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Abstract:  

In this paper we introduced, the first order linear delay differential equation with positive and negative coefficients 

                r′(t) + A(t) r (t – τ) – B(t) r (t – σ) = 0,                                                                          (1.1) 

where A, B are continuous functions with positive and negative real coefficients and τ, σ are non-negative 

constants.  

The standard form of the above equation is 

                r′(t) + ∑ [ 𝐴𝑖(t)r(t – 𝜏𝑖) – 𝐵𝑖(t)r(t – 𝜎𝑖) ] 
𝑘
𝑖 = 1   = 0                                                        (1.2) 

where 𝐴𝑖, 𝐵𝑖 ∈ ([𝑡1, ∞), R) and 𝜏𝑖 , 𝜎𝑖 ∈ [0, ∞), for i = 1 ,2,3,……,k. We consider a function  

r(t) ∈ ([𝑡1 −  𝛿), 𝑅+) for some t ≥ 𝑡1 and t1 is hold for conditions (1.1) or (1.2), where r(t) is a continuous function 

and 𝛿 = max{ τi , σi } and 1 ≤ i ≤ k . 

Keywords:  Oscillatory criteria, first order delay differential equation, positive coefficients and negative 

coefficients, eventually positive and eventually negative. 

1.Introduction:  

In this chapter, we introduced the first-order linear delay differential equation (DDE) of the type 

                r′(t) + A(t) r (t – τ) – B(t) r (t – σ) = 0,                                                                   (1.1) Here A and B are 

continuous real valued functions and τ and σ are non-negative constants. The generalization of equation (1.1) is    

              r′(t) + ∑ [ 𝐴𝑖(t) r (t – 𝜏𝑖) – 𝐵𝑖(t)r(t – 𝜎𝑖) ] 
𝑘
𝑖 = 1   = 0                         (1.2)  

      where 𝐴𝑖, 𝐵𝑖 are real valued continuous functions and 𝜏𝑖, 𝜎𝑖 are non-negative constants,          i =1,2,…,k. By 

a solution of (1.1) or (1.2), we mean a function r(t) ∈ C([t – δ], R), where  𝛿 = { τ,σ}  (or δ = max
1 ≤ i ≤ k

{ 𝜏𝑖  , 𝜎𝑖  }).  

Qian and  Ladas [8] have obtained the following well-known oscillatory criterian for equation (1.1)  

              lim
𝑡 → ∞

𝑖𝑛𝑓 {∫ [
𝑡

𝑡 − 𝛿
A(s) − B(s +  σ – τ )] ds } >  

1

𝑒
 .                                                   (1.3)  

Elabbasy and Saker [3] have found the following oscillation criteria for the generalized equation (1.3)   

               lim
𝑡 → ∞

𝑖𝑛𝑓 {∫ ∑ [𝐴𝑖(s) − 𝐵𝑖(s + 𝜎𝑖  − 𝜏𝑖  )]𝑘
𝑖 = 1

𝑡

𝑡 − 𝛿
 } > 

1

𝑒
 .                                        (1.4)  

Many authors have considered the DDE.   

                      r′(t) + A(t) r (σ(t)) = 0.                                                                                       (1.5)  
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Myshkis [12] has established that all the solutions of (1.5) oscillates, if   

               lim
𝑡 → ∞

𝑠𝑢𝑝 [𝑡 – σ(t)] < ∞,    lim
𝑡 → ∞

𝑖𝑛𝑓 {A(t) [𝑡 –  σ(t)]}  > 
1

𝑒
                                          (1.6)  

In 1972, Ladas, Laksmikantham, and Papadakis [10] showed the same results.  

Let us take that  𝜏(𝑡) = 𝑇,    

                        lim
𝑡 → ∞

𝑠𝑢𝑝 ∫ 𝐴(𝑠) 𝑑𝑠
𝑡

𝑇
 > 1                                                                                (1.7)  

In 1989, Ladas [7] and In 1982, kopadaze and canurija  [6] replaced (1.7) by  

                        lim
𝑡 → ∞

𝑖𝑛𝑓 ∫ 𝐴(𝑠) 𝑑𝑠
𝑡

𝑇
 > 

1

𝑒
                                                                                                           (1.8)  

If the inequation  

                                                                                                                    (1.9)  Is true eventually,   

Hence, the solution to equation (1.5) is non-oscillatory.  

In 1995, Elbert and stavrolakis [4] obtained the infinite integral conditions for the oscillations of (1.5) when   

             ∫ 𝐴(𝑠) 𝑑𝑠
𝑡

𝑇
  ≥ 

1

𝑒
                  lim

𝑡 → ∞
∫ 𝐴(𝑠) 𝑑𝑠

𝑡

𝑇
 = 

1

𝑒
                                                      (1.10) 

They also proved that if  

               ∑ {∫ 𝐴(𝑠) ds 
𝑡𝑖 + 1

𝑡𝑖 
} ∞

𝑖 = 1 − 
1

𝑒
 = ∞                                                                            (1.11)                                                                                 

                     

then all solutions of equation (1.5) oscillate.  

In 1996 Li [11] proved that ∫ 𝐴(𝑠) 𝑑𝑠
𝑡

𝑇
 > 

1

𝑒
  and  the integral t1 → ∞ and t1 > 0, when  

               ∫ 𝐴(𝑡)
∞

𝑡1
 [ ∫ 𝐴(𝑠) 𝑑𝑠

𝑡

𝑇
 ] dt − 

1

𝑒
 = ∞                                                                       (1.12)  

then all solutions of equation (1.5) oscillate.  

Sufficient conditions were established for the oscillation of DDE in 1996 by Domshlak and Stavorolakis [1].  

                        r′(t) + A(t) r (t – σ) = 0                                                                                 (1.13)  

also in 1999 Domshlak and Stavrolakis [2] and Jaros and Stavrolakis [5] considered the DDE  

                      r′(t) + c1(t)r(t – σ) + c2(t) r (t – τ) = 0                                                             (1.14)  

Our objective in this chapter is to provide infinite-integral conditions for oscillations of equations (1.1) and (1.2) 

by using generalised characteristic equation and the function of  

the form 
𝑟(𝑡)

𝑟(𝑡 − 𝜏𝑖 )
.  

2. Oscillatory Lemma’s:  

Lemma –1: Assume that Aj and 𝜎𝑗 for j = 1, 2,…,m be positive real valued continuous functions defined on the 

interval [t1, ∞) .  Then the differential inequation                 

                    r′(t) + ∑ 𝐴𝑗 
𝑚
𝑗 = 1 (t) r (t - 𝜎𝑗(𝑡)) ≤ 0,                                                                                         (2.1)  

which eventually has positive solutions,  then the differential equation is  

                     g′(t) +  ∑ 𝐴𝑗
𝑚
𝑗 = 1 (t)g(t - 𝜎𝑗(𝑡)) = 0,                                                                            (2.2)  
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has an eventually positive solution.  

Lemma– 2: Let  

            r′(t) +  ∑ 𝐺𝑗 
𝑚
𝑗 = 1 (t)r(t - 𝜎𝑗(𝑡)) = 0,                                                                               (2.3)    

and Let lim
𝑡 → ∞

𝑠𝑢𝑝 ∫ 𝐺𝑗
𝑡 + 𝜎𝑗

𝑡
(𝑠)𝑑𝑠 > 0  for j and let r(t) eventually have a positive solution to  

equation (2.3), for j.  

                      (2.4)  

Lemma – 3: Let t1 ∈ R be a constant real value, and let r(t) be a continuous real-valued function that is defined 

on the interval [t1, ∞). If r(t) satisfies the inequality,              

            r(t) ≤  max
𝑡 − 𝜎 ≤ 𝑠 ≤ 𝑡

𝑟(𝑠) + b for all t1 ≤ t and  b < 0 , σ > 0                                          

Then the function r(t) is can not be a non-negative function.  

Lemma – 4: If the solution to (2.3) is eventually positive, then  

                   < 1,      j = 1,2,...,m                                                                  (2.5) after a long 

delay, we find an eventually positive solution for (2.5).  

3.  Oscillatory solutions for (1.1):  

We propose infinite integral conditions and show that all solutions of (1.1) are oscillate under the proposed 

conditions. We require the following lemma in order to prove our proposed theorem:  

Lemma - 5: suppose that   

(C1)    Let t1 be a real constant. Let A, B are positive real-valued continuous functions defined  

          on the interval [t0, ∞). Let τ, σ are non-negative constants and τ ≥ σ,      

(C2)   A(t) ≥ B(t + σ – τ), for t ≥ t1 + τ – σ.  

(C3) ∫ 𝐵(𝑠)𝑑𝑠 
𝑡 − 𝜎

𝑡 − 𝜏
≤ 1 for  t1 + τ ≤ t 

Assume that r(t) has an eventually positive solution to equation (1.1), and set  

            h(t) = r(t) – ∫ (𝐵(𝑠 +  𝜎)𝑟(𝑠)) 𝑑𝑠,
𝑡 − 𝜎

𝑡 − 𝜏
       for  t1 + τ – σ ≤ t                                     (3.1)  

For contradiction, h(t) holds, is a non-increasing positive function, and satisfies the equation.  

            h′(t) + [A(t) – B(t + σ – τ)] h(t – τ) ≤ 0.                                                                     (3.2)  

we found the proof of this theorem in [9].  

Theorem – 6: Assume that conditions (C1), (C2) and (C3) of  Lemma (1.5) hold.   

                  Let G(t) = A(t) – B(t + σ – τ) then,  

(C4)    ∫ 𝐺(𝑠)𝑑𝑠 
𝑡 + 𝜏

𝑡 
> 0  

(C5)    ∫ 𝐺(𝑡) 
∞

𝑡0 
In [𝑒 ∫ 𝐺(𝑠)𝑑𝑠 

𝑡 + 𝜎

𝑡 
] dt = ∞. 

        Then all solutions of (1.1) oscillate.  

Proof:  However, let's say that (1.1) has a final solution, where the function r(t) is nonnegative. From the previous 

theorem, we can conclude that the function h(t) is non-negative and holds for (3.2). The above theorem has 

determined the DDE. i..e,     
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                     g′(t) + [A(t) – B(t + σ – τ)] g (t – τ) = 0                                                         (3.3) Finally, we get a 

non-negative solution. Let μ(s) = -g′(s)/g(s). 

Then μ(s) is a positive and continuous function, then ∃ s1 ≥ s0 such that g(s1) > 0   

and   

                          g(s) = g(s1)                                                                              (3.4)  Moreover,    

The generalised characteristic equation holds if and only if μ(s) is  

                    μ(s)  = G(s)                                                                                (3.5)  

we can prove that  

                     r + 
𝐼𝑛(𝑒𝑢)

𝑢
  ≤ eur   for u > 0.                                                                                 (3.6)  

we determine that P(s) = ∫ 𝐺(𝑡)𝑑𝑡 
𝑠 + 𝜏

𝑠 
 By using (3.6) we get  

                     μ(s) = G(s)   

                            ≥ G(s) [ 
1

𝑃(𝑠)
 ∫ 𝜇(𝑡) 𝑑𝑡

𝑠

𝑠 − 𝜏
 +  

𝐼𝑛(𝑒 𝑃(𝑠)) 

𝑃(𝑠)
]                                                    (3.7)  

or        

     (∫ 𝐺(𝑡)𝑑𝑡 
𝑠 + 𝜏

𝑠 
) μ(s) – G(s)∫ 𝜇(𝑡) 𝑑𝑡

𝑠

𝑠 − 𝜏
 ≥ G(s) (Ine∫ 𝐺(𝑡)𝑑𝑡

𝑠 + 𝜏

𝑠 
)                                  (3.8)  

Then  T2 > T1,  

                   

                                                                                              (3.9)  

By changing the order of integrations, we get,   

                                             (3.10)  

Thus,  

                                          (3.11)  

There fore,  

                                          (3.12)  

Hence from equations (3.11) and (3.12), we get  

                 

                            .                 (3.13)   

From (3.9) and (3.13), follows that  

        ∫ 𝜇(𝑠)( ∫ 𝐺(𝑡)𝑑𝑡) 𝑑𝑠 
𝑠 + 𝜏

𝑠

𝑇2

𝑇2−𝜏
 ≥   ∫ 𝐺(𝑠) 

𝑇2

𝑇1
(Ine∫ 𝐺(𝑡)𝑑𝑡) 𝑑𝑠.

𝑠+ 𝜏

𝑠
                                        (3.14)  

However, by Lemma- 4, we have  
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                  ∫ 𝐺(𝑡)𝑑𝑡
𝑠 + 𝜏

𝑠
 < 1                                                                                    (3.15) 

Then, by conditions (3.14) and (3.15), we get  

                   .                                               (3.16)  

Or           

                    In .                                                  (3.17)  

According to (C5) and finally by lemma-2, we have  

                                                                                                         (3.18) 

 It completes the proof and this is the contradiction for (1.1).   

Hence, all solutions are oscillates for (1.1).   

4.  Oscillatory solutions for (1.2):  

Our aim in this section is to propose infinite integral conditions and prove that all solutions of equation (1.2) 

oscillate. We require the following theorem.  

Theorem - 7: Let  

(D1)   Ai, Bi are continuous functions with real values on the interval [t1, ∞) and 𝜏𝑖, 𝜎𝑖 are    

          non-negative constants for i = 1, 2,…,k  

(D2)  A partition of the set {1, 2,…,k} into q disjoint subsets L1, L2,…,Lq, such that Ɩ ∈ Li  

         implies that σi ≤ τi,  

(D3)   Ai(t) ≥ ∑𝑙 ∈ 𝐿𝑖 𝐵𝑙(t + σƖ – τi) for t ≥ t1 + τi – σƖ, and i = 1, 2,…,q.   

(D4)  ∑ ∑ ∫ 𝐵𝑙(𝑠) 𝑑𝑠 
𝑡 − 𝜎𝑙

𝑡 − 𝜏𝑖
𝑙 ∈ 𝐿𝑖

𝑞
𝑖 = 1 ≤ 1  for t ≥ t1 + τi.  

 Let r(t) be an eventually positive solution of (1.2), Define,  

        h(t) = r(t) − ∑ ∑ ∫ 𝐵𝑙
𝑡 − 𝜎𝑙

𝑡 − 𝜏𝑖
𝑙 ∈ 𝐿𝑖

𝑞
𝑖 = 1 (s + σl) r(s)ds,    t1+ τi – σl  ≤ t                                  (4.1)  

Consequently, h(t) is a positive and non-increasing function.  

Proof: Let t2 ≥ t1 + δ, and r(t) is not a negative function for t ≥ t2 – δ, where δ = max
1 ≤ 𝑖 ≤ 𝑘

{𝜏𝑖 }.   

From (3.1) we have  

        h′(t) = r′(t) – ∑ ∑ 𝐵𝑙(𝑡) 𝑟 𝑙 ∈ 𝐿𝑖

𝑞
𝑖 = 1 (t – σl)  + ∑ ∑ 𝐵𝑙(𝑡 +  𝜎𝑙 − 𝜏𝑖)𝑟𝑙 ∈ 𝐿𝑖

𝑞
𝑖 = 1 (𝑡 − 𝜏𝑖).  

Hence  

        h′(t) = r′(t) – ∑ 𝐵𝑖(𝑡)𝑟(𝑡 − 𝜏𝑖
𝑘
𝑖 = 1 ) + ∑ ∑ 𝐵𝑙(𝑡 + 𝜎𝑙 − 𝜏𝑖)𝑟𝑙∈ 𝐿𝑖

𝑞
𝑖 = 1 (𝑡 − 𝜏𝑖). 

from equation (1.2), we have  

        h′(t) = ∑ ∑ 𝐵𝑙(𝑡 + 𝜎𝑙 − 𝜏𝑖)𝑟𝑙 ∈ 𝐿𝑖

𝑞
𝑖 = 1 (𝑡 − 𝜏𝑖) − ∑ (𝐴𝑖

𝑞
𝑖 = 1 (𝑡)𝑟(𝑡 − 𝜏𝑖)) 

                                                     –  ∑ (𝐴𝑖
𝑘
𝑖 =𝑞+ 1 (𝑡)𝑟(𝑡 − 𝜏𝑖)).                                                            (4.2) we know 

that  

                           ∑ (𝐴𝑖
𝑘
𝑖 =𝑞 + 1 (𝑡)𝑟(𝑡 − 𝜏𝑖)) > 0                     (4.3)    
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Then   

              h′(t) ≤ − [∑ 𝐴𝑖
𝑞
𝑖 = 1 (𝑡) − (∑ 𝐵𝑙(𝑡 + 𝜎 𝑙 − 𝜏𝑖)𝑥(𝑡 − 𝜏𝑖)𝑙 ∈ 𝐿𝑖

) ]                              (4.4)  

By using (D3), we have h′(t) ≤ 0, for t2 + δ ≤ t. It follows that h(t) is a decreasing function. It is necessary to show 

that h(t) has no negative function.  

If not, there is t3 ≥ t2 such that h(t3) ≤ 0. There is t4 > t3 such that h(t) < h(t4) for all t ≥ t4, since h′(t) ≤ 0 for t ≥ t2 

+ δ and h′(t) ≠ 0 on [t2 + δ, ∞). Accordingly, for t ≥ t4, it follows from (3.1).  

              r(t) = h(t) +  ∑ ∑ ∫ 𝐵𝑙(𝑠 +  𝜎𝑛𝑙)
𝑡 − 𝜎𝑙

𝑡 − 𝜏𝑖
𝑙 ∈ 𝐿𝑖

𝑞
𝑖 = 1 r(s) ds 

                    ≤ h(t4) + ∑ ∑ ∫ 𝐵𝑙(𝑠 +  𝜎𝑙 )
𝑡 − 𝜎𝑙

𝑡 − 𝜏𝑖
𝑙 ∈ 𝐿𝑖

𝑞
𝑖 = 1 r(s) ds 

                   ≤ h(t4) + ∑ ∑ ∫ 𝐵𝑙(𝑠 + 𝜎𝑙)
𝑡 − 𝜎𝑙

𝑡 − 𝜏𝑖
𝑖 ∈ 𝐿𝑖

𝑞
𝑖 = 1 ds( max

𝑡−𝛿≤𝑠≤𝑡
𝑟(𝑠)).                                (4.5)  

Thus,  

            r(t) ≤ h(t4) + ∑ ∑ ∫ 𝐵𝑙(𝑠 +  𝜎𝑙 )
𝑡 – 𝜎𝑙

𝑡 – 𝜏𝑖
𝑙 ∈ 𝐿𝑖

𝑞
𝑖 = 1 ds( max

𝑡−𝛿≤𝑠≤𝑡
𝑟(𝑠)).                                 (4.6)  

Hypothesis (D4) yields   

                    r(t)  ≤  h(t4) +  max
𝑡−𝛿≤𝑠≤𝑡

𝑟(𝑠)                   for all t ≥ t4,                                      (4.7) here h(t4) ≤ 0. 

According to Lemma-3, r(t) can’t be a positive function on [t4, ∞). Thus, the contradicting r(t) > 0.   

Therefore, h(t) is a decreasing and non-negative function.  

Theorem – 8: Let (D1), (D2), (D3) and (D4) are true, λq = max{λ1,λ2,...,λq},  

∑ ∫ 𝐺𝑖(𝑠)𝑑𝑠
𝑡+𝜏𝑖

𝑡

𝑞
𝑖 = 1  > 0 for t ≥ t1 for  t1 > 0. And  

Let   

   (D5)   lim
𝑡→∞

𝑠𝑢𝑝  ∫ 𝐺𝑞(𝑠)𝑑𝑠
𝑡+𝜆𝑞

𝑡
 > 0 

   (D6)  ∫ (∑ 𝐺𝑖(𝑡)) 𝐼𝑛 [𝑒 ∑ ∫ 𝐺𝑖(𝑠)𝑑𝑠
𝑡+𝜏𝑖

𝑡

𝑞
𝑖 = 1 ]

𝑞
𝑖 = 1

∞

𝑡1
 dt = ∞  

           where Gi(t) = Ai(t) - ∑ 𝐵𝑙(𝑡 + 𝜎𝑙  
− 𝜏𝑖).𝑙 ∈ 𝐿𝑖

 

Hence, all the solutions of (1.2) oscillates.  

Proof: On the contrary, by the theorem-5, we have the continuous function h(t) has a nonnegative integer, and it 

is defined by (4.1), and also equation (1.2) has non-negative solutions of r(t). Thus, we have     

                h′(t) + ∑ [𝐴𝑖
𝑞
𝑖=1 (t)-∑ 𝐵𝑙(𝑡 + 𝜎𝑙𝑙∈𝐿𝑖

− 𝜏𝑖)] r(t – τi) ≤  0.                                   (4.8)        

Here 0 < h(t) ≤ r(t), where h(t) is a non-negative function with a constant coefficient.  

                h′(t) + ∑ [𝐴𝑖
𝑞
𝑖=1 (t) - ∑ 𝐵𝑙(𝑡 + 𝜎𝑙𝑙∈𝐿𝑖

−  𝜏𝑖)] h (t – τi) ≤ 0.                                     (4.9)  

Then, by Lemma -1, we know that the DDE is  

               g′(t) + ∑ [𝐴𝑖
𝑞
𝑖=1 (t) - ∑ 𝐵𝑙(𝑡 + 𝜎𝑙𝑙∈𝐿𝑖

− 𝜏𝑖)] g(t – τ i) ≤ 0.                                       (4.10)   

finally yields a non-negative solution.   

Let μ(s) = 
−𝑔′(𝑠)

𝑔(𝑠)
 . Then μ(s) is a positive and continuous function, and there exists s1 ≥ s0 with  

g(s1)> 0.  such 

that   
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                       g(s) = g(s1)   

Moreover, μ(s) holds for the generalized characteristic equation  

                                   

Here,  

                    Gi(s) = Ai(s) - ∑ 𝐵𝑙
𝑞
𝑙∈𝐿𝑖

(t + 𝜎𝑙 − 𝜏𝑖)             

Let   

                       Q(s) =  ∑ ∫ 𝐺𝑖(𝑡)𝑑𝑡
𝑠+𝜏𝑖

𝑠

𝑞
𝑖 = 1  

From (3.6) we get  

                         

                                                      (4.11)  

or  

                         

                                                                                         (4.12)  

Then for T2 > T1,  

       ∫ 𝜇(𝑠)(∑ ∫ 𝐺𝑖(𝑡)𝑑𝑡
𝑠+𝜏𝑖

𝑠

𝑞
𝑖 = 1 )

𝑇2

𝑇1
ds - ∫ ∑ 𝐺𝑖(𝑠) (∫ 𝜇(𝑡)𝑑𝑡

𝑠

𝑠 − 𝜏𝑖
)

𝑞
𝑖 = 1

𝑇2

𝑇1
 ds 

                                                 ≥ ∫ ∑ 𝐺(𝑠)(𝐼𝑛 𝑒 ∫ 𝐺𝑖(𝑡)𝑑𝑡
𝑠+𝜏𝑖

𝑠
)

𝑞
𝑖=1

𝑇2

𝑇1
ds                                 (4.13)                                                          

By changing the order of integration, we get             

       ∫ ∑ 𝐺𝑖(𝑠) (∫ 𝜇(𝑡)𝑑𝑡
𝑠

𝑠 − 𝜏𝑖
) 𝑑𝑠

𝑞
𝑖=1

𝑇2

𝑇1
  ≥  ∫ (∫ ∑ 𝐺𝑖(𝑡)𝜇(𝑡)𝑑𝑡

𝑞
𝑖=1

𝑠 + 𝜏𝑖

𝑠
)

𝑇2−𝜏𝑖

𝑇1
ds.               

                                                                      ≥  ∫ 𝜇(𝑡) ( ∫ ∑ 𝐺𝑖(𝑠)𝑑𝑠)𝑑𝑡.
𝑞
𝑖=1

𝑡 + 𝜏𝑖

𝑡

𝑇2 − 𝜏𝑖

𝑇1
             

                                                                        ≥  ∑ ∫ 𝜇(𝑠) (∫ 𝐺𝑖(𝑡)𝑑𝑡) 𝑑𝑠.
𝑠 + 𝜏𝑖

𝑠

𝑇2 − 𝜏𝑖

𝑇1

𝑞
𝑖=1             (4.14)  

From (4.13) and (4.14), it follows that  

∫ 𝜇(𝑠) (∑ ∫ 𝐺𝑖(𝑡) 𝑑𝑡) 𝑑𝑠
𝑠 + 𝜏𝑖

𝑠

𝑞
𝑖=1

𝑇2

𝑇1
 − ∫ 𝜇(𝑠)

𝑇2 − 𝜏𝑖

𝑇1
(∫ ∑ 𝐺𝑖(𝑡) 𝑑𝑡

𝑞
𝑖=1

𝑠 + 𝜏𝑖

𝑠
)𝑑𝑠 

                                         ≥  ∫ ∑ 𝐺𝑖(𝑠)𝐼𝑛( 𝑒 ∑ ∫ 𝐺𝑖(𝑡) 𝑑𝑡 
𝑠 + 𝜏𝑖

𝑠

𝑞
𝑖=1 )𝑑𝑠 𝑘

𝑖=1
𝑇2

𝑇1
                         (4.15) 

Hence   

             ∑ ∫ 𝜇(𝑠)
𝑇2

𝑇1 − 𝜏𝑖
 

𝑞
𝑖=1 (∫ 𝐺𝑖(𝑡) 𝑑𝑡) 𝑑𝑠

𝑡 + 𝜎𝑖

𝑡
  

                                   ≥ ∫ ∑ 𝐺𝑖(𝑠)𝐼𝑛( 𝑒 ∫ ∑ 𝐺𝑖(𝑡) 𝑑𝑡 
𝑞
𝑖=1

𝑠 + 𝜏𝑖

𝑠
)

𝑞
𝑖=1

𝑇2

𝑇1
𝑑𝑠.                              (4.16)  

   By Lemma- 4, we know that  

                            ∫ 𝐺𝑖(𝑡) 𝑑𝑡 
𝑠 + 𝜏𝑖

𝑠
< 1,                                                                                  (4.17)  

Finally, by (4.16) and (4.17), we get  
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         ∑ ∫ 𝜇(𝑠) 𝑑𝑠 
𝑇2

𝑇1 − 𝜏𝑖

𝑞
𝑖=1  ≥  ∫ (∑ 𝐺𝑖(𝑠)) 𝐼𝑛( 𝑒 ∫ ∑ 𝐺𝑖(𝑡)𝑑𝑡

𝑞
𝑖=1

𝑠 + 𝜏𝑖

𝑠
) 𝑑𝑠

𝑞
𝑖=1

𝑇2

𝑇1
  

Or  

           ∑ 𝐼𝑛 
𝑔(𝑇2 − 𝜏𝑖)

𝑔(𝑇2)

𝑞
𝑖=1  ≥  ∫ (∑ 𝐺𝑖(𝑡)) 𝐼𝑛

𝑞
𝑖=1 (𝑒 ∫ ∑ 𝐺𝑖(𝑡) 𝑑𝑡

𝑞
𝑖=1

𝑠 + 𝜏𝑖

𝑠
)𝑑𝑠 

𝑇2

𝑇1
                      (4.18) 

By (D6) and  lemma-2, we know that  

                                                                                                        (4.19)  

That is,   

                                                                                                                (4.20)  

It completes the proof and this is the contradiction for (1.2).   

Hence, all solutions of (1.2) is oscillate.  

Conclusion: 

In this chapter, in order to identify new oscillatory criteria, we give infinite integral conditions of first-order 

ordinary delay differential equations with positive and negative coefficients. 
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