Design And Analysis Of Energy Efficient Current Starved VCO With Sleep Stack Approach For PLL Applications

Kalaka.Annamma 1*, Sobhit saxena 2*, Govind singh patel 3*

¹Research Scholar, School of Electrical & Electronics Engineering, Lovely Professional University-14411, Punjab, India

²Professor, School of Electrical & Electronics Engineering, Lovely Professional University-14411, Punjab, India

³Professor, Sharad Institute of Technology College of Engg, ECE, Yadrav, Ichalkaranji-416121,MH, India.

□ 0000-0002-2101-3965¹, 0000-0002-6964-2058 ², 0000-0002-1671-8637³

Abstract:- This study compares the performance of the Current Starved Voltage Controlled Oscillator (CSVCO) for Phase Locked Loop (PLL) solutions. To complete the current job, or the design of the Current Starved VCO, the sleep stack reduced power leakage technique is used. With a 0.45V supply voltage and 45nm CMOS technology, it has been implemented using Cadence Software. Characteristics including latency, oscillation frequency, and average power are calculated. The improved cadence simulation performance results are recorded. The proposed PLL implementation parameters with Sleep Stack are confirmed to be significantly smaller on a chip than earlier approaches, while using a lot less electricity and far more efficiency. This is verified by contrasting the different PLL implementation parameters using Basic CSVCO and Sleep Stack CSVCO. For low-power applications, the sleep stack method works best. The proposed PLL architecture employing the Sleep Stack Technique successfully lowers sub-threshold leakage current. A frequency of 2.759 GHz, power of 2.559 μ w, phase noise of -63.8 (dBc/Hz), and latency (μ s) of 0.0006544 are also attained.

Keywords: Control voltage, Gain, Gale-or, Lector, Sleep Stack, Tuning Range.

1. Introduction

The Phase Locked Loop (PLL) control mechanism is utilized to ascertain the relationship between the phase of the input and output signals. Oscillator with phase detector with voltage control-within the feedback loop, the two primary components are oscillators and phase detectors. One of the key blocks, VCO, is included in this research. V Cos are used in communication systems for their basic functions. Because of their high frequency, low noise, wide tuning range [1], and area occupancy, ring oscillators and LC oscillators are significant among the several types of V Cos. The LC VCO takes up more room because it is composed of an induct-or and a capacitor. Although they take up more room, the delay cells that comprise the ring oscillators function similarly to the buffer. In a ring oscillator, feedback happens when the input of the first delay cell is connected to the output of the last delay cell [2]. Differential or single-ended delay cells may be used, depending on the circumstances [4].

As the number of delay cells increases, the area will be used up [6]. Variations in driving capability cause its features to behave non-linearly; this can be prevented by using a feedback circuit. This adds an additional stage to the circuit, increasing its cost [7]. In order to address the limitations of its predecessors, the prior V COs, the current starves VCO strategy was developed [7]. This document is organized as follows. Section 2 describes the basic Current Starved VCO. Section 3 discusses various techniques for lowering leakage power in CMOS devices. In Section 4, simulation results and design comparisons are displayed. Section 5 marks the final conclusion of this study.

2. A review of the literature

The current work for CS sleep VCO was created using CMOS 90nm technology, which operates at a frequency of 1 GHz with a tuning range of 1-5.8 GHz and a power dissipation of 8.12μW. (Shiva Prasad B K., Muddi, V., & Shinde, K. D. 2015). Low power leakage strategies that can be used with 45nm technology include stacking, galeor, lector, and MTCMOS (Tsai, P.-K., Huang, T.-H. 2012). The existing CSVCO has drawbacks compared to 180nm, 90nm, and 65nm CMOS technology in terms of power consumption, delay, area, and signal quality.Sikarwar, V., Akashe, S., and Yadav, N. (2013).

Traditional stacking methods, such as sleep stacks and dual sleep stacks, have faster leakage currents because of the supply voltage. Three transistors are positioned to prevent this, increasing the area penalty (Gupta, P., & Kumar, M. 2018). To further reduce power consumption, the Sleep stack technique will be used to design and implement CSVCO in 45nm CMOS technology. It will be compared to various low leakage power strategies.(Rajalingam, P., Routray, S., & Jayakumar, P. 2020).

Design and Analysis of a Phase Locked Loop Sleep Voltage Controlled Oscillator with Low Power and High Frequency Current Starvation-this study proposes several inverter delay techniques, including stack delay cell, sleepy stack delay cell, and sleep delay cell in current starved VCO, to minimize leakage power. A decrease in the leakage current below the threshold The sleeping transistor In an inverter, the sleep transistor is placed between the pull-up MOSFET and the supply voltage, producing a reverse bias and producing a result when both are off. The CSVCO is designed using 90nm CMOS technology.

Previous research was compared with the proposed present insufficient VCOs. The older method uses a lot of power but has a good oscillation frequency, a small tuning range, and less area. It is becoming less and less appropriate for the latest high-speed courses. The hungry VCO stack, also referred to as the recommended drowsy stack, outperforms previous iterations. (Prthiviraj Rajalingam, 2020). The Design and Implementation of High Speed and Low Power PLLs Sridhar Iyer, Badiger, and Narayan A. (2024) discuss the use of GPDK 45 nm technology. In this work, an efficient PLL that employs a current-starved voltage-controlled oscillator is meant to maintain the linearity of the gain. The results show that the optimized PLL has excellent stability and noise immunity, with a locking range of 63.16 Hz, a pull-out range of 0.75 s, and a locking time of 43.82 Hz. Tengbin Li and Qingchan Liu (2024).

The design and analysis of seven-stage MOS current mode logic power gated MOSFETs can be effectively demonstrated by using a current-starved voltage-controlled oscillator for the phase-locked loop application. Output noise, tuning range, phase noise, oscillation frequency, and average power are among the parameters. Sivasakthi Madheswaran and Radhika Panneerselvam (2024) assert that the Monte-Carlo analysis produces better results.

This existing work, which covers the scope of using this CSVCO with a low power leakage methodological method to provide improved values of performance parameters, is used by applications in the PLL.M. Sivasakthi and P. Radhika 2024 used the bulk driven keeper technique at 45 nm CMOS technology to construct and analyze a PVT-tolerant hybrid current-starved ring VCO for the PLL application.

The recommended architecture is perfect for PLL applications including wireless and radio frequency communication and performs better than earlier designs in a number of performance criteria. By employing transistors with pull-up and pull-down sleepy stacks, the oscillation frequency is increased by 80.18 percent. Better. Its phase noise and FOM improvements are 19.29% and 13.74%, respectively, while its frequency tuning range is 59.39%. After a difficult literary After a comprehensive review of the literature, it was concluded that further study is needed to improve the performance of the VCO by examining a few features, such as noise, low leakage power, wide tuning frequency range, and delay.

3. Methods and Case Study

Previous studies are compared with the proposed current starved VCOs (CS Sleep VCO). The previous work generates a respectable oscillation frequency, but because of its low tuning range, low area, and high power consumption, it is more inappropriate for the latest high-speed circuits. The proposed current deprived VCO (stack, sleep, fatigued stack) performs better than the previous experiments. Ayush Kumar Tiwari (2021). A high frequency, a broad tuning range, and fewer VCO comparisons of several parameters are the main features of the proposed current-deprived sleep VCO. The proposed CS sleep VCO has a frequency of 11.3MHz, a wide tuning range of 1–5.8GHz, and a reduced power dissipation of 0.0427pW than previous designs. (Vijay Kumar Sharma, 2022).

Full-swing output is provided by the CS sleep VCO without the need for an output stage buffer. The main advantages of the aforementioned VCO are its wide tuning range, low power dissipation, and high oscillation frequency (Pothina, N.P., Prasanna, C.K. Singh, 2023). The threshold voltage for the MOSFET's OFF condition increased in the suggested delay cell strategies. The CSVCO uses delay cell techniques, and the CSVCO that uses sleep delay cells achieves low power consumption and a broad tuning range (Saurabh Kumar 2023, Balwant Singh). The CS Sleep VCO is made using 45nm CMOS technology with a 0.3V power supply. (Ebrahim Ghafar-Zadeh, Tayebeh Azadmousavi, 2024). With a power dissipation of 0.0427 pW, the device achieves a broad tuning range between 1 and 5.85 GHz with phase noise of -115dBc/Hz at 11.3MHz.

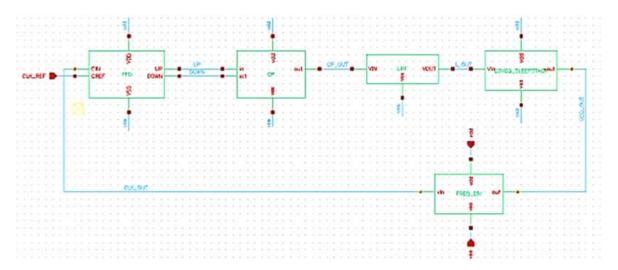


Figure 1. PLL Architecture with Sleep Stack CSVCO

The two primary parts of the PLL are a voltage-controlled oscillator and a phase detector in a feedback loop. One of the main blocks that is demonstrated in this study is VCO. The main tasks of the VCOs are carried out by the communication systems. Among the several types of VCOs, ring oscillators and LC oscillators are essential due to their high frequency, low noise, wide tuning range [1], and area occupancy. The LC VCO requires more room because it is composed of an inductor and a capacitor. The simulation findings show that the CS Sleep VCO-based PLL is sufficient to satisfy the clock generation reliability requirements of high-speed networks. Phase Locked Loops (PLLs) are control systems that generate an output signal whose phase is associated with the input signal's phase.

The ring oscillators' delay cells function similarly to the buffer but require more room. In a ring oscillator, the output of the final delay cell is fed into the input of the initial delay cells [2]. This is known as feedback. The inverter delay unit can be used with a sleep, stack, or sleep stack inverter to reduce the leakage power. As a result, the delay cells are either single-ended or differential [4]. In all cases, time and behavior can be controlled with

Vctrl. An increase in the number of delay cells leads to the consumption of area [6].By including a feedback circuit, the VCO's characteristics are kept from becoming nonlinear as a result of changes in driving capability.

The inclusion of this feedback circuit raises the circuit's cost even further [7]. The current starved VCO technique was developed to overcome the shortcomings of the previous VCOs [7]. This previous study focused on optimizing the leakage power to improve PLL performance using a variety of low-power reduction approaches. This study uses a revolutionary low-power PLL design that introduces the sleep stack technique based on the current starved ring VCO [9–11] to demonstrate a wide tuning range, reduced phase noise, reduced area, and reduced delay. The analysis was plotted at different temperatures and at multiple process corners. It is widely applicable to PLL applications [1,2]. The proposed current starved ring-based VCO with sleep stack technique reduces phase noise, power, and latency.

In order to address the sub-threshold leakage power in the suggested circuit, the sleep stack technique has been employed in the CSVCO circuit, both above and below the pull up and pull down networks, respectively. The stack transistors would reduce leaks once the sleep transistor entered sleep mode in normal mode [13–15]. When the sleep transistor is turned on and the stack transistors are turned off, the CSVCO circuit's leaks are reduced in the active state.

2.1 Sleep stack approach for current starved VCO

The stack approach is used to build the CSVCO circuit. The sleep and stack techniques are applied above and below the pull-up and pull-down networks, respectively. The sleep transistor would go into sleep mode in normal mode, and the stack transistors would then minimize leaks [24–26]. The CSVCO circuit's leaks are minimized by turning the sleep transistor on and the stack transistors off in the active state. The sleep stack method is especially helpful when power efficiency is a key design consideration or in low-power applications, as it helps to reduce power consumption without sacrificing the circuit's speed or functionality.

The alternate configuration of the proposed circuit aims to reduce the number of transistors and, as a result, the area consumption. Because of the alternative arrangement of the suggested design itself, the circuit works more efficiently to reduce sub-threshold leakage current, which lowers power consumption. Therefore, the sleepy stack technique does not have to be used to connect all of the delay cells in the proposed design.

3.2 Current-starved voltage-controlled oscillator sleep stack approach for designing phase-locked loop architecture

Examining the root causes of malfunctions or performance problems is known as "analysis of cause" in wireless network technology. It looks at things like network congestion, hardware issues, and signal interference that might affect efficiency and connectivity. Solutions to improve dependability and maximize network performance can be created by investigating these issues.

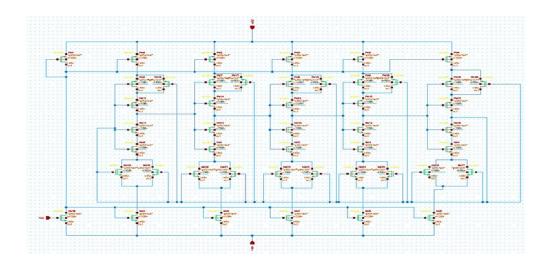
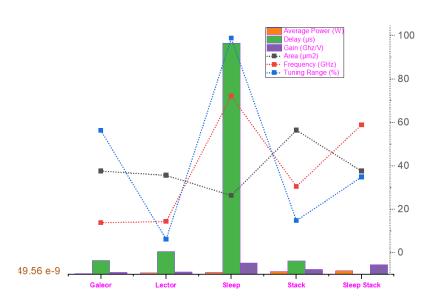


Figure 2. Sleep stack technique for the current starved VCO The Circuit

When it comes to frequency and driving power, ring oscillators outperform the other types of V COs. In the design of the ring VCO, there is a delay stage. With an increase in these delay stages, the circuit becomes nonlinear. Although this non linearity can be handled by increasing the number of delay cells, doing so raises the circuit's complexity and power consumption [8]. Unlike a current-starved VCO, which controls the current, a basic VCO controls the output frequencies using the control voltage [9–10]. Delay cells make up the circuit, and a current mirror regulates the amount of current that goes to each delay cell.

Power usage and leakage have increased as a result of the present demanding VCO [1]. Low leakage techniques on the delay cells and a change in the aspect ratio of the transistors, which reduces the threshold voltage, can further reduce these leakages [11]. Performance can be analyzed using a number of parameters, including average power, frequency, and latency. The Sleep Stack technique was utilized in this work to create the CSVCO with the least amount of power loss. It was also applied in PLL for Higher Stability, which computed numerous parameters. contrasted as well with the conventional and recommended methods.


3. Outcome and Conversations

The circuit has been created in the virtuoso tool in Cadence Software in 45nm Technology with a supply voltage of 0.45V in order to evaluate the circuit and carry out the simulation result of the CSVCO implemented various low leakage strategies.By initializing the output node to either 1 or 0 to produce the required oscillations, the oscillator's simulated output is obtained.Consideration is given to room temperature (27°C) and a control voltage of 0.45V in order to compute characteristics like gain, average power (Pavg), delay, and oscillation frequency.Setups PLL using basic CSVCO and SLEEP STACK CSVCO VCO type with 45 nm technology is the recommended task.

Table 1: Simulation out comes for CSVCO parameters using various low leakage power strategies

S. No.	Leakage Power methods	Average Power (W)	Area (μm2)	The delay (μs)	frequency (GHz)	Gain in Ghz/V	Tuning Range in (%)
1.	Gale-or.	48.21 e-9	37.5768	19.57	13.80	3.07	56.22

2.	Lector.	49.76 e-9	35.581224	32.24	14.33	3.19	6.071
3.	Sleep.	40.46 e-12	26.3168	327.81	72.12	16.02	98.75
4.	Stack.	49.57 e-9	56.4002	19.030	30.46	6.76	14.72
5.	Sleep Stack.	58.33 e-9	37.5768	0.4895	58.87	13.87	34.85

 $Figure \ 3. \ CSVCO \ parameter \ analysis \ using \ a \ variety \ of \ low \ leakage \ power \ techniques$

Table 2: Sleep stack versus PLL CSVCO the PLL CSVCO comparative analysis

Parameters.	PLL with basic CSVCO.	Proposed work- PLL with SLEEP STACK CSVCO.
VCO type.	ring	ring
Tech(NM).	45.	45.
Freq(GHz).	2.592	2.769
Supply volt(v).	1.0	1.0
Power(MW).	0.002787	0.002455
P-Noise(dBc/Hz).	-72.21	-63.72
Delay(µs).	0.8660	0.00065440

According to the simulation results of parameter analysis using low leakage power approaches and the above table, the current starved VCO with sleep stack and keeper methodology is intended to address the issues with the current VCO in high frequency, wide tuning applications. Phase noise, leakage power, and a narrow frequency range are further difficulties. In order to guarantee its resilience, comprehensive simulations are conducted in harsh environments, including various process corners, fluctuating control voltage, and extremely high or low temperatures. Power consumption is lower in the suggested CSVCO PLL circuit. Due to the pull-down and pull-up sleeping stacks transistor arrangement, resulting in a 20% increase in oscillation frequency. Additionally, the frequency tuning range is improved by 27% using the proposed circuit. Furthermore, it lowers FOM growth by 10.74% and phase noise delay by 17.29%, respectively.

The above figure demonstrates the suggested design's robustness, making it a good choice for high-frequency applications. A supply voltage increase of 1 V is achieved. To ascertain the stability of the circuit, Monte-Carlo analysis is also carried out for a variety of parameters. According to the findings, the recommended design is optimal for PLL applications like wireless and radio frequency communication and outperforms earlier designs in a variety of performance criteria.

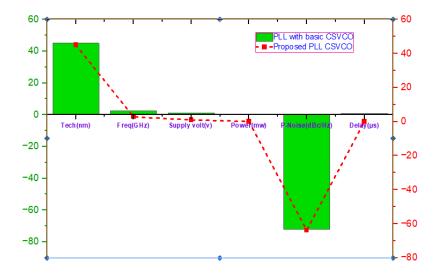


Figure 4. PLL CSVCO and Sleep Stack PLL CSVCO Comparison Analysis

4. Final outcomes and the future

The Sleep Stack approach is a promising solution for improving the efficacy of CSVCOs for PLL applications. The oscillator's working mode can be dynamically changed to save a substantial amount of power without sacrificing functionality. The Sleep Stack CSVCO can be made even more effective and efficient by using the optimization strategies described in this work.

The tabular column above and the plotted graphs show that any low leakage power strategy utilized with the present CSVCO is superior in one or more aspects, including average power, oscillation frequency, delay, and gain. From corner analysis, the power and delay also climb with increasing temperature from 27°C to 80°C and fall with decreasing temperature.when the temperature drops to -40°C.

When comparing Sleep Stack CSVCO and Basic CSVCO with the various PLL implementation parameters, it is

ISSN: 1001-4055 Vol.46 No. 1 (2025)

discovered that Sleep Stack performs better. Change the CSVCO's supply voltage and stage count from 5 to 7, 9, 11, and so on. You may also increase other parameters like area and power to reach even higher frequencies.

Information on Funding

Inapplicable

Assertive

The Central Institute of Tool Design in Hyderabad's Department of Electronics and Communication Engineering is acknowledged by the authors for providing the resources (EDA Lab-Cadence Virtuoso tool) for this investigation.

Interest conflicts

The writers claim that there is no conflict of interest.

References

- [1] Tayebeh Azadmousavi, Ebrahim Ghafar-Zadeh, Design and Analysis of a Low-Voltage VCO: Reliability and Variability Performance, 2024, 14(11),doi.org/10.3390/mi14112118.
- [2] Sivasakthi, Madheswaran, radhika, Design and analysis of 7-stage MOS current mode logic power gated MOSFETS in current starved voltage-controlled oscillator for the phase locked loop application, 2024, ISSN:2088-8708,1398-1405.
- [3] Sivasakthi, P. Radhika, Design and analysis of PVT tolerant hybrid current starved ring VCO with bulk driven keeper technique at 45 NM CMOS technology for the PLL application, 2023, j.aeue,15498.
- [4] Pothina, C.K. Singh, N.P., Prasanna, J.L. Santhosh, C.Kumar, M.R, Design of Efficient Phase Locked Loop for Low Power Applications, 2023, doi.org/10.3390/.
- [5] Balwant Singh, Saurabh Kumar, R. K. Chauhan, Design of energy efficient VCO PLL Application Analog 2023, Integrated Circuits & Signal Processing,
- [6] K.B.Meena Kumari, Goobala Kavya, Implementation of Digital Phase Locked loop, 2023, International Journal of Egg. Technology and Management Sciences.
- [7] Dina M.Ellaithy, Voltage-controlled oscillator based analog-to-digital converter in 130-nm Premedication applications, 2023, Journal of Electrical Systems and Information Technology volume 10.
- [8] Arunkumar, Pundalik Chavan, Ravish Aradhya, Designof5.1GHzultralowpowerandwide tuning range hybrid oscillator, 2023, doi.org/10.11591/ijece.v13i4.pp3778.
- [9] R Gurjar, DK Mishra, Design and performance analysis of low phase noise LC voltage controlled oscillator, 2023, doi.org/10.12928/telkomnika.v21i4.22341.
- [10] Dina Ellaithy, Voltage-controlled oscillator based analog-to-digital converter in 130-nm CMOS for biomedical applications, 2023, DOI:10.1186/s43067-023-00109-x.
- [11] Pothina, C.K.; Singh, N.P.; Prasanna, J.L.; Santhosh, C.; Kumar, M.R. Design of Efficient Phase Locked Loop for Low Power Applications. Eng. Proc. 2023, 34, 14. https://doi.org/10.3390/HMAM2-14157
- [12] Sivasakthi M, Radhika P. "Performance Comparison of MCML, PFSCL, and Dynamic CML Gates with Parametric Analysis in 45 nm CMOS Technology," pp. 451–463, 2023, doi: 10.1007/978-981-19-7753-4 35
- [13] Pooja Thool, J.D Dhande, Y. A. Sadawarte, A Review on Design and Analysis of Low Power PLL for Digital Applications and Multiple Clocking Circuits, 2022, ISSN: 2321-9653.

- [14] Kalpana Kasilingam, Paulchamy Balaiyah, Piyush Kumar Shukla, Design of a high-performance advanced phase locked loop with high stability external loop filter, 2022, doi.org/10.1049/cds2.12130.
- [15] Nirmalraj, T, Radhakrishnan, S., Karn, R. K, Design of low power, high speed PLL frequency synthesizer using dynamic CMOS VLSI technology.2022, IEEE.
- [16] Bao Phuc Ton, Cong Thinh Dang, A Design of 45nm Low Jitter Charge Pump Phase-Locked Loop Architecture for VHF and UHF Fields ,2022, DOI: 10.21203/rs.3.rs-1804148/vB.
- [17] Sánchez-Herrera, R.; Andújar, J.M.; Márquez, M.; Mejías, A.; Gómez-Ruiz, G. Self-Tuning PLL: A New, Easy, Fast and Highly Efficient Phase-Locked Loop Algorithm. IEEE Trans. Energy Convers.2022, 37, 1164–1175.
- [18] Prithiviraj R., Selvakumar J.Design and Analysis of Low power and High Frequency Current Starved Sleep voltage Controlled Oscillator for Phase Locked Loop Applications, 2021, DOI:10.1007/s020-00619-7.
- [19] Santhosh Rani, M., Vinothkumar, K., Krishna moorthy, Design of low power VCO using Fin FET technology for biomedical applications, 2021, Materials Today: Proceedings, 45, 2145–2151. 10.1016/j.
- [20] Madhusudan Maiti, SurajKumar Saw, Abir Jyoti Mondal, Alak Majumder, A hybrid design approach of PVT tolerant, power efficient ring VCO, 2020, doi.org/10.1016/j.asej.10.009.
- [21] Nanda, U., Acharya, D. P., & Nayak, D. Process Variation Tolerant Wide-band Fast PLL with Reduced Phase Noise using Adaptive Duty Cycle Control Strategy.2020, International Journal of Electronics
- [22] S. DhanushT.N.Vaishnavi S. Parashar, Design and Implementation of High Frequency and Low-Power Phase-locked Loop, U.Porto Journal of Engineering, 2021, DOI:10.24840/2183-6493_007.004_0006.
- [23] Pawan Srivastava, Ram Chandra Singh Chauhan, Design of Power Efficient Phase Frequency Detector and Voltage Controlled Oscillator for PLL Applications in 45nmCMOSTechnology, 2021.
- [24] Vijay Kumar Sharma, A survey of leakage reduction techniques in CMOS digital circuits for nano scale regime, Australian Journal of Electrical & Electronics Engineering, 2022, DOI: 10.1080/ 1448837X. 2021. 1966957.
- [25] Buddha Dharani, Umakanta Nanda, Impact of Sleepy Stack MOSFETs in CS-VCO on Phase Noise and Lock Performance of PLL, 2021, DOI:10.1007/s633-021-01446-0.
- [26] Ghasemian, M.S.P.H. A straightforward quadrature signal generator for single-phase SOGI-PLL with low susceptibility to grid harmonics. IEEE Trans. Ind. Electron. 2021, 69, 6997–7007.
- [27] Gong, H.; Wang, X.; Harnefors, L. Rethinking current controller design for PLL- synchronized VSCs in weak grids. IEEE Trans. Power Electron. 2021, 37, 1369–1381.
- [28] Rajalingam P, Jayakumar S, Routray S. Design and Analysis of Low Power and High Frequency Current Starved Sleep Voltage Controlled Oscillator for Phase Locked Loop Application. SILICON Aug. 2021;13(8):2715–26. https://doi.org/10.1007/s12633-020-00619-7.
- [29] Rajalingam P, Jayakumar S, Routray S. "Design and analysis of radiation-tolerant high frequency voltage controlled oscillator for PLL applications". AEU Int J Electronics Communication 2020, 131(November):153543. https://doi.org/10.1016/j. aeue.2020.153543.
- [30] Jin J. Novel Quadrature Voltage-Controlled Oscillator Using Capacitor Coupling. IETE J Res 2018;64(2):263–9. https://doi.org/10.1080/03772063.20 17.1351318.