2), (3), and (4). The

polynomial B, (X) is explicitly given by:
n-1 n k .
B,()=>z2,U;(x)+> zV;(X)+>_z"W,(x) (15)
1 i1 =0

Where {Uj(x)}';j,{_\/j ()¥. and {W, (X)}‘}:0 are the polynomials having the degree <2n+k—1.
These polynomials are unique and satisfy the following conditions:
for j=1,2,...,n-1

U,(y))=09;, (i=12,...n-1)
WOOU, (0], =0, (1=12,...)
U}"(O) =0, (1=01...kK)

(16)

for j=1,2,...,n
Vi(y;))=0, (i=12,...n-1)
[W(X)V; (x)]'X:Xi =0, (i=12,...n) 17
vP(0)=0, (1=01..k)
for | =0,1,...,k

W, (y,)=0, (i=12,...n-1)
[WOOW, ()], =0, (i=12,...n) (18)
W) =5, (1=01...k)
Here 5ij is a Kronecker delta,
§ij =1 i=]
.. (19)
§ij =0, 1#]

The explicit forms of the U ; (), V; (X), and W, (X) are given in the following lemma.
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Lemma 1: For k and n positive integers, on the nodal points (1) the fundamental polynomial {U ; (X)}Tj of

the interpolational problem in (1)-(4) satisfying the interpolatory condition (16) is given by: for
j=12,....,n-1

. KK (%) ox tLYY (1) — x LY (¢
Uj(x):ﬁ xklj(X)L(nk)(X)—X(l_)T (X) OV L ()dt (20)
yiky ' (y;) Ly (y;) t—y;
Where Ij (x) is given by (10).
Proof: For j=1,2,...,n=1, let
TGS (k)
U’ (x) :ullix"l;(x)L(nk)(x)+u2x"L$1")'(x) [ th, (tt)j;f"” (t)dt} 1)
i
be a polynomial of degree < 2n+k —1. We can easily check that U :(X) satisfies the equation (16) provided
U = 1
EASIC @)
and
- 23)

u2 = T~
LY"(y;)
Note that the U;(X) is a polynomial of minimal degree 2n+Kk —1, so the integrand in (20) must be a
polynomial which implies tLﬂ‘)’ (t)+u3L$1k>(t) =0. Thus, by using the equations (14) and (11), we get
U; =—X;. Hence,
U (x)=U,(x) (24)
which completes the proof of the lemma.
Lemma 2: For k and n positive integers, on the nodal points (1) the fundamental polynomial {V; (x)}|_; of the

interpolational problem in (1)-(4) satisfying the interpolatory condition (17) is given by: for j =12,...,n,

e I X LY (x) x
V,00 =50 B g (25)
yiky (y))
Proof: For j=1,2,...,Nn, let
V00 =X L (0] I, (t)dt 26)
be a polynomial of degree < 2n+ Kk —1. We can easily check that Vj* (X) satisfies the equation (17) provided
e’
V,=——F~—— 27)
CyiLY(y)
Thus,
V() =V, (x) (28)

which completes the proof of the lemma.
Lemma 3: For k and n positive integers, on the nodal points (1) the fundamental polynomial {W; (X)}f-zo of

the interpolational problem in (1)-(4) satisfying the interpolatory condition (18) is given by: for
j=01....k-1

(k' (k)
Wj (X) — aj (X)Xj L&k)(X) L(nk)’(x) + Xle(nk)'(X)|:Wj _J~Ox Ln (t)aj (tzk-l_—jbj (t) Ln (t) dt:| (29)
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1
E

where a&;(X) and b; (x) are the polynomials of degree at most K — j—1.
Proof: For fixed j €9{0,1,..., k—1} we will find the polynomial W; (X) in the form

W, (x) =a,; (x)x’ L (x) L& (x) + XL ()¢, (%), (31)
where the degree of the polynomial a; (x) is k— j—1 and the degree of the polynomial C,(x) isn. Also it
is clear that for 1 =0,1,..., j—1, Wj(')(O) =0. We know that L% (x.) =0 and LY(y,) =0 so we get

W, (%) =0 and W,(y;) =0 for i =1,2,..., n. The coefficients of the polynomial a; (x) are determined
by the system

XKL (x) (30)

w?(0) = s_xl' la, OX' LY L9 (0] =5, (32)
where | = J,..., kK—1. Now for the constants W; , use the equation Wj(k) (0) =0 and get
B S
k'L'(0) dx*
Now use the conditions [ X W, (X)]'X:Xi =0, and

w; :¢,(0) = [aj (XL (L (X)]X:0 (33)

di[xk L9 (x)] = (n+k)x* L% (x) (34)
X
we have _

C, (%)= _(Xi)lik L(nk)'(xi)aj (%) (3%)
this will imply the value of C,"(X) as:
Lo ()a; () +b; ()L (x)

k-]

c.'(X)=— b (36)

where the polynomial bj (X) is of degree kK — j—1. The function C,"(X) will be a polynomial if and only if

d" 1w (k) -
W[Ln (X)aj(x)+bj(X)Ln (X)]x=0_0 (37)

for r=0,...,k— j—1. By using these equations, we can uniquely determined the coefficients of b; ().
X
Now integrate the equation (35) to get, C,(X) =c,(0) +IO c,'(t)dt, use the value of c,(0) from (33) we

get the desired result as the proof of the theorem.

Theorem 1: For some fixed integers k and n>1 if {z}'7',{z'},, and {Zéj)}l}:() are arbitrary real

numbers, then on the nodal points (1) there exists a unique polynomial B, (X) having the at most degree
2n+k —1 satisfying the equations (2), (3), and (4). The existing polynomial can be written as:

n-1 n K
B,(X) =2 z,U,;(x)+>_zV;(x) +> z"W, (x) (38)
1 i1 =0

where the fundamental polynomials Uj (X),Vj (x) and Wj (X) are defined in the previous Lemmas.

Proof: By Lemmas 1, 2, and 3, the polynomial B (X), defined in the theorem’s statement, holds the equations
(2), (3), and (4), it implies that the existence of the polynomial is valid. To prove the uniqueness let us consider
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the following problem: Find the polynomial S, (X) having the least possible degree 2n+k —1 satisfying the

following interpolatory conditions:
for j=1,2,...,n-1

S, (y,))=0, (i=12,...n-1)
[e”x™*S, (0], =0, (i=12...n)
SU©0)=0, (1=0L...K)
After taking into consideration of these equations it can be seen that
Sn(¥) =X, ()L (%),
where b, (X) is a polynomial of degree at most n. Use the equation (34) and get
[e7x™S,, ()], =€ L ()b, () =0,

from which b, ' (x;) = O implies b,'(x) =0, thus b, (X) = . Therefore, S_(X) = cx“L% (x),
but
k
d*s,
dx*
Since Lﬁk)'(O) # 0, therefore ¢ =0, hence S,,(X) = 0. This proves that the polynomial B, (X) is unique.
Now we state our main theorem.

(0) =ck!LY(0)=0.

Theorem 2: Assuming that the interpolatory function f : R — R is continuous as well as differentiable such
that C(m) ={f(x): f(x) =0O(x™) as x — o0;} where m is a non negative integer, f is continuous
function in the interval [0, o0) , then for each f € C(m) and a non negative k,

n-1 n k )
B,(X)=>z,U;(x)+>,zV;(x) +>_z"W, (x) (39)
=1 1 -0
satisfies the relation:
B, ()~ f (x| =0 el f, 2" for 0<x<cn™ (40)
B, (¥)— f (¥ =0(n Mool f, ") for cNt<x<Q (41)

here w represents the modulus of continuity.

Before proving the theorem 2, first estimate the values of the following fundamental polynomials, which are
listed below:

4. Estimation of the Fundamental Polynomials

First estimate the values of the following fundamental polynomials, which are listed below:

Theorem 3: Let us assume the fundamental polynomial U ; (), for J=12,...,n=1 is presented by:

klf L(k) ky (k) ot (k)'t _X. (k)t
UJ(X): ’ Jk():Z) . (X)_ k (k))( Ln (()k()) Ln () XJLn ()dt (42)
ijn (yj) ijn (yj)Ln (yj) 0 t_'yj
then we have
n-1
et x'j“Uj(x)‘ =0(n?) for 0<x<Q (43)
j=1

Proof: From the polynomial U ; (X) we have
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n-1 n1 i x¥|x (k)(x) -1 exjx‘.< (k)'(x)
Seio o <30 5 |
=y \ TEy Wy
» o (44)
xth)(t)—XjL(n (t)
[, dt
t-vy;
L (1) — x Lt
Letlzj L -xL, ()dt.ToevaIuateI,Iet
0 t_ yj
L(k) X
. (x) dj X" d; X d X d (45)
LS (x) = (x—x )(di,n—lxn_l +d;, X" d) Xt d 0) (46)
To find the values of the coefficients, use the general form of the Laguerre polynomial
L () = Z(”*k Jor @n
and get,
(D" (-0’
dj,n—l :T and dj,n—2 :T[Xj —n(n+ k)] .
Now let,
ALY () — x LY (t)
i (k)
R " ZA, LY, (48)
on comparing the coefficient with the equation (44) we have
X.
AL =1+
’ n
Thus, by substituting the value of coefficient and using the equations (6), (7), (8) and (9), we get the desired
result.
Theorem 4: Let us assume the fundamental polynomial Vj (x), for J=12,...,n is presented by:
erXkL(k), X
V,(x) = T() joxl NOLL (49)
yj Ln (yJ)
then we have
n
> V[ =0(n™), for 0<X<Q) (50)
j=1
Proof: From the polynomial V; (X) we have:
W)( ﬂ
() Sl TG j (t)dt‘
N ‘ ‘ ( )‘ Io
Then
er ()| < Z i ‘ G )‘ g J(t)dt\ (51)

by using the equations (6), (8), and (13) we get the desired result, ZNJ (X)‘ =0(n?),for 0<X<Q.
=
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Remark: Let C(m) ={f (X): fis continuous in [0, ), f(x)=0(x")as x — oo;}where m>0 is an
integer. Then, by Szegd [12] Theorem 14.7,

lim | f()—H“(f,%)| =0 (52)
where | < (0, ) for >0, or | < (0, ) for —1<a <0. Also note that there is a function in C(m)
such that {H () (f, x)} diverges for o >0 at X = 0. And for the convergence rate, we have:

O(a)(f : n’l’“)) ~1<a<0

f(X)-H@(f,x) = (53)
OIS, ofofr, ) g
Proof of the main theorem 2:

Let us suppose that A, (X) be a polynomial of degree <2n+k —1and B, (X) be given by (15). Note that

B, (X) is exact for every fundamental polynomial of degree < 2n+k —1; therefore,

AG) = 2 AU, 09+ A, 04V, (042 A W, () 2
from equations (15) and (54) wejtts]et " "
|00 =B, (9] <[ (x) = A, (¥)|+|A, ()~ B, (X)) (55)

s|f(x)—An(x)|+rTZI:‘f(yj)— A YY)
#11 0) - 4,06V, 00)

k
I I
+ 2|1 (%) = A ()W, ()|
j=0
Thus, equation (55) and the conclusions of theorem 3, and 4 complete the proof of the theorem 2.

5. Conclusions

The findings in this work demonstrate the existence, uniqueness, explicit representation, and order of

n-1

convergence of the given interpolatory problem when the roots {x}_, and{y,},

are specified on the
Laguerre polynomials Lﬂ‘)(x) and its derivative L(nk)'(x), respectively. If the interpolatory function
f :R— R is continuously differentiable, then the equations (2), (3), and (4) are held by a polynomial
B,,(X) of degree <2n+k—1.
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