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1. INTRODUCTION 

Over the years, other types of topological spaces were introduced as a generalization of topological spaces, 

making topology a traditional science. The Neutrosophic set was defined by Smarandache [2] using three 

components: T stands for Truth, F for Falsehood, and I for Indeterminacy. Numerous real-world issues in the 

fields of business, finance, medicine, engineering, and social sciences involve uncertainty that neutrosophic 

topology addresses. Saied Jafari introduced Neutrosophic generalized closed sets, whereas Salama et al. [3] and 

R. Dhavaseelan [6] introduced Neutrosophic topological spaces. After this, C. Maheswari[11] et al. introduced 

the Neutrosophic b closed set. Renu Thomas established the concept of Neutrosophic β open sets and β closed 

sets [9]. In 2024, R. Eswari and F. Nirmala Irudayam presented the NRGβ closed set [13]. In this research, we 

introduce and investigate NRGβ continuous mappings and NRGβ irresolute mappings in neutrosophic 

topological spaces. 

2. PRELIMINARIES 

We review the basic definitions, operations, and fundamental results of Neutrosophic Sets in this section. 

Definition 2.1[3] Consider ℝ to be a fixed, non-empty set. An object with the following form is a NS,  

ⅅ = {< 𝑟, 𝜇ⅅ(𝑟), 𝜎ⅅ(𝑟), 𝛾ⅅ(𝑟) >: 𝑟𝜖ℝ}, where   𝜇ⅅ , 𝜎ⅅ  , 𝛾ⅅ  : ⅅ → [0,1] and  0≤  𝜇ⅅ(𝑟)+𝜎ⅅ(𝑟)+𝛾ⅅ(𝑟) ≤3 and

        𝜇ⅅ(𝑟) – signifies the degree of membership function 

       𝜎ⅅ(𝑟) - signifies the degree of indeterminacy function 

       𝛾ⅅ(𝑟) - signifies the degree of non-membership function. 

N(X) is the set of all Neutrosophic sets over X. 

Definition 2.2[3] If ⅅ = {< 𝑟, 𝜇ⅅ(𝑟), 𝜎ⅅ(𝑟), 𝛾ⅅ(𝑟) >}  is a NS on X, then ⅅ𝑐 = {< 𝑟, 𝛾ⅅ(𝑟), 1 −

 𝜎ⅅ(𝑟), 𝜇ⅅ(𝑟) >: 𝑟 ∈ ℝ} is the complement of ⅅ. 

Definition 2.3[3] If ⅅ = {< 𝑟, 𝜇ⅅ(𝑟), 𝜎ⅅ(𝑟), 𝛾ⅅ(𝑟) >}  and E = {< 𝑟, 𝜇E(𝑟), 𝜎E(𝑟), 𝛾E(𝑟) >}  are any two 

Neutrosophic sets, then ⅅ ⊆ E ⇔{ 𝜇ⅅ(𝑟) ≤ 𝜇E(𝑟), 𝜎ⅅ(𝑟) ≤ 𝜎E(𝑟), 𝛾ⅅ(𝑟) ≥ 𝛾E(𝑟)} . 
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 Definition 2.4[3] Let ℝ be a non- empty fixed set with two Neutrosophic sets  ⅅ = {< 𝑟, 𝜇ⅅ(𝑟), 𝜎ⅅ(𝑟), 𝛾ⅅ(𝑟) >

} and E = {< 𝑟, 𝜇E(𝑟), 𝜎E(𝑟), 𝛾E(𝑟) >}, then  

1. ⅅ˅E = {𝑟, max{𝜇ⅅ(𝑟), 𝜇E(𝑟)},  max{𝜎ⅅ(𝑟), 𝜎E(𝑟)}, min{𝛾ⅅ(𝑟), 𝛾E(𝑟)} : 𝑟𝜖ℝ}.  

2. ⅅ˄E = {𝑟, min{𝜇ⅅ(𝑟), 𝜇E(𝑟)},  min{𝜎ⅅ(𝑟), 𝜎E(𝑟)}, mar{𝛾ⅅ(𝑟), 𝛾E(𝑟)} : 𝑟𝜖ℝ}.   

Definition 2.5[3] If 𝜏𝑁 is the set of Neutrosophic subsets of R that meet the following criteria, and ℝ is a non-

empty set, then  

1. 𝟘𝑁 , 𝟙𝑁  ∈  ℑℕ  

2. ˅𝑇𝑖 ∈  ℑℕ for every {𝑇𝑖 ∶ 𝑖 ∈ 𝑗} ⊆ ℑℕ 

3.  𝑇1 ˄ 𝑇2 ∈  ℑℕ for any 𝑇1 , 𝑇2 ∈  ℑℕ 

The space (ℝ, ℑℕ ) is referred to as a Neutrosophic topological space (ṄṪṠ) when ℑℕ  is a Neutrosophic 

topology. A NOS is the element of ℑℕ, while a NCS is its complement. 

Definition 2.6 [3] Let (ℝ, ℑℕ ) be a ṄṪṠ and ⅅ = {< 𝑟, 𝜇ⅅ(𝑟), 𝜎ⅅ(𝑟), 𝛾ⅅ(𝑟) >}  be a NS in ℝ. Then 

Neutrosophic closure of  ⅅ is Ncl(ⅅ) = ˄{Ḣ: Ḣ is a NCS in ℝ and ⅅ ⊆ Ḣ } and Neutrosophic interior of ⅅ is 

Nint(ⅅ) = ˅{ Ṁ: Ṁ is a NCS in ℝ and ⅅ ⊆ Ṁ }. 

Definition 2.7[2] Let (ℝ, ℑℕ ) be a N-T-S and ⅅ = {< 𝑟, 𝜇ⅅ(𝑟), 𝜎ⅅ(𝑟), 𝛾ⅅ(𝑟) >}  be a NS in ℝ. Then 

Neutrosophic 𝝱closure of ⅅ is N𝝱cl(ⅅ) = ˄ {Ḣ: Ḣ is a N𝝱CS in ℝ and ⅅ ⊆ Ḣ } and Neutrosophic 𝝱 interior of 

ⅅ is N𝝱int(ⅅ) = ˅{Ṁ: Ṁ is a N𝝱OS in ℝ and Ṁ⊆ ⅅ}.  

Definition 2.8[13] Let (ℝ, ℑℕ) be a ṄṪṠ and ⅅ = {< 𝑟, 𝜇ⅅ(𝑟), 𝜎ⅅ(𝑟), 𝛾ⅅ(𝑟) >} be a NS in ℝ. Then ⅅ is said to 

be Neutrosophic regular generalized 𝝱 closed set[13] (NRG𝝱CS) if N𝝱cl(D) ⊆ Ȗ whenever D ⊆ Ȗ and Ȗ is a 

NROS in ℝ. 

3. NRGβ CONTINUOUS MAPPINGS 

The notions of NRGβ continuous mappings in Neutrosophic topological spaces are presented in this section.  

Definition 3.1: Let ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ) be a mapping. If ɟ−1(𝑉) is a NRGβ closed set in ℝ for every NCS V in 

𝕊, then ɟ is referred to as an NRGβ continuous (NRGβ CTS) mapping. 

Example 3.2 : Let L={<r,(0.6,0.5,0.4), (0.7,0.5,0.3)>} and M={<s,(0.9,0.5,0.1),(0.8,0.5,0.2)>} where  

ℝ ={k1,k2}and 𝕊 ={k3,k4}. Then on ℝ and 𝕊, respectively, Neutrosophic Topologies are ℑℕ ={0N,L,1N} and  

ℽℕ ={0N,M,1N}. Using ɟ (k1)= k3 and ɟ (k2)= k4 , define a mapping  ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ). Then ɟ is NRGβ CTS. 

Theorem 3.3 : Every mapping that is Neutrosophic continuous (N CTS), Neutrosophic α continuous (Nα CTS), 

Neutrosophic generalised continuous (NG CTS), Neutrosophic α generalised continuous (NαG CTS), 

Neutrosophic generalized pre continuous (NGP CTS), Neutrosophic semi continuous (NS CTS), Neutrosophic 

generalized semi continuous (NGS CTS), Neutrosophic b continuous (Nb CTS), Neutrosophic β continuous (Nβ 

CTS) and Neutrosophic generalized β continuous (NGβ CTS) is also an NRGβ continuous. 

Remark 3.4: The converse of above theorem is not true as we can shown by the countable examples.  

Example 3.5 : Let L={<r,(0.5,0.5,0.5), (0.7,0.5,0.3)>} and M={<s,(0.3,0.5,0.4),(0.9,0.5,0.1)>} where ℝ 

={k1,k2},  

𝕊 ={k3,k4}. Then on ℝ and 𝕊, respectively, Neutrosophic Topologies are ℑℕ ={0N,L,1N} and ℽℕ ={0N,M,1N}.  

Using ɟ (k1)= k3 and ɟ (k2)= k4 , define a mapping ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ) by ɟ (k1)= k3 and ɟ (k2)= k4 . Since the NS 

J={<y,(0.4,0.5,0.3), (0.1,0.5,0.9)>} is NCS in 𝕊, ɟ -1(J) is a NRGβCS but not NCS in ℝ. As a result f is not a N 

CTS mapping but rather than an NRGβ continuous mapping. 

Example 3.6 : Let L={<r,(0.5,0.5,0.6), (0.7,0.5,0.6)>} and M={<s,(0.3,0.5,0.9),(0.5,0.5,0.7)>} where ℝ 

={k1,k2},  
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𝕊 ={k3,k4}. Then on ℝ and 𝕊, respectively, Neutrosophic Topologies are ℑℕ ={0N,L,1N} and ℽℕ ={0N,M,1N}. 

Using 

 ɟ (k1)= k3 and ɟ (k2)= k4 , define a mapping ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ) by ɟ(k1)= k3 and ɟ (k2)= k4 .Since the NS 

J={<s,(0.9,0.5,0.3), (0.7,0.5,0.5)>} is NCS in 𝕊, ɟ -1(J) is a NRGβCS but not NαCS in ℝ. As a result ɟ is not  

Nα CTS mapping but rather than an NRGβ continuous mapping. 

Example 3.7 : Let L={<r,(0.5,0.5,0.6), (0.8,0.5,0.4)>} and M={<s,(0.7,0.5,0.3),(0.2,0.5,0.8)>} where ℝ 

={k1,k2},  

𝕊 ={k3,k4}. Then on ℝ and 𝕊, respectively, Neutrosophic Topologies are ℑℕ ={0N,L,1N} and ℽℕ ={0N,M,1N}. 

Using 

 ɟ (k1)= k3 and ɟ (k2)= k4 , define a mapping ɟ: (ℝ, ℑℕ) → (𝕊, ℽℕ). Since the NS J={<s,(0.3,0.5,0.7), 

(0.8,0.5,0.2)>} is NCS in 𝕊, ɟ -1(J) is a NRGβCS but not NGCS in ℝ. As a result ɟ is not NG CTS mapping but 

rather than an NRGβ continuous mapping. 

Example 3.8 : Let L={<r,(0.7,0.5,0.3), (0.4,0.5,0.8)>} and M={<s,(0.3,0.5,0.9),(0.5,0.5,0.7)>} where ℝ 

={k1,k2},  

𝕊 ={k3,k4}. Then on ℝ and 𝕊, respectively, Neutrosophic Topologies are ℑℕ ={0N,L,1N} and ℽℕ ={0N,M,1N}. 

Using 

 ɟ (k1)= k3 and ɟ (k2)= k4 , define a mapping ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ). Since the NS J={<s,(0.9,0.5,0.3), 

(0.7,0.5,0.5)>} is NCS in 𝕊, ɟ -1(J) is a NRGβCS but not NαGCS in ℝ. As a result ɟ is not NαG CTS mapping but 

rather than an NRGβ continuous mapping. 

Example 3.9 : Let L={<r,(0.4,0.5,0.6), (0.7,0.5,0.3)>} and M={<s,(0.3,0.5,0.9),(0.5,0.5,0.7)>} where ℝ 

={k1,k2},  

𝕊 ={k3,k4}. Then on ℝ and 𝕊, respectively, Neutrosophic Topologies are ℑℕ ={0N,L,1N} and ℽℕ ={0N,M,1N}. 

Using  

ɟ (k1)= k3 and ɟ (k2)= k4 , define a mapping ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ) .Since the NS J={<s,(0.9,0.5,0.3), 

(0.7,0.5,0.5)>} is NCS in 𝕊, ɟ -1(J) is a NRGβCS but not NGPCS in ℝ. As a result ɟ is not NGP CTS mapping but 

rather than an NRGβ continuous mapping. 

Example 3.10 : Let L={<r,(0.7,0.5,0.3), (0.4,0.5,0.8)>} and M={<s, (0.6,0.5,0.4), (0.6,0.5,0.2>} where ℝ 

={k1,k2}, 𝕊 ={k3,k4}. Then on ℝ and 𝕊, respectively, Neutrosophic Topologies are  ℑℕ ={0N,L,1N} and ℽℕ 

={0N,M,1N}. Using ɟ (k1)= k3 and ɟ (k2)= k4 , define a mapping ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ).Since the NS 

J={<s,(0.4,0.5,0.6), (0.2,0.5,0.6)>} is NCS in 𝕊, ɟ -1(J) is a NRGβCS but not NSCS in ℝ. As a result ɟ is not NS 

CTS mapping but rather than an NRGβ continuous mapping. 

Example 3.11:Let L={<r, (0.7, 0.5, 0.4), (0.3, 0.5, 0.6)>}and  M={<s,(0.9,0.5,0.6),(0.0,0.5,0.1)>}where ℝ 

={k1,k2}, 𝕊 ={k3,k4}. Then on ℝ and 𝕊, respectively, Neutrosophic Topologies are ℑℕ ={0N,L,1N} and ℽℕ 

={0N,M,1N}. Using 

 ɟ (k1)= k3 and ɟ (k2)= k4, define a mapping ɟ: (ℝ, ℑℕ) → (𝕊, ℽℕ). Since the NS J={<s,(0.6,0.5,0.9), (0.1,0.5,0.0)>} 

is NCS in 𝕊, ɟ -1(J) is a NRGβCS but not NGSCS in ℝ. As a result ɟ is not NGS CTS mapping but rather than an 

NRGβ continuous mapping. 

Example 3.12 : Let L={<r, (0.9,0.5,0.3),(0.8,0.5,0.2)>} and M={<s, (0.7,0.5,0.4),(0.6,0.5,0.3)>} where ℝ 

={k1,k2}, 𝕊 ={k3,k4}. Then on ℝ and 𝕊, respectively, Neutrosophic Topologies are ℑℕ ={0N,L,1N} and ℽℕ 

={0N,M,1N}. Using  

ɟ (k1)= k3 and ɟ (k2)= k4 , define a mapping ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ) by ɟ(k1)= k3 and ɟ (k2)= k4 . Since the NS 

J={<s,(0.4,0.5,0.7), (0.3,0.5,0.6)>} is NCS in 𝕊, ɟ -1(J) is a NRGβCS but not NbCS in ℝ. As a result ɟ is not  
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Nb CTS mapping but rather than an NRGβ continuous mapping. 

Example 3.13 : Let L={<r, (0.6,0.5,0.4),(0.7,0.5,0.4)>} and M={<s, (0.2,0.5,0.8),(0.4,0.5,0.9)>} where ℝ 

={k1,k2}, 𝕊 ={k3,k4}. Then on ℝ and 𝕊, respectively, Neutrosophic Topologies are ℑℕ ={0N,L,1N} and ℽℕ 

={0N,M,1N}. Using  

ɟ (k1)= k3 and ɟ (k2)= k4 , define a mapping ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ).Since the NS J={<s,(0.8,0.5,0.2), (0.9,0.5,0.4)>} 

is NCS in 𝕊, ɟ -1(J) is a NRGβCS but not NβCS in ℝ. As a result ɟ is not Nβ CTS mapping but rather than an 

NRGβ continuous mapping. 

Example 3.14 : Let L={<r, (0.5,0.5,0.5),(0.3,0.7,0.7)>} and M={<s, (0.6,0.4,0.4),(0.7,0.3,0.3)>} where ℝ 

={k1,k2}, 𝕊 ={k3,k4}. Then on ℝ and 𝕊, respectively, Neutrosophic Topologies are ℑℕ ={0N,L,1N} and ℽℕ 

={0N,M,1N}. Using ɟ (k1)= k3 and ɟ (k2)= k4 , define a mapping ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ).Since the NS 

J={<s,(0.4,0.4,0.6), (0.3,0.3,0.7)>} is NCS in 𝕊, ɟ -1(J) is a NRGβCS but not NGβCS in ℝ. As a result ɟ is not 

NGβ CTS mapping but rather than an NRGβ continuous mapping. 

Therefore, the following conclusions can be drawn from the aforementioned theorem and examples: 

 

Theorem 3.15 : Consider Neutrosophic topological spaces  (ℝ, ℑℕ), (𝕊, ℽℕ) and (𝕋, 𝞼ℕ). Then ɠ ○ ɟ : (ℝ, ℑℕ) →( 

𝕋, 𝞼ℕ) is a NRGβ continuous mapping if ɟ: (ℝ, ℑℕ) → (𝕊, ℽℕ) is a NRGβ continuous mapping and ɠ : (𝕊, ℽℕ) → 

(𝕋, 𝞼ℕ) is a N CTS. 

Proof: Suppose that V is a NCS in 𝕋. Since ɠ : (𝕊, ℽℕ) → (𝕋, 𝞼ℕ) is a N CTS mapping, ɠ−1(𝑉) is NCS in 𝕊. 

Then ɟ−1[ɠ−1(𝑉)]  is NRGβCS in ℝ since ɟ  is a NRGβ continuous mapping. However  ɟ−1[ɠ−1(𝑉)] =

(ɠ ○ ɟ)−1(𝑉). Then (ɠ ○ ɟ)−1(𝑉) is NRGβCS in ℝ. Therefore ɠ ○ɟ is a NRGβ continuous mapping. 

Theorem 3.16 : A mapping ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ) is NRGβ continuous mapping if and only if each NOS in 𝕊 has 

an inverse image that is an NRGβ OS in ℝ. 

Proof:   

Part 1 : If  V is a NOS in 𝕊, then VC  is a NCS in 𝕊. Since ɟ is an NRGβ continuous mapping, ɟ−1(VC) is 

NRGβCS in ℝ. Since ɟ−1(VC) = (ɟ−1(V))𝐶  , ɟ−1(V) is a NRGβ OS in ℝ. 

Part 2 : Suppose V is a NCS in 𝕊. Then VC  is a NOS in 𝕊. ɟ−1(VC) is NRGβ OS in ℝ, according to the 

hypothesis. As ɟ−1(VC) = (ɟ−1(V))𝐶  , (ɟ−1(V))𝐶  is a NRGβ OS in ℝ. Thus ɟ−1(V) is NRGβ CS in ℝ. Hence ɟ is 

NRGβ continuous mapping.            

Theorem 3.17: For every NCS V in 𝕊, let ɟ−1(V) be a NRCS in ℝ and ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ) be a mapping. Then 

ɟ is a NRGβ CTS.            
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Proof: Assume that ɟ−1(V) is a NRCS in ℝ and that V is a NCS in 𝕊. Since every NRCS is closed and every 

closed set is NRGβCS, ɟ−1(V) is a NRGβCS in ℝ. This means that ɟ is is a NRGβ CTS. 

Definition 3.18 : A Neutrosophic topology (ℝ, ℑℕ) is referred to as a  

1. If every NRGβCS in ℝ is a NCS in ℝ, then the space is Neutrosophic RGβaT1/2 (or simply NRGβaT1/2). 

2. If every NRGβCS in ℝ is a NGCS in ℝ, then the space is Neutrosophic RGβbT1/2 (or simply NRGβbT1/2). 

3. If every NRGβCS in ℝ is a NGβCS in ℝ, then the space is Neutrosophic RGβcT1/2 (or simply NRGβcT1/2). 

Theorem 3.19 : Given an NRGβ CTS mapping  ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ),  

(i) if ℝ is an NRGβaT1/2 space, then ɟ is an NCTS. 

(ii) if  ℝ is a NRGβbT1/2 space, then ɟ is a NG CTS. 

(iii) if  ℝ is a NRGβcT1/2 space, then ɟ is a NGβ CTS. 

Theorem 3.20 : The mapping from Neutrosophic topology in ℝ to a Neutrosophic topology in 𝕊 is represented 

by the notation ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ). be a mapping from Neutrosophic topology in ℝ into a Neutrosophic 

topology in 𝕊. If ℝ is a NRGβaT1/2 space, then the following conditions are equal. 

(i) ɟ is a mapping of  NRGβ CTS. 

(ii) ɟ−1(μ) is a NRGβOS in ℝ if 𝞵 is a NOS in 𝕊. 

(iii) For every NOS 𝞵 in 𝕊, ɟ -1 (N int(𝞵)) ⊆ N int(N cl(N int(ɟ−1(N int(μ))))). 

Proof: It is evident that (i) ⇒ (ii) is true. 

(ii) ⇒ (iii) In 𝕊, let 𝞵 be a NOS. N int(𝞵) is a NOS in 𝕊 accordingly. In that case  ɟ−1(N int(μ)) is a NRGβOS in 

ℝ. ɟ−1(N int(μ))  is a NOS in 𝕊 since ℝ is a NRGβaT1/2 space. Consequently ɟ−1(N int(μ)) =

𝑁 𝑖𝑛𝑡(ɟ−1(N int(μ))) ⊆ 𝑁 𝑖𝑛𝑡(𝑁 𝑐𝑙(N int (ɟ−1(μ)))).       

(iii) ⇒ (i) In 𝕊, let 𝞵 be a NCS. Then in 𝕊, 𝞵c is a NOS. ɟ -1(𝞵c) ⊆ N int(N cl(N int(ɟ−1(N int(μc))))) by 

hypothesis. This suggests that ɟ -1 (N int(𝞵c)) ⊆ N int(N cl(N int(ɟ−1(N int(μc))))). Therefore in ℝ,  ɟ -1(𝞵c) is a 

N𝞪OS is a NRGβOS. Hence in ℝ,  ɟ−1(μ) is a NRGβCS. Therefore ɟ is a NRGβ CTS mapping. 

Theorem 3.21 : Let f be an NRGβ CTS mapping, such that f : (ℝ, ℑℕ) → (𝕊, ℽℕ). Then the following conditions 

are hold. 

(i) In ℝ for each NS A, ɟ (NRGβ cl(A))⊆Ncl(ɟ (A)). 

(ii) In 𝕊, for every NS μ, NRGβ cl(ɟ−1(μ)) ⊆ ɟ -1(Ncl((μ))). 

Proof:  

(i) ɟ -1(Ncl((ɟ (A))) is NRGβCS in ℝ since ɟ is a NRGβ CTS mapping and Ncl(ɟ (A)) is a NCS in 𝕊. In other 

words, NRGβ cl(A)⊆ ɟ -1(Ncl((ɟ (A))). Therefore for every NS A in ℝ, ɟ (NRGβ cl(A))⊆ Ncl((ɟ (A)).  

(ii)When ɟ−1(μ) is substituted for A in (i), we obtain ɟ (NRGβ cl(ɟ−1(μ)))⊆Ncl(ɟ (ɟ−1(μ))) ⊆ Ncl(μ)). Thus, for 

every NS μ in 𝕊, NRGβ cl(ɟ−1(μ)) ⊆ ɟ -1(Ncl((μ))).  

  4.NRGβ IRRESOLUTE MAPPINGS 

Definition 4.1: If for each NRGβCS V in 𝕊, ɟ−1(𝑉) is a NRGβCS in ℝ, then a mapping ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ) is a 

Neutrosophic Regular Generalized β irresolute (NRGβ irresolute).  

Theorem 4.2: Given an NRGβ irresolute mapping ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ), ɟ is a NRGβ CTS mapping. 

Proof: Consider ɟ: (ℝ, ℑℕ) → (𝕊, ℽℕ) to be a NRGβ irresolute mapping. Assume that V is any NCS in 𝕊. Since 

every NCS is NRGβCS, V is NRGβCS in 𝕊. ɟ−1(𝑉) is a NRGβCS in ℝ, by hypothesis. Hence ɟ is a NRGβ CTS 

mapping. 

Theorem 4.3: Given an NRGβ irresolute ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ), if ℝ is a NRGβaT1/2 space, then ɟ is a 

Neutrosophic irresolute mapping. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 1 (2025) 

__________________________________________________________________________________ 

680 

 Proof:  Suppose that V is a NCS in 𝕊. Then V is a NRGβCS in 𝕊. According to the hypothesis, ɟ−1(𝑉) is a 

NRGβCS in ℝ. Since ℝ is a NRGβaT1/2 space, ɟ−1(𝑉) is a NCS in ℝ. Hence ɟ is a Neutrosophic irresolute 

mapping. 

Theorem 4.4 : If ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ) and ɠ : (𝕊, ℽℕ) → (𝕋, 𝞼ℕ) are both NRGβ irresolute mappings, then ɠ ○ɟ : 

(ℝ, ℑℕ) →( 𝕋, 𝞼ℕ) is a NRGβ irresolute mapping. 

Proof: In 𝕋, let V be a NRGβCS. Then ɠ−1(𝑉) is a NRGβCS in 𝕊. Since ɟ is a NRGβ irresolute mapping, 

ɟ−1[ɠ−1(𝑉)] is NRGβCS in ℝ and so ɠ ○ɟ is also an NRGβ irresolute mapping. 

Theorem 4.5: Assuming that ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ) and ɠ : (𝕊, ℽℕ) → (𝕋, 𝞼ℕ) are NRGβ CTS mappings, then ɠ 

○ɟ : (ℝ, ℑℕ) →( 𝕋, 𝞼ℕ) is a NRGβ CTS mapping.  

Proof: Suppose that V is a NCS in 𝕋. Then ɠ−1(𝑉)  is a NRGβCS in 𝕊. Since ɟ is a NRGβ irresolute, 

ɟ−1[ɠ−1(𝑉)] is NRGβCS in ℝ. Hence ɠ ○ɟ is a NRGβ CTS mapping. 

Theorem 4.6: Given an NRGβ irresolute ɟ: (ℝ, ℑℕ) → (𝕊, ℽℕ), if ℝ is an NRGβbT1/2 space, then ɟ is a NG 

irresolute mapping. 

Proof: In 𝕊, let V be an NRGβCS. By hypothesis, ɟ−1(𝑉)  is a NRGβCS in ℝ. Since ℝ is a NRGβbT1/2 

space, ɟ−1(𝑉) is a NGCS in ℝ. Hence ɟ is a NG irresolute mapping. 

Theorem 4.7: Suppose ɟ : (ℝ, ℑℕ) → (𝕊, ℽℕ) is a mapping from a Neutrosophic topology ℝ into a Neutrosophic 

topology 𝕊. Then the following conditions are equivalent if ℝ and 𝕊 are NRGβaT1/2 spaces. 

(i) ɟ is a NRGβ irresolute mapping. 

(ii) For each NRGβOS 𝞵 in , ɟ−1(μ) is a NRGβOS in ℝ. 

(iii) For every NS 𝞵 in 𝕊, Ncl(ɟ -1(𝞵)) ⊆ ɟ−1(N cl(μ)). 

Proof: (i) ⇒ (ii): In 𝕊, let 𝞵 be any NRGβOS in 𝕊. Then in 𝕊, 𝞵c is a NRGβCS. ɟ−1(μc) is a NRGβCS in ℝ, 

since ɟ is a NRGβ irresolute mapping. However, ɟ−1(μc) = (ɟ−1(μ))𝑐. Hence ɟ−1(μ) is a NRGβOS in 𝕊. 

(ii)⇒ (iii): Suppose 𝞵 is any NS in 𝕊 and 𝞵⊆Ncl(𝞵). Then ɟ -1(𝞵)⊆ ɟ -1(Ncl(𝞵)). Since Ncl(𝞵) is a NCS in 𝕊, 

Ncl(𝞵) is a NRGβCS in 𝕊. Therefore (Ncl(μ))𝑐 is a NRGβOS in 𝕊. According to hypothesis ɟ−1((Ncl(μ))𝑐) is a 

NRGβOS in ℝ. Since ɟ−1((Ncl(μ))𝑐) = (ɟ−1(Ncl(μ)))𝑐), ɟ−1(𝑁𝑐𝑙(μ)) is a NRGβCS in ℝ. ɟ−1(𝑁𝑐𝑙(μ)) is a 

NCS in ℝ, since ℝ is a NRGβaT1/2 space. Hence Ncl(ɟ -1(𝞵)) ⊆ Ncl(ɟ -1(Ncl(𝞵)))= ɟ−1(N cl(μ). That is Ncl(ɟ -

1(𝞵)) ⊆ ɟ−1(N cl(μ)). 

 (iii) ⇒ (i): Assume 𝞵 is any NRGβCS in 𝕊. Then 𝞵 is a NCS in 𝕊 and Ncl(𝞵) = 𝞵, since 𝕊 is a NRGβaT1/2 space 

. Hence ɟ -1(𝞵)= ɟ -1(Ncl(𝞵))⊇ Ncl(ɟ -1(𝞵)). But clearly ɟ -1(𝞵)⊆ Ncl(ɟ -1(𝞵)). Therefore Ncl(ɟ -1(𝞵))= ɟ -1(𝞵) which 

implies ɟ -1(𝞵) is a NCS and hence it is a NRGβCS in ℝ. Thus ɟ is a NRGβ irresolute mapping.  

5.CONCLUSION 

The characteristics of  NRGβ irresolute and continuous mappings in Neutrosophic topological spaces have been 

introduced, examined, and their relationships developed in this research. We anticipate that the findings in this 

chapter will serve as the foundation for more mapping applications in Neutrosophic topological spaces. 
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