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Abstract:  This paper investigating the relationship between projective geometry over a ring R and those over a 

simple matrix ring nR , demonstrating these geometries are essentially equivalent. The study extends the 

fundamental theorem of projective geometry n modules, where  is a division ring, traditionally applicable to 

vector spaces over a division rings, to the border context of modules over rings. Specifically, it focuses on the 

lattice structure formed by all R-sub-modules of an R-module., which defines the projective geometry in this 

setting. The equivalence between projective geometries over R and nR is established, highlighting the structural 

similarities and providing a framework for understanding projective geometry in the more general context of 

modules. This work contributes to the border understanding of   projective geometry, particularly in non-

classical settings, and aligns with the 2020 AMS subject Classification 16S10.  
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1. Introduction 

Projective geometry, a fundamental area of mathematics, explores the properties of geometric structures that 

remain invariant under projective transformation. Traditionally, projective geometry is studied over fields or 

division rings, where it has been well developed and understood. However, the extension of projective geometry 

to more general algebraic structures, such as rings and modules, opens new avenues for exploration and 

broadens the scope of its applications. 

 This paper delves into the projective geometry defined over simple matrix rings nR , where R is a ring. 

The primary focus is to establish the equivalence between projective geometry over a rind R and those over the 

corresponding matrix ring nR . This equivalence offers a deeper understanding of the geometric structures that 

can be defined over rings, particularly those that are not division rings. 

 The study also extends the fundamental theorem of projective geometry, which asserts that every 

isomorphism of the projective space is induced by a semi-linear transformation, to the context of modules over 

rings. By considering the lattice of all R-submodules of an R- module as a projective geometry, the paper 

provides a framework for exploring geometric properties in non-classical settings, thereby enriching the theory 

of projective geometry and its algebraic foundations. 

In the year 1952, R. Baer. at [13] defined the extensions of the fundamental theorem of projective geometry 

have been made, for the case of R-modules, where R is a “Prime Ring” in his sense and the ring of rational 

integers [3]. Also in the year 1954, at[12] analyses and extend the fundamental theorem of projective geometry 

over R-module. nR - denotes simple matrix ring. 
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2.  Lattice Isomorphism Of A Simple Matrix Rings 

Definition 2.1: If 3n  , any lattice isomorphism of the lattice of all ideals of n and that of m  is induced by 

an isomorphism of n and m , where   and are division rings,   

 

Example 2.2:   by a ring always mean an associative ring with unity. Let R be a ring with unit element 1 and A 

be an additive group of an R- module, if ax  is defined for all a in R and all x in A such that  

                                                      ( )a x y ax ay+ = + , 

                                                      ( )a b x ax bx+ = + , 

                                                          ( ) ( )a bx ab x=  , 

                                                                 1x x=  ,for any ,a b  in R and any ,x y in A.  

Let a subgroup B of A is called an R- sub-module, if ax in B for all a in R and all x in B. the set of all R- sub-

modules of A forms a modular lattice ( ), , . .L R A w r t group theoretical union and intersection. We shall call 

the lattice ( ),L R A a projective geometry over the ring R. Now we shall denote nR  is a simple matrix ring of 

degree n over R. 

Theorem 2.3: Let R be a ring and n be a positive integer then for any nR - module M there exist an R-module A 

such that 

                                                                   ( ) ( ), ,nL R M L R A  .   

Proof: Let ‘a’ be an element in R, we will denote by [a] the diagonal matrix of which all the diagonal elements 

are equal to a. the set of all [a] forms a sub-ring of nR isomorphic to R.  Let iie be the n n matrix with 1 in the 

thi row and 
thj  column and 0 otherwise. It is easily seen that iie commutes with any diagonal matrix. 

Let M be an nR -module. if we set 11A Me= then we can consider A as an R-module, since every [a] is 

commutative with 11e . If 1M is an nR -sub-module of M then 1 1 11A M e= is an R- sub-module of A. we will 

show that the mapping 1 1: M A → gives the desired isomorphism of ( ),nL R M and ( ),L R A  .  

Let 1 2,M M be two nR -sub-module of M such that 

                                                                  1 11 2 11M e M e= .  

We will show that 1 2M M . 

.Let foe any 1x M then, 

                                               1 1ixe M and ( )1 1 11 1 11 2 11 2i ixe xe e M e M e M=     

                                     . Thus 1 2ixe M and ( )1 1 2 1 2ii i i ixe xe e M e M=   .  
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Hence 1 2ixe M , for 1,2,3, ,i n= and since 11 22 33, , , , nne e e e is the unit element of nR , 2x M . Thus 

1 2M M is proved.  

                                       If 1 11 2 11M e M e= then clearly 1 2M M= .  

Hence we have proved that  is univalent and preserves inclusion.  

Let 1A be any nR -sub-module of A and Let 1M be the set of all elements of x in M such that 1 1ixe A  for 

1,2,3, ,i n= then 1M be any nR -sub-module of M, for if 1x M then 
1ijxe M  for , 1,2,3, ,i j n=  

and   1x a M  for all ‘a’ in R, since 

                                                           ( ) 1 1 1ij k j ikxe e xe A=   , where ik  is the Kronecker delta.  

Since [a] and 1ie permute and 1A be any nR -sub-module of A,   1x a M , so that 1M is  proved to be an nR -

sub-module of M. we will show that 

                                                                           1 1 11A M e= .  

Since 11 1xe A for all element of x in 1M  we have 1 11 1M e A    

 Let 1x A then since 1 1 11A A M e = , 
'

11x xe= for some 
'x in M and 11 1xe x A=   , 

( )1 11 1 0i ixe xe e= = for 1i  . Therefore 1x M  and 
' '

11 1 11x xe M e=  . Hence 1 1 11A M e= is proved. 

 

Corollary 2.4: Let for any R-module A there exist an nR - module M such that ( ) ( ), ,nL R M L R A  .   

Proof: Let A be a given R-module. Let M be a totality of 1 2 3, , , , nx x x x elements of A. if we define addition 

in M by adding component wise. M becomes an element of nR  and defines  

         ( )( ) ( )1 2 3 1 2 3, , , , , , , ,ij n na x x x x y y y y= by iy 1 1 2 2i i in na x a x a x= + + + , for 1,2, ,i n= . 

Then M becomes an nR - module of A. that ( ) ( ), ,nL R M L R A follows the first half of the theorem 2.3. 

 

Definition 2.5: Let  , ,J R S= be a family of rings and  be a lattice theoretical condition that the 

fundamental theorem of projective geometry ( ). . .f t p g holds in J under , if for any ring R in J and R-module 

A such that ( ),L R A satisfies the condition of . 

 

Definition 2.6: Let S be a ring in J and of B is an s-module such hat ( ) ( ), ,L R A L S B  then there exist an 

isomorphism  of A to B and an isomorphism 
' of R to S such that the lattice isomorphism 

                                                                      
'

1 1 1A A B→ = ,  
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where 1A  denotes an arbitrary element in ( ),L R A is induced by  that is  

                                                                      '

1 1/A y y A=   

and such that  

                                                     ( )
'

xa x a
  = , for all a in R and all x in A. 

 

Theorem 2.7: Let  , ,J R S= be a family of rings, n be a positive integer and  be a lattice theoretical 

condition. If the fundamental theorem of projective geometry holds in J under then the fundamental theorem 

of projective geometry also holds in  , ,n n nJ R S=  under . This isomorphism 
'  of nR to nS  needed in 

the fundamental theorem of projective geometry in nJ , can always be chosen , so that 
' is of the  type  

                                                                        ( ) ( )
'

''

ij ija a
 = ,  

where 
''  is a suitable isomorphism of R to S. 

Proof: Suppose the fundamental theorem of projective geometry holds in  , ,J R S=  under , that M is 

an nR -module and that ( ),nL R M satisfies .  

Let
'

1 1M M→ be a lattice isomorphism of ( ),nL R M and ( ),nL S N , where N is an nS -module, by 

theorem2.3 there exist an nR -module a and S-module J such that, 

                                                   ( ) ( ), ,nL R M L R A , ( ) ( ), ,nL S N L S B . 

 then                                             ( ) ( ), ,L R A L S B  

and clearly both of these lattices satisfy . In the view of the proof of theorem2.3, we may assume that 

11A Me= and 11B Ne= . Now by our assumption there is an isomorphism  of 11Me to 11Ne  and an 

isomorphism 
' of R to S such that  ' '

1 11 1 11/M e y y M e=  for any nR -sub-module 1M of M and such that  

                                        ( ) ( ) ( ) ''

11 11xe a xe a
 

 =    for all ‘a’ in R and all x in N.  

now we define a map : x x →  from M to N by   

                                     ( ) ( ) ( ) ( )11 11 21 12 31 13 1 1n nx xe e xe e xe e xe e
    = + + + ++    

Note that ( )1ixe


is a meaningful for x M and for 1,2,3, ,i n= , since ( )1 1 11 11i ixe xe e Me=  . We will 

show that  is an isomorphism of M and N. Since   is an isomorphism of 11Me to 11Ne ,  

we have easily verify that  

                                                  ( )x y x y
  + = + .  
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If 0x = then 
1 0ix e =  and therefore   ( ) ( )1 1 1 1 11 0i i i ixe e e xe e

 
= = . Since ( )1 11ixe Ne


 , we 

have ( ) ( )1 1 11 0i ixe xe e
 
= =  . Hence    1 0ixe = , since  is an isomorphism then ( )1 1 0ii i ixe xe e= =  

for 1,2,3, ,i n= , therefore 0x = ,Now we have to show that for any z N  there is an x M such 

that z x= , since ( )1 1 11 11i ize ze e Ne=   there exist an element 11ix Me such that
1i ize x= . 

Put                                       1 11 2 21 3 31 1n nx x e x e x e x e= + + + +  

then 

                                        1 11i i i ix e x e x= = . 

Hence                               ( )1 1i ize xe


= and ( )1 1 1i i ize xe e


= .  

Therefore z x= . Thus we have proved that  is an isomorphism of M to N. 

Now for all a R and all x N , then we have 

 ( )  ( )  ( ) ( ) ( )
'' '' ''

1 1 1 1 1 1 1 1i i i i i i i ix a x a e e xe a e xe a e a xe e a x
            = = = = =

        
and  

                                                       ( ) ( )1 1ij i j ijxe xe e x e
  = = .  

Thus for all ( )ij na R and x M we have ( )( ) ( )
'

ij ijx a a x


 = . Finally we have to show that 

 '

1 1/M x x M=   for any nR -sub-module 1M of M, we note that y y = for all 11y Me .  

Let x be in 1M . Since we have  '

1 11 1 11/M e y y M e=  and since  1 1 11ixe M e , we have 

( ) ( ) '

1 1 1 1 11i i ix e xe xe M e
  = =  . Hence

' '

1 1 1ii ix e M e M   . Therefore 
'

1x M  .  

Conversely, let z be in 
'

1M , then we can find ix in such that 
1i i ize x x = = . Hence 

( )1 1ii i i i ize x e x e
= = and ( ) ( )1 1i i i iz x e x e


= =  .  

Clearly 1i ix x e= is in 1M and z x= . Thus we have proved that the lattice isomorphism 

of ( ),nL R M to ( ),nL S N  is induced by the group isomorphism , proof is complete. 

Now let R be a ring A R R R=    be a direct sum of n terms of the additive group of R. if we 

define 1 2, , , nxa a a a a a a= , for ( )1 2, , , nx a a a A=  and a R , then A become an R-module. We 

assume that R satisfies the following conditions; 

(i) Any lattice automorphism of ( ),L R A induced by some automorphism  of A such that 

( )
'

xa x a
  = for all ,a R x A  , where

' is an automorphism of R. 

(ii) Let P, Q be in the simple matrix ring nR . If 1PQ = , 1QP = . Q will be denoted by
1P−

. 
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Theorem 2.8: Let a ring R and an integer n be such that the above two conditions (i),(ii) are satisfied  then any 

automorphism   of the simple matrix ring nR  is of the form ( ) ( )
'1

ij ija W a W
 −=  , where 

' is an 

automorphism of R and W is an element of nR for which 
1W −

 is exist. 

Proof: obvious 

CONCLUSION 

From Baer theorem [3, p.39]we know that the ring I of all integers satisfies the above condition(i) for all n. since 

I can be imbedded in a field, (ii) is also satisfied for all n. from theorem 2.8, therefore, it follows that any 

automorphism of the simple matrix ring nI is inner. 
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