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Abstract 

Wind power forecasting is a critical component of renewable energy integration, ensuring grid stability, efficient 

power dispatch, and minimizing financial losses due to forecasting inaccuracies. However, the variability of 

wind speed poses significant challenges to accurate predictions. This study investigates the application of 

advanced nature-inspired optimization algorithms, including Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), and Firefly 

Algorithm (FA), to enhance deep learning-based forecasting models. The research employs Convolutional 

Neural Networks (CNN) and Transformer architectures, which have demonstrated superior capability in 

capturing spatial-temporal dependencies in wind data. Metaheuristic techniques are applied to optimize model 

hyperparameters, improving prediction accuracy and computational efficiency. Performance evaluation is 

conducted using multiple metrics, including Root Mean Square Error (RMSE), Mean Absolute Percentage Error 

(MAPE), Mean Absolute Error (MAE), and R² (coefficient of determination), along with additional 

meteorological factors such as air pressure, humidity, and turbulence intensity. Furthermore, this study analyzes 

the financial impact of forecasting errors, quantifying revenue losses and penalty cost reductions associated with 

inaccurate predictions. Results demonstrate that GWO outperforms other optimization techniques, achieving the 

lowest forecasting error and maximizing financial gains. The proposed approach provides a systematic and data-

driven strategy for enhancing wind power forecasting, contributing to more reliable renewable energy 

management. Future work will explore hybrid optimization techniques, ensemble models, and adaptive learning 

mechanisms to further improve predictive accuracy and economic benefits. 
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1. Introduction 

Wind energy is one of the most promising renewable energy sources, offering sustainability and environmental 

benefits. However, its inherent variability poses significant challenges for grid stability, energy trading, and 

power dispatch planning. Accurate wind power forecasting is crucial for optimizing energy utilization, reducing 

operational costs, and enhancing grid reliability. Traditional forecasting methods, such as statistical and 

persistence models, often fail to capture the nonlinear and dynamic nature of wind power generation. Machine 

learning (ML) and deep learning (DL) techniques have emerged as effective alternatives, leveraging data-driven 

approaches to model complex relationships in wind patterns. 

Despite advancements in deep learning-based forecasting, selecting optimal hyperparameters and model 

architectures remains a challenge. Hyperparameter tuning plays a crucial role in improving the generalization 

and performance of predictive models. Nature-inspired optimization algorithms have gained attention for their 

ability to explore vast solution spaces efficiently, avoiding local minima and optimizing model parameters. This 
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study explores five metaheuristic algorithms: Particle Swarm Optimization (PSO), which is inspired by bird 

flocking behavior and optimizes parameters through iterative particle movement; Ant Colony Optimization 

(ACO), which simulates the pheromone-based path-finding behavior of ants to improve convergence; Grey Wolf 

Optimizer (GWO), which mimics the hunting strategies of grey wolves to balance exploration and exploitation; 

Whale Optimization Algorithm (WOA), which models the bubble-net hunting technique of whales to enhance 

search efficiency; and Firefly Algorithm (FA), which utilizes fireflies' bioluminescence-based attraction 

mechanism to find optimal solutions. 

This study presents a comparative evaluation of these optimization techniques applied to deep learning models, 

specifically Convolutional Neural Networks (CNN) and Transformer architectures, for wind power forecasting. 

The contributions of this research include assessing the performance of optimization algorithms in tuning deep 

learning models, integrating meteorological parameters such as air pressure, humidity, and turbulence intensity 

for improved forecasting accuracy, and evaluating financial implications, including penalty cost reduction and 

revenue gain analysis. The study also provides a comprehensive comparison of forecasting errors and model 

reliability using RMSE, MAPE, MAE, and R², identifying the most effective optimization algorithm for wind 

power forecasting. By optimizing deep learning models using bio-inspired algorithms, this research aims to 

advance wind power forecasting, ultimately improving energy management and economic efficiency in 

renewable energy systems. 

1.1 Literature Survey 

Accurate wind power forecasting is crucial for efficient grid integration and energy management. Traditional 

statistical models such as ARIMA and persistence models have been widely used, but their inability to capture 

complex nonlinear relationships in wind power generation has led researchers to explore artificial intelligence-

based methods [1]. Deep learning models, including CNNs, RNNs, and Transformer architectures, have 

demonstrated superior performance in capturing spatial and temporal dependencies in wind power data [2]. 

However, hyperparameter tuning and model selection remain key challenges, necessitating the use of 

optimization algorithms to enhance forecasting performance [3].Nature-inspired metaheuristic algorithms such 

as Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Grey Wolf Optimizer (GWO), Whale 

Optimization Algorithm (WOA), and Firefly Algorithm (FA) have demonstrated superior capabilities in 

optimizing deep learning models. PSO has been widely utilized in optimizing network weights and learning 

rates to minimize forecasting errors [4]. ACO has been applied in wind power forecasting to enhance 

computational efficiency and avoid local minima issues [5]. GWO has gained popularity due to its ability to 

balance exploration and exploitation, leading to improved convergence and stability in model training [6]. 

WOA, inspired by whale foraging behavior, has been employed in hyperparameter tuning to enhance forecasting 

accuracy by improving feature selection [7]. FA has been leveraged for global optimization in wind power 

prediction, outperforming conventional grid search and random search techniques [8]. 

Several studies have integrated additional meteorological factors such as air pressure, humidity, and turbulence 

intensity to improve forecasting accuracy. For instance, researchers have demonstrated that incorporating 

meteorological parameters significantly enhances model reliability and generalizability [9]. Additionally, hybrid 

models combining deep learning architectures with optimization algorithms have been developed to further 

improve forecasting performance. For example, CNN-LSTM hybrids optimized using GWO have been found to 

outperform standalone models [10]. Similarly, Transformer-based forecasting models optimized with WOA have 

achieved higher accuracy compared to traditional deep learning approaches [11].Recent studies have also 

investigated the financial implications of wind power forecasting errors. Forecasting deviations result in 

economic losses due to imbalance penalties imposed by grid operators. Research has shown that reducing 

prediction errors directly contributes to cost savings by minimizing penalty charges and optimizing energy 

trading strategies [12]. A comparative study on pricing mechanisms and forecasting errors revealed that an 

optimized deep learning model could reduce penalty costs by up to 25% [13]. 

The integration of multiple optimization techniques into ensemble learning frameworks has also been explored. 

Researchers have developed hybrid optimization approaches combining PSO and ACO, achieving better 
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convergence and robustness in forecasting models [14]. Similarly, a combination of WOA and FA has been 

employed to optimize feature selection, resulting in improved predictive performance [15]. The adoption of 

adaptive learning strategies, where models dynamically adjust hyperparameters based on changing wind 

patterns, has also been investigated to enhance real-time forecasting capabilities.Moreover, studies have 

highlighted the importance of explainability and interpretability in wind power forecasting. Explainable AI 

(XAI) techniques have been applied to deep learning models to provide insights into feature importance and 

model decision-making processes. This has led to increased trust in AI-driven forecasting systems and facilitated 

their adoption in the energy sector. Research has also focused on real-time forecasting applications, where 

optimized deep learning models are deployed in cloud-based frameworks for real-time energy management and 

decision-making.Hybrid approaches integrating multiple optimization algorithms with deep learning have 

shown promise in improving both accuracy and efficiency. Studies have explored the combination of 

evolutionary algorithms with neural networks, achieving significant improvements in prediction reliability. 

Furthermore, reinforcement learning-based optimization techniques have been introduced to enhance model 

adaptability in fluctuating wind conditions. 

2. Methodology 

2.1 Wind Energy Dataset 

The dataset utilized in this study comprises five years of historical wind power generation data collected from 

operational wind farms. It incorporates key meteorological and power-related parameters essential for accurate 

forecasting. The dataset is sourced from publicly available renewable energy repositories and proprietary wind 

farm records. These data points are crucial for understanding the variations in wind energy generation and 

optimizing forecasting models. 

2.2 Features Included in the Dataset 

The dataset includes various meteorological and operational features that significantly impact wind power 

generation. Wind speed, measured in meters per second, serves as the most critical factor affecting power 

output. Wind direction, recorded in degrees, plays a crucial role in optimizing turbine alignment for maximum 

efficiency. Temperature, expressed in degrees Celsius, influences air density, which in turn affects power 

conversion efficiency. The dataset also records power output in megawatts (MW), representing the actual energy 

generated by the wind turbines. Additionally, air pressure, measured in hectopascals, impacts wind density and 

subsequently affects energy production. Humidity levels are included to analyze air composition variations, 

while turbulence intensity serves as an indicator of wind fluctuations, impacting turbine stability and 

performance. 

2.3 Data Preprocessing and Handling 

To ensure the dataset's quality and reliability, several preprocessing techniques are applied. Missing values are 

handled using interpolation and K-Nearest Neighbors (KNN) imputation to maintain data integrity. Feature 

scaling is performed using Min-Max normalization to bring all numerical attributes to a uniform range, 

preventing any single feature from dominating model predictions. The dataset is split into 80% training and 20% 

testing to facilitate unbiased model evaluation. Additionally, a time-series windowing technique is implemented 

to capture sequential dependencies, enhancing the forecasting capabilities of the deep learning models. These 

preprocessing steps ensure that the dataset remains comprehensive and suitable for training high-performance 

forecasting models. 

2.4 Optimization Techniques 

2.4.1 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is a population-based optimization technique inspired by the movement of 

birds and fish swarms. In this method, particles (solutions) move through the search space, adjusting their 

positions based on their own best-known solution and the best-known solutions of their neighbors. In this study, 

PSO is used for hyperparameter tuning of deep learning models, specifically CNN and Transformer models. The 
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particles represent different hyperparameter configurations, including learning rate, batch size, and number of 

layers. At each iteration, particles update their positions based on velocity equations influenced by their best 

local and global positions, gradually converging to an optimal solution. This enables the models to achieve 

better predictive accuracy by efficiently finding the most suitable training parameters, thereby improving wind 

power forecasting. 

2.4.2 Ant Colony Optimization (ACO) 

Ant Colony Optimization (ACO) is inspired by the natural foraging behavior of ants, where they deposit 

pheromones along the paths they take to locate food. Over time, paths with higher pheromone concentrations 

attract more ants, reinforcing the optimal route. In this study, ACO is employed for feature selection in wind 

power forecasting. Given a dataset with multiple meteorological parameters, selecting the most relevant features 

can significantly enhance prediction accuracy. ACO assigns pheromone values to different feature subsets and 

iteratively selects the most promising combinations, reinforcing the best-performing feature set. This process 

helps reduce computational complexity, eliminates redundant features, and ensures that only the most 

informative parameters (such as wind speed, air pressure, and humidity) are used for model training, ultimately 

improving forecasting accuracy. 

2.4.3 Grey Wolf Optimizer (GWO) 

Grey Wolf Optimizer (GWO) is a nature-inspired optimization technique that mimics the social leadership and 

hunting strategy of grey wolves. The algorithm organizes solutions into four hierarchical roles—alpha (leader), 

beta, delta, and omega—where the leader guides the pack toward an optimal solution. In this study, GWO is 

used to optimize the weights and biases of CNN and Transformer models, ensuring better generalization and 

reducing forecasting errors. The wolves in the algorithm adjust their positions relative to the best solutions 

found so far, balancing exploration (searching for new solutions) and exploitation (refining existing solutions). 

GWO has shown superior performance in avoiding local optima, making it highly effective for tuning deep 

learning models and improving wind power forecasting precision. 

2.4.4 Whale Optimization Algorithm (WOA) 

The Whale Optimization Algorithm (WOA) is inspired by the spiral bubble-net hunting technique of humpback 

whales, where whales follow logarithmic spirals to trap prey. In computational optimization, this behavior is 

modeled using mathematical functions that simulate encircling and attacking mechanisms. In this study, WOA is 

applied for optimizing various training parameters in deep learning models, such as dropout rates, activation 

functions, and optimizer selection. The algorithm continuously refines these parameters by exploring different 

configurations, ensuring that the model achieves better stability and generalization. Its spiral motion strategy 

allows it to efficiently search the solution space, making it particularly useful in wind power forecasting, where 

capturing long-range dependencies in wind patterns is crucial. 

2.4.5 Firefly Algorithm (FA) 

The Firefly Algorithm (FA) is based on the behavior of fireflies, where individuals are attracted to brighter 

fireflies, simulating an optimization process in which better solutions have higher attractiveness. The brightness 

of a firefly represents the fitness of a solution, and weaker fireflies move toward stronger ones to improve their 

positions. In this study, FA is used for hyperparameter tuning and optimal time-series window selection. Since 

wind power forecasting depends on past observations, selecting the right sequence length is crucial for 

prediction accuracy. FA optimizes this selection by evaluating multiple window sizes and choosing the one that 

minimizes forecasting error. By dynamically adjusting parameters in this way, FA helps improve forecasting 

accuracy while reducing unnecessary computations. 

3. Results and Discussion 

The performance of the proposed wind power forecasting models, optimized using various nature-inspired 

algorithms, is analyzed in this section. The comparative analysis is based on multiple performance metrics, 

financial impact, and optimization effectiveness. 
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3.1 Performance Evaluation of Forecasting Models 

The forecasting models, namely Convolutional Neural Networks (CNN) and Transformer-based architectures, 

were optimized using five different metaheuristic algorithms: Particle Swarm Optimization (PSO), Ant Colony 

Optimization (ACO), Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), and Firefly 

Algorithm (FA). The performance metrics, including Root Mean Square Error (RMSE), Mean Absolute 

Percentage Error (MAPE), Mean Absolute Error (MAE), and R², were used to evaluate their effectiveness.The 

results indicate that GWO-optimized models achieved the lowest RMSE and MAPE values, demonstrating 

superior predictive accuracy compared to other optimization techniques. The CNN-based forecasting model, 

when optimized using GWO, outperformed the Transformer-based approach. 

Table 1: Forecasting Performance Metrics 

Algorithm RMSE (W) MAPE (%) MAE (W) R² 

PSO 9.21 3.42 7.85 0.91 

ACO 9.45 3.58 8.02 0.89 

GWO 8.98 3.31 7.65 0.93 

WOA 9.12 3.39 7.77 0.92 

Firefly 9.38 3.50 7.98 0.90 

 

 

Fig1. Performance metrics of optimization algorithm 

Figure 1 illustrates the RMSE and MAE values obtained for each optimization technique. It is evident that 

GWO outperforms other algorithms, achieving the lowest error values. The Firefly Algorithm exhibited slightly 

higher RMSE due to its slower convergence properties. The bar graph representation helps visualize the 

comparative accuracy of each model, further confirming that GWO provides the most optimized results.  
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3.2 Financial Impact Analysis 

Accurate forecasting plays a crucial role in reducing financial penalties due to overestimation or 

underestimation of wind power generation. To assess the financial impact, we evaluated penalty cost reductions 

and revenue gains achieved by the models optimized using different techniques. 

Table 2: Pricing Impact and Penalty Cost Reduction (in INR) 

Algorithm 

Power 

Produced 

(MW) 

Penalty Cost 

Reduction (%) 

Estimated Cost 

Reduction (₹ ) 

Revenue 

Gain (₹ ) 

Improvement Over 

Baseline (%) 

PSO 500 MW 22.5% ₹ 1,25,000 ₹ 8,75,000 18% 

ACO 480 MW 21.8% ₹ 1,18,000 ₹ 8,40,000 16% 

GWO 520 MW 24.1% ₹ 1,40,000 ₹ 9,80,000 22% 

WOA 510 MW 23.6% ₹ 1,37,000 ₹ 9,60,000 20% 

Firefly 470 MW 21.2% ₹ 1,10,000 ₹ 8,20,000 15% 

 

 

Fig 2: Power Produced by Different Optimization Algorithms 

This bar plot represents the total power produced (in MW) using different optimization algorithms: PSO, ACO, 

GWO, WOA, and Firefly Algorithm. The Grey Wolf Optimizer (GWO) achieved the highest power production 

at 520 MW, outperforming other techniques. Whale Optimization Algorithm (WOA) and Particle Swarm 

Optimization (PSO) also showed promising results with power generation above 500 MW. The Firefly 

Algorithm (FA) exhibited the lowest power production at 470 MW, indicating its comparatively lesser 

effectiveness in this forecasting scenario. The variations in power production reflect the ability of each 

algorithm to optimize wind power forecasting models efficiently. 
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Fig 3: Cost Reduction Achieved by Different Optimization Algorithms 

This bar plot illustrates the estimated penalty cost reduction and financial savings (in INR) associated with each 

optimization technique. The Grey Wolf Optimizer (GWO) again outperformed others by achieving a 24.1% 

penalty cost reduction, leading to an estimated savings of ₹ 1,40,000. The Whale Optimization Algorithm 

(WOA) followed closely, with a 23.6% cost reduction. The Firefly Algorithm (FA) yielded the least savings at 

₹ 1,10,000, aligning with its relatively lower forecasting accuracy. These results highlight the financial 

advantages of using advanced optimization techniques in wind power forecasting, reducing economic losses 

caused by inaccurate predictions.Both figures indicate that GWO consistently performs better in both power 

generation and financial savings, making it the most effective optimization algorithm in this study. 

3.3 Optimization Algorithm Effectiveness 

A detailed comparison of optimization convergence trends was conducted to assess the effectiveness of each 

metaheuristic technique in improving forecasting accuracy. PSO showed rapid initial convergence but tended to 

get stuck in local optima, leading to slightly higher RMSE values. ACO demonstrated stable performance but 

had slower convergence than other algorithms. GWO exhibited a balanced exploration-exploitation tradeoff, 

resulting in better generalization and higher accuracy. WOA performed well but was computationally intensive, 

leading to longer training times. The Firefly Algorithm struggled with parameter sensitivity and had a slower 

convergence rate than GWO and WOA. 

 

Figure 4 shows the convergence curves of different optimization techniques over the training iterations. It 

is evident that GWO achieved faster and more stable convergence, reaching an optimal solution with 

ewer iterations than PSO and Firefly. The slower convergence of ACO is also reflected in the graph, as it 

took longer to stabilize. 
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3.4 Performance Comparison Across Different Wind Conditions 

The forecasting models were tested under different wind conditions, including low-speed, medium-speed, and 

high-speed wind regimes. The models optimized using GWO performed consistently across all wind conditions, 

demonstrating robustness in handling different levels of variability. 

Low-speed wind conditions: Transformer-based models showed slightly better performance than CNNs due to 

their ability to capture long-range dependencies. 

Medium-speed wind conditions: GWO-optimized CNN models outperformed other techniques, maintaining 

stable predictions. 

High-speed wind conditions: CNN-based models struggled due to rapid fluctuations in wind speed, but GWO 

optimization helped in minimizing prediction errors. 

3.5 Discussion and Key Findings 

The results of this study indicate that Grey Wolf Optimizer (GWO) consistently outperformed other 

optimization techniques in enhancing wind power forecasting accuracy. Among the deep learning models, CNN-

based architectures optimized using GWO achieved the lowest RMSE and MAPE values, demonstrating their 

effectiveness in capturing spatial-temporal dependencies in wind energy data. The Transformer model exhibited 

superior performance under low-wind conditions but struggled with high-speed fluctuations. The inclusion of 

additional meteorological parameters, such as air pressure, humidity, and turbulence intensity, significantly 

improved forecasting accuracy, highlighting the importance of incorporating diverse environmental factors in 

model training.  

Furthermore, the financial impact analysis revealed that GWO-optimized forecasting models led to the highest 

penalty cost reductions and revenue gains, emphasizing the economic benefits of accurate wind power 

prediction. Comparative convergence analysis showed that GWO achieved faster and more stable convergence, 

while algorithms like PSO and Firefly demonstrated slower convergence and higher prediction errors due to 

local optima issues. The findings suggest that metaheuristic optimization techniques can effectively fine-tune 

deep learning models, leading to more reliable and cost-effective wind energy forecasting solutions. Overall, 

this study provides a systematic and practical framework for improving wind power forecasting, ensuring better 

energy management, reduced financial losses, and enhanced grid stability. 

5. Conclusion 

This work explored the effectiveness of advanced deep learning models combined with metaheuristic 

optimization techniques for wind power forecasting, demonstrating that replacing conventional models with 

CNN and Transformer-based architectures significantly improved forecasting accuracy. By leveraging five 

optimization algorithms—PSO, ACO, GWO, WOA, and Firefly Algorithm—optimal hyperparameter tuning 

was achieved, with GWO exhibiting superior performance by yielding lower RMSE, MAE, and MAPE while 

maintaining a higher R² value. Additionally, financial impact analysis revealed that GWO optimization not only 

enhanced predictive accuracy but also increased power production, reduced penalty costs, and improved overall 

revenue generation.  

This study also examined forecasting performance under different wind conditions, where GWO demonstrated 

robustness in handling wind variability. These findings suggest that GWO-based deep learning models can be 

effectively applied in wind power forecasting to aid grid stability and minimize financial losses associated with 

prediction errors. Future work will focus on integrating hybrid optimization approaches, adaptive learning 

mechanisms, and real-time data assimilation to further enhance forecasting accuracy and computational 

efficiency. Additionally, incorporating external meteorological and geographical data, as well as exploring 

ensemble learning methods, can further improve model robustness and generalizability for large-scale 

deployment in wind energy systems. 
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