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Abstract:- This study explores the predictive modeling of shielding effectiveness in Al6061 and its composites, 

Al6061+10% Fly Ash and Al6061+10% Aloe Vera, using machine learning techniques. The datasets of these 

composites were obtained through experimental analysis using a network analyzer, ensuring accurate 

measurements of electromagnetic properties. By leveraging XGBoost, Random Forest, and Linear Regression 

models, the research evaluates the impact of material modifications on shielding performance. The results 

demonstrate that ensemble models, particularly XGBoost, consistently outperform Linear Regression, achieving 

higher R² values and lower RMSE and MAE across all datasets. The addition of 10% Fly Ash significantly 

enhances predictive accuracy, with XGBoost and Random Forest achieving near-perfect alignment between 

predicted and actual values. This improvement is driven by the increased importance of transmission coefficients 

(S21), as highlighted by SHAP analysis. In comparison, Al6061+10% Aloe Vera shows moderate performance 

improvements, with SHAP results indicating more complex interactions between features. The analysis reveals 

that while frequency remains a dominant factor, the role of transmission coefficients grows in importance with 

material reinforcement. The study underscores the limitations of linear models in capturing non-linear 

dependencies, reinforcing the necessity of ensemble techniques for composite material predictions. These findings 

provide a pathway for optimizing composite material design through advanced machine learning models, 

highlighting the potential of Fly Ash for industrial applications and Aloe Vera for sustainable innovation. The 

integration of SHAP analysis enhances model interpretability, ensuring reliable feature importance assessment 

and fostering greater trust in machine learning applications for material science. This research contributes to 

advancing predictive modeling in composite materials, paving the way for more efficient and sustainable material 

development. 
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1. Introduction 

The increasing demand for advanced materials with effective electromagnetic shielding properties has driven 

significant research into the development of composite materials [1]. Aluminum 6061 (Al6061) and its composites 

have gained attention due to their lightweight nature, mechanical strength, and corrosion resistance [2]. However, 
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enhancing their electromagnetic shielding effectiveness (SE) and dielectric properties is essential for applications 

in aerospace, automotive, and electronic industries. Traditionally, evaluating shielding effectiveness and 

permittivity relies on extensive experimental measurements, which can be time-consuming and resource-intensive 

[3]. With advancements in machine learning (ML) techniques, predictive modeling offers a novel approach to 

estimate these properties with high accuracy, reducing the need for repeated physical testing [4]. By leveraging 

historical datasets, ML models can identify complex relationships between material properties and external factors 

such as frequency and transmission coefficients [5]. 

In this study, we apply machine learning to predict the shielding effectiveness and permittivity of Al6061 and its 

composites, including Al6061 reinforced with 10% Fly Ash and 10% Aloe Vera [2]. Using models like XGBoost, 

Random Forest, and Linear Regression, we aim to develop accurate predictive frameworks that accelerate material 

design and optimization processes [6]. This research not only explores the predictive capabilities of ML but also 

provides insights into the influence of frequency and material composition on electromagnetic properties [4]. The 

key objectives are to develop ML models for predicting shielding effectiveness and permittivity, compare the 

performance of different algorithms, and interpret model predictions using SHAP (SHapley Additive 

exPlanations) to understand the primary drivers of shielding performance. This work aims to contribute to the 

growing body of knowledge in material science by demonstrating the potential of machine learning as a valuable 

tool for predictive modeling in electromagnetic shielding applications [5]. 

2. Literature review 

Electromagnetic shielding is crucial in protecting sensitive electronic components from electromagnetic 

interference (EMI). Aluminum alloys, particularly Al6061, are favoured in aerospace and automotive industries 

for their excellent strength-to-weight ratio and corrosion resistance [7]. Recent studies have explored reinforcing 

Al6061 with materials like boron carbide (B₄C) to enhance mechanical properties, including hardness and tensile 

strength [2]. 

Research indicates that incorporating fly ash into Al6061 composites improves electromagnetic shielding 

effectiveness (SE). Fly ash, rich in carbon and iron oxides, enhances the absorption of electromagnetic waves, 

thereby increasing SE [8]. Experimental analyses have demonstrated that Al6061 composites reinforced with fly 

ash exhibit superior SE, particularly in the X-band frequency range (8–12 GHz), making them suitable for 

aerospace applications [9]. 

Traditional methods of evaluating SE and permittivity involve extensive experimental procedures, which are time-

consuming and resource-intensive. To address these challenges, machine learning (ML) techniques have been 

employed to predict material properties. ML algorithms, such as Random Forest and XGBoost, have shown 

success in predicting the mechanical, thermal, and electromagnetic properties of various materials [10]. These 

models can capture complex interactions between features, providing accurate predictions that aid in material 

design and optimization. 

Advancements in explainable AI (XAI) methods, like SHapley Additive exPlanations (SHAP), enable the 

interpretation of ML model outputs. SHAP values help identify the most significant features influencing shielding 

performance, offering insights that facilitate further optimization in composite design [11]. 

Integrating ML techniques into composite material research bridges the gap between experimental studies and 

predictive modeling. This approach accelerates material development and reduces reliance on physical testing, 

contributing to the advancement of materials with enhanced electromagnetic shielding capabilities. 

3. Methodology 

Dataset Description: 

The dataset used in this study comprises measurements of shielding effectiveness (SE) and permittivity of Al6061 

composites, including variants reinforced with 10% Fly Ash and 10% Aloe Vera. The data points include 

frequency values, real and imaginary components of transmission coefficients (S21), and corresponding shielding 
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effectiveness and permittivity measurements. The dataset spans frequencies in the X-band (8–12 GHz), providing 

a comprehensive view of material behavior under different electromagnetic conditions. Key attributes include 

frequency, real and imaginary parts of S21, and real and imaginary parts of permittivity (εr). The output variables 

of interest are shielding effectiveness (dB) and the real part of permittivity. This dataset serves as the foundation 

for developing machine learning models capable of predicting shielding performance based on input features. 

Data Preprocessing: 

To ensure the quality of the input data and improve model accuracy, data preprocessing was performed through 

several key steps. First, the dataset was cleaned by removing any missing or erroneous values to maintain 

consistency. Normalization and standardization techniques were applied to scale the frequency and transmission 

coefficients, ensuring all features were brought to a uniform scale. Feature engineering was conducted by 

extracting new attributes, such as the magnitude of S21 by combining its real and imaginary parts. Additionally, 

polynomial feature expansion was introduced to capture non-linear relationships between frequency and shielding 

effectiveness. The dataset was then divided into an 80% training set and a 20% test set to evaluate model 

performance [12]. 

Machine Learning Models: 

Three machine learning models were employed to predict shielding effectiveness and permittivity, leveraging 

their strengths in capturing data complexity. XGBoost (Extreme Gradient Boosting) was selected for its ability to 

handle non-linear relationships and large datasets efficiently, making it well-suited for material property 

predictions [13]. Random Forest, an ensemble learning method, was also implemented as it constructs multiple 

decision trees to improve accuracy while mitigating overfitting [3]. To establish a performance baseline, Linear 

Regression was used to model the relationship between input features and output variables, providing insight into 

simpler, interpretable trends in the data [14]. 

Model Evaluation Metrics: 

The performance of the models was evaluated using several key metrics. The coefficient of determination (R²) 

was used to measure how well the model explained variance in the data, providing an indication of goodness-of-

fit. Root Mean Squared Error (RMSE) was employed to quantify the average magnitude of prediction errors, 

penalizing larger deviations more significantly. Additionally, Mean Absolute Error (MAE) was used to assess the 

average size of errors, offering a more interpretable measure of model accuracy. By combining these metrics, the 

robustness and reliability of the developed machine learning models were assessed comprehensively. 

4. Results and discussion 

Model Performance Analysis: 

The performance of the three machine learning models—XGBoost, Random Forest, and Linear Regression was 

assessed based on key evaluation metrics: the coefficient of determination (R²), Root Mean Squared Error 

(RMSE), and Mean Absolute Error (MAE). A summary of the results is presented in Table 1. 

Table 1. Evaluation Metrics for Al 6061 

Model R² RMSE MAE 

XGBoost 0.86 2.42 0.56 

Random Forest 0.84 2.58 0.65 

Linear Regression -0.02 6.57 4.08 
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Table 2. Evaluation Metrics for Al 6061,10% Fly ash 

Model R² RMSE MAE 

XGBoost 0.99 0.37 0.18 

Random Forest 0.99 0.29 0.16 

Linear Regression 0.33 3.60 2.86 

 

Table 3. Evaluation Metrics for Al 6061,10% Aloe vera 

Model R² RMSE MAE 

XGBoost 0.89 2.42 0.56 

Random Forest 0.82 2.58 0.65 

Linear Regression 0.14 6.57 4.08 

 

The performance evaluation of machine learning models (XGBoost, Random Forest, and Linear Regression) 

applied to Al6061, Al6061+10% Fly Ash, and Al6061+10% Aloe Vera reveals distinct patterns across the 

materials. 

For the base material Al6061 (Table 1), XGBoost demonstrated the best performance with an R² of 0.86 and the 

lowest RMSE (2.42) and MAE (0.56). Random Forest followed closely with an R² of 0.84, but with slightly higher 

error rates. Linear Regression underperformed significantly, with an R² of -0.02, indicating poor predictive 

accuracy, and high RMSE (6.57) and MAE (4.08), suggesting its inability to model the non-linear relationships 

in the dataset. 

In the case of Al6061+10% Fly Ash (Table 2), the predictive accuracy of XGBoost and Random Forest improved 

substantially, achieving an R² of 0.99. Random Forest recorded the lowest error values with an RMSE of 0.29 and 

MAE of 0.16, while XGBoost exhibited slightly higher error values (RMSE of 0.37 and MAE of 0.18). Linear 

Regression showed moderate improvement with an R² of 0.33, but its error rates (RMSE 3.60 and MAE 2.86) 

remained considerably higher than the ensemble models. 

For Al6061+10% Aloe Vera (Table 3), XGBoost retained its strong performance with an R² of 0.89, 

outperforming Random Forest (R² 0.82). However, Linear Regression again showed limited predictive capability, 

with an R² of 0.14, alongside high RMSE (6.57) and MAE (4.08) [15,16,17]. 

These results indicate that adding Fly Ash to Al6061 significantly enhances the predictability of machine learning 

models, while Aloe Vera provides moderate improvements. The ensemble models, XGBoost and Random Forest, 

consistently outperformed Linear Regression across all datasets, reinforcing their ability to handle complex, non-

linear patterns effectively. 

Comparison and Interpretation of model performance analysis: 

The evaluation metrics for Al6061, Al6061+10% Fly Ash, and Al6061+10% Aloe Vera highlight significant 

differences in model performance across the three material compositions. 

XGBoost consistently delivered the highest accuracy across all datasets, with an R² of 0.86 for Al6061, 0.99 for 

Al6061+10% Fly Ash, and 0.89 for Al6061+10% Aloe Vera. The model’s ability to capture non-linear patterns 

and reduce errors through boosting mechanisms contributed to its superior performance. This aligns with existing 

literature demonstrating XGBoost’s effectiveness in handling complex regression tasks and large datasets. 

Random Forest also performed well, with results closely mirroring those of XGBoost. The model achieved an R² 

of 0.84 for Al6061, 0.99 for Al6061+10% Fly Ash, and 0.82 for Al6061+10% Aloe Vera. Although Random 
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Forest produced slightly higher RMSE and MAE values compared to XGBoost, the differences were minimal. 

This is consistent with the understanding that Random Forest excels in modeling non-linear relationships but may 

introduce slightly higher variance. 

Linear Regression exhibited the weakest performance across all datasets, particularly for Al6061, where it 

recorded a negative R² value (-0.02) and the highest RMSE (6.57). Even with Al6061+10% Fly Ash, where the 

model improved to an R² of 0.33, it significantly lagged behind ensemble methods. This reflects the limitations 

of Linear Regression in handling complex, non-linear datasets, as it assumes a linear relationship between input 

features and the target variable. 

The addition of 10% Fly Ash to Al6061 led to a notable increase in predictive accuracy for both XGBoost and 

Random Forest, achieving near-perfect R² values of 0.99. This suggests that Fly Ash enhances the data's linearity 

or simplifies the relationship between input features and shielding effectiveness, making it easier for machine 

learning models to generalize. In contrast, the addition of 10% Aloe Vera provided moderate improvements, with 

R² values reaching 0.89 for XGBoost and 0.82 for Random Forest. 

Overall, the results emphasize the importance of ensemble models like XGBoost and Random Forest for 

predicting material properties, as they consistently outperform traditional methods like Linear Regression. The 

findings suggest that the inclusion of Fly Ash is particularly beneficial for improving predictive accuracy, while 

Aloe Vera reinforcement provides moderate enhancement. 

Visual Comparison of Model Performance: 

The scatter plots in Figures 1, 2, and 3 provide a comprehensive visual comparison of predicted vs. actual values 

for XGBoost, Random Forest, and Linear Regression models applied to Al6061, Al6061+10% Fly Ash, and 

Al6061+10% Aloe Vera datasets. The red dashed line represents the ideal scenario where predicted values match 

the actual values. The proximity of data points to this line reflects the accuracy and reliability of each model. In 

the case of Al6061 (Figure 1), XGBoost and Random Forest demonstrate strong predictive performance, with 

most points closely aligned along the diagonal, indicating minimal error. However, Linear Regression shows 

significant deviation from the ideal line, particularly at higher actual values, suggesting poor performance due to 

underfitting and its inability to capture non-linear relationships in the data. 

Figure 2, which depicts the results for Al6061 with 10% Fly Ash, shows substantial improvement in model 

performance, particularly for XGBoost and Random Forest. These models exhibit near-perfect alignment with the 

red dashed line, reinforcing their predictive strength with high R² values and minimal error rates. Linear 

Regression, although improved compared to the base Al6061 dataset, still displays noticeable deviations, 

especially at higher actual values, indicating the model’s limitations in adapting to more complex datasets despite 

moderate enhancements in performance. 

In Figure 3, for Al6061 with 10% Aloe Vera, XGBoost and Random Forest maintain strong predictive capabilities 

but display slightly more scatter compared to the Fly Ash composite. This suggests that while Aloe Vera enhances 

the material properties, the interaction introduces some variability, increasing the complexity of predictions. 

Linear Regression continues to show poor alignment, with dispersed data points and pronounced errors at higher 

values, reinforcing its inadequacy in handling non-linear patterns present in composite materials. 

Overall, XGBoost consistently outperforms the other models across all datasets, driven by its boosting mechanism 

that reduces errors iteratively, allowing for greater accuracy in modeling complex relationships. Random Forest 

also demonstrates robust performance, albeit with slightly higher variance compared to XGBoost. Linear 

Regression consistently underperforms, reflecting its inability to capture the non-linear dependencies essential for 

predicting composite material properties. The addition of Fly Ash significantly enhances model predictability, 

resulting in high accuracy and stable predictions, while Aloe Vera provides moderate improvements but 

introduces greater complexity. This visual comparison highlights the importance of ensemble models like 

XGBoost and Random Forest in material property prediction, as they effectively address non-linear interactions 

and improve overall predictive performance. 
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Figure 1: Predicted vs. Actual Values for Al 6061 Figure 2: Predicted vs. Actual Values for Al 

6061,10% Fly Ash 
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Figure 3: Predicted vs. Actual Values for Al 6061,10% Aloe vera 

Feature Importance Analysis 

To identify the key factors influencing the predictions, feature importance was assessed through SHAP (SHapley 

Additive exPlanations) for the XGBoost model. The SHAP summary plots, shown in Figure 4,5 and 6 illustrates 

the impact of each feature on the model’s predictions, providing insights into the variables that contribute most to 

the model’s output. 

The SHAP summary plots illustrate the contribution of individual features to the predictions made by the XGBoost 

model for Al6061, Al6061+10% Fly Ash, and Al6061+10% Aloe Vera datasets. The x-axis represents the SHAP 

value, reflecting the magnitude and direction of feature impact on the model’s output. The y-axis lists the features 

in descending order of importance. 

 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 1 (2025) 

__________________________________________________________________________________ 

672 

 

Figure 4: SHAP Summary Plot for XGBoost Feature Importance (Al6061) 

 

Figure 5: SHAP Summary Plot for XGBoost Feature Importance (Al6061,10% Fly Ash) 

 

Figure 6: SHAP Summary Plot for XGBoost Feature Importance (Al6061,10% Aloe vera) 

In Figure 4 (Al6061), the feature freq[Hz] exhibits the most significant influence on the model’s predictions, with 

a wide distribution of SHAP values, indicating that both high and low frequency values affect the model output. 

The real part of S21 follows as the second most influential feature, while the imaginary part (im:Trc1_S21) and 

permittivity (re:Er1_S21) show comparatively lower impact. This suggests that the model heavily relies on 

frequency for predicting shielding effectiveness in the base material. 

Figure 5 (Al6061+10% Fly Ash) reveals a shift in feature importance. Although freq[Hz] remains influential, the 

real part of S21 (re:Trc1_S21) exhibits a more pronounced impact, suggesting that Fly Ash reinforcement enhances 

the role of transmission coefficients. The imaginary part of S21 (im:Trc1_S21) also shows increased variability in 

SHAP values, reflecting greater influence compared to the base material. Permittivity (re:Er1_S21) continues to 

have minimal impact, reinforcing the dominance of frequency and transmission properties in determining the 

model’s output. 
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In Figure 6 (Al6061+10% Aloe Vera), re:Trc1_S21 emerges as the most influential feature, surpassing freq[Hz]. 

This indicates that the addition of Aloe Vera alters the significance of frequency, elevating the importance of 

transmission properties in predicting shielding effectiveness. The imaginary part of S21 and permittivity maintain 

their positions as secondary contributors, but their SHAP values exhibit more variation compared to the base 

material, suggesting Aloe Vera introduces non-linear interactions that the model must account for. 

Overall, the SHAP analysis highlights the evolving importance of features across different material compositions. 

While frequency consistently plays a dominant role, the influence of transmission coefficients increases with the 

addition of reinforcements like Fly Ash and Aloe Vera. This underscores the necessity of accounting for material 

modifications when developing predictive models for composite materials. 

5. Conclusions: 

• The comprehensive analysis conducted on Al6061, Al6061+10% Fly Ash, and Al6061+10% Aloe Vera 

through machine learning models provides valuable insights into the predictive performance and 

significance of material modifications. The results consistently demonstrate that ensemble models, 

particularly XGBoost and Random Forest, outperform traditional linear models in predicting shielding 

effectiveness. Across all datasets, XGBoost achieved the highest R² values and the lowest RMSE and 

MAE, reflecting its superior ability to capture non-linear relationships and complex patterns inherent in 

composite materials. 

• The introduction of 10% Fly Ash to Al6061 significantly enhanced predictive accuracy, as indicated by 

the near-perfect alignment between predicted and actual values. This improvement can be attributed to 

the increased importance of transmission coefficients (S21), as highlighted in the SHAP analysis. The 

addition of Fly Ash resulted in greater model interpretability, with the real and imaginary components of 

S21 playing a more critical role in model predictions. This suggests that Fly Ash reinforcement 

introduces structural modifications that simplify the relationship between input features and shielding 

performance. 

• In contrast, 10% Aloe Vera reinforcement produced moderate improvements in model performance. 

While XGBoost and Random Forest maintained strong predictive accuracy, the shift in feature 

importance indicated by the SHAP analysis revealed more complex interactions between material 

properties. The dominant role of S21 components in the Aloe Vera composite underscores the influence 

of natural reinforcements on transmission behavior, highlighting the potential for bio-based materials in 

shielding applications. 

• Linear Regression consistently underperformed across all datasets, reinforcing the necessity of 

employing advanced machine learning techniques for composite materials. The inability of linear models 

to capture non-linear dependencies underscores the complex nature of reinforced composites and the 

critical need for ensemble-based approaches. 

• These findings validate the effectiveness of ensemble models in predicting the electromagnetic shielding 

properties of composite materials, offering a reliable pathway for optimizing material design. The results 

pave the way for further exploration of bio-based and industrial reinforcements in the development of 

advanced materials. The significant improvements observed with Fly Ash suggest potential for 

scalability in industrial applications, while Aloe Vera composites open new avenues for sustainable 

material innovation. 
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