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Abstract:
In this paper we introduced, the first order linear delay differential equation with positive and negative coefficients
r)+AQ)rt-1)-Bl)r(t—-0)=0, (1.1)

where A, B are continuous functions with positive and negative real coefficients and t, ¢ are non-negative
constants.

The standard form of the above equation is
r'(t) + Xfo [ A(Or(t- 7) - Bi(Or(t- o) ] =0 (12)
where A4;, B; € ([t;, ©), R)and 7;,0; € [0, ), fori=1,2,3,...... ,k. We consider a function

r(t) € ([t; — &), R,) for some t > t; and t; is hold for conditions (1.1) or (1.2), where r(t) is a continuous function
and § =max{1i,0i}and 1 <i<k.

Keywords: Oscillatory criteria, first order delay differential equation, positive coefficients and negative
coefficients, eventually positive and eventually negative.

1.Introduction:
In this chapter, we introduced the first-order linear delay differential equation (DDE) of the type

) +AM)rt—-1-Bt)r(t—0o)=0, (1.1) Here A and B are
continuous real valued functions and t and ¢ are non-negative constants. The generalization of equation (1.1) is

r(t) +Xf [ A 1 (t- 1) -B;(Dr(t- ;)] =0 (1.2)

where A;, Bi are real valued continuous functions and ti, i are non-negative constants, i=1,2,....k. By
a solution of (1.1) or (1.2), we mean a function r(t) € C([t— 6], R), where § = { 1,6} (ord= 1m_axk{ T;,0; }).
<1<

Qian and Ladas [8] have obtained the following well-known oscillatory criterian for equation (1.1)
- t 1
Jim inf {ft_a[A(s)—B(s+ 0-1)] ds}> - (1.3)
Elabbasy and Saker [3] have found the following oscillation criteria for the generalized equation (1.3)
o t 1
Jim inf {[f_;TEA[4(®) — Bi(s +0i —7)] >3 (1.4)
Many authors have considered the DDE.
r'(t) + A(t) r (o(t)) = 0. (1.5)
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Myshkis [12] has established that all the solutions of (1.5) oscillates, if
tlim sup [t — o(t)] < oo, tlim inf {A(Y) [t - o(D)]} >§ (1.6)
In 1972, Ladas, Laksmikantham, and Papadakis [10] showed the same results.

Let us take that ©(t) =T,
lim sup frA(s)ds>1 (1.7)

In 1989, Ladas [7] and In 1982, kopadaze and canurija [6] replaced (1.7) by

L t 1
th_)ngo inf [ A(s) ds > - (1.8)
If the inequation
t 1
< =
fT A(s) ds < e (1.9) Is true eventually,

Hence, the solution to equation (1.5) is non-oscillatory.

In 1995, Elbert and stavrolakis [4] obtained the infinite integral conditions for the oscillations of (1.5) when

t 1 . t 1
Jp A(s) ds >= Jim Jp A@) ds == (1.10)
They also proved that if
[e9) ti 1
izl{fti TTA(S) dS} —-=® (1.11)

then all solutions of equation (1.5) oscillate.
In 1996 Li [11] proved that f;A(s) ds >§ and the integral t; — oo and t; > 0, when
NG [f;A(s)ds ]dt—==c0 (1.12)
then all solutions of equation (1.5) oscillate.
Sufficient conditions were established for the oscillation of DDE in 1996 by Domshlak and Stavorolakis [1].
) +AM) r(t—o)=0 (1.13)

also in 1999 Domshlak and Stavrolakis [2] and Jaros and Stavrolakis [5] considered the DDE

') +cirt—o) +c(t) r(t—1)=0 (1.14)

Our objective in this chapter is to provide infinite-integral conditions for oscillations of equations (1.1) and (1.2)
by using generalised characteristic equation and the function of

the form —&—
r(t—1;)
2. Oscillatory Lemma’s:

Lemma —1: Assume that A;j and o for j = 1, 2,...,m be positive real valued continuous functions defined on the
interval [t;, o) . Then the differential inequation

r'(t) + Y7o 45 (O 1 (t-05(t) <0, 2.1)
which eventually has positive solutions, then the differential equation is

gt + XjL 1 4;(0g(t - 9;(8) = 0, (22)
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has an eventually positive solution.

Lemma- 2: Let
r(t) + X 1 G (Or(t - 0(2) =0, (23)
and Let tlim sup |, tt T Gj (s)ds >0 for j and let r(t) eventually have a positive solution to

equation (2.3), for j.

. . (t—o;j)
| =g
Jim inf ——= x (2.4)

Lemma — 3: Let t; € R be a constant real value, and let r(t) be a continuous real-valued function that is defined
on the interval [t;, o). If r(t) satisfies the inequality,

r(t) < ,_max tr(s)+bforallt1§tand b<0,0>0
—0sS<

Then the function r(t) is can not be a non-negative function.

Lemma — 4: If the solution to (2.3) is eventually positive, then

176 (bt

s

<1, j=12,..m (2.5) after a long
delay, we find an eventually positive solution for (2.5).

3. Oscillatory solutions for (1.1):

We propose infinite integral conditions and show that all solutions of (1.1) are oscillate under the proposed
conditions. We require the following lemma in order to prove our proposed theorem:

Lemma - 5: suppose that
(C1) Lett; be areal constant. Let A, B are positive real-valued continuous functions defined
on the interval [to, «0). Let 1, o are non-negative constants and t > o,
(C) At)=B(t+o—r1),fort>t;+1—0.
(C3) f:__: B(s)ds<1for ti+1<t
Assume that r(t) has an eventually positive solution to equation (1.1), and set
WO =10~ f[_7(B(s + o)r(s))ds, for ti+t-o<t 3.1)
For contradiction, h(t) holds, is a non-increasing positive function, and satisfies the equation.
h'(t) + [A(t) —B(t+o—1)] h(t—1) <0. (3.2)
we found the proof of this theorem in [9].
Theorem — 6: Assume that conditions (Cy), (Cz) and (C3) of Lemma (1.5) hold.
Let G(t) = A(t) — B(t + 6 — 1) then,

t+T

(Cq) ft G(s)ds>0
C) [26@®m e [ 6(s)ds | dt=.

Then all solutions of (1.1) oscillate.

Proof: However, let's say that (1.1) has a final solution, where the function r(t) is nonnegative. From the previous
theorem, we can conclude that the function h(t) is non-negative and holds for (3.2). The above theorem has
determined the DDE. i..e,
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g +[A)-Bt+o-1)]gt-1)=0
non-negative solution. Let p(s) = -g'(s)/g(s).

Then p(s) is a positive and continuous function, then 3 s; > so such that g(s;) > 0

and

g(s) ~ glsnye ™ s #(O40)

The generalised characteristic equation holds if and only if pu(s) is
5
u(s) =G(s) e(_ fs_ ¢ () dt)
we can prove that

In(eu)

r+ <e" foru>0.

S+7T

we determine that P(s) = fs G (t)dt By using (3.6) we get

1 s
u(s) = Gs) e T O 7@ fs - o#®) 40

> G(s) [% [ u@de +

In(e P(s))
P(s)

or

(STTGdt) u(s) - G u(t) de > G(s) (InefS "7 G (t)dt)

Then T, >Ty,

f2 w(s) (76 (@) avyds - [;7 G(s) ([, u()de) ds
> [,2 G(s) (Ine [T G(t)dt) ds
By changing the order of integrations, we get,
[2G(s) (f_, ut) dtyds = [277(f 77 6(s) u(tyds) dt.
Thus,

Jr G(s) ([, m() dyds = [ p(@)(J; " G(s)ds) d.

There fore,

S+T

T; Tz -
[ G(s) ([, u(eydoyds = [ " u(s)([7 T G(ydr) ds.
Hence from equations (3.11) and (3.12), we get

Lru)(TT6mdn ds = [T @ (S T G(s)ds) dt

> [Z )T T60de) ds - [26(s) (J]_, u(®) diyds

From (3.9) and (3.13), follows that
f;f_r u (T G@d ds > fT? G(s) (Inef" " G()dt) ds.

However, by Lemma- 4, we have

(3.3) Finally, we get a

(3.4) Moreover,

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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L ewde <1 (3.15)

Then, by conditions (3.14) and (3.15), we get

f'f:z— Ju(s)ds = J":z G(s) (Ine ;" " G(1)do) ds. (3.16)

902-1) f;f G(s) (InefS" " G(t)dt) ds

In 9(T2) (3.17)

According to (Cs) and finally by lemma-2, we have

lim g(t——?.') < o0

tow g(t) — (3.18)
It completes the proof and this is the contradiction for (1.1).
Hence, all solutions are oscillates for (1.1).

4. Oscillatory solutions for (1.2):

Our aim in this section is to propose infinite integral conditions and prove that all solutions of equation (1.2)
oscillate. We require the following theorem.

Theorem - 7: Let
(D1) A, Bi are continuous functions with real values on the interval [t;, ) and ti, oi are
non-negative constants fori=1, 2,...,k
(D2) A partition of the set {1, 2,...,k} into q disjoint subsets L, L,,...,Lq, such thatl € L;
implies that c; < 1;,
(D3) A)>LienBit+o—t)fort>ti+1i—oc,andi=1,2,...,q.
(D) B{_ 1 Tier S Bi)ds<1 fortzt+ .
Let r(t) be an eventually positive solution of (1.2), Define,
h@®)=r(t) = X7_  Mie L; ftt__r? Bi(s +o)r(s)ds, ti+ti—or <t (4.1)
Consequently, h(t) is a positive and non-increasing function.
Proof: Let t, > t; + §, and r(t) is not a negative function for t > t, — 8, where 6 = 112?5xk{‘ri }.
From (3.1) we have
h'(t) =r'(t) - Z‘Z: 12ie Bl (t—o) + Zfz 12ien Bt + o —t)r (t —1).
Hence
W) =1'(0) - X 1 Bi(Or(t — ) + X Bier, Bi(t + 0, — 1) (£ = 7).
from equation (1.2), we have
W) =X/ Bier Bt + 0, = )r (t — 1) = T, (4 (O (t — 7))

- f=q+ 1(A4; (Ort — 1)) (4.2) we know
that

Feqe1(Ai(Or(t—1)>0 (4.3)
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Then
W <—[Zi 4 ® - (% e Bt +o, —1)x(t — ) | (4.4)

By using (Ds), we have h'(t) <0, for t, + & < t. It follows that h(t) is a decreasing function. It is necessary to show
that h(t) has no negative function.

If not, there is t3 >t such that h(t3) < 0. There is ts > t3 such that h(t) < h(ts) for all t > t4, since h'(t) <0 for t > t»
+ d and h'(t) # 0 on [t + §, ). Accordingly, for t > t4, it follows from (3.1).

() =hO+ X{_  Tier, [, Bi(s + 0u)1(s) ds

<h(t)+ 2{_, Tier, J;_, Bils + o0)r(s) ds

<h(t)+ 7y Sier, J, T, Bils + ods( max r(s). (453)
Thus,
1) <h(t) + B, Srer, ) Bu(s + 0)ds( max r(s). (4.6)
Hypothesis (D4) yields
r(t) < h(ts) + ,max r(s) for all t > t4, (4.7) here h(t4) <0.
According to Lemma-3, r(t) can’t be a positive function on [ts4, ). Thus, the contradicting r(t) > 0.

Therefore, h(t) is a decreasing and non-negative function.

Theorem — 8: Let (D), (D2), (D3) and (D4) are true, Aq = max {A1,A2,...,Aq}
20 [T Gi(s)ds > 0 for t>t for t>0. And

Let

(D) lim sup [ Gy (s)ds > 0

[ t+T;
Do) J7 @I, Gi(®) In [T, [T Gi(s)ds] di=co
where Gi(t) = Ai(t) - ¥y e, Bi(t + 0 — 7).
Hence, all the solutions of (1.2) oscillates.

Proof: On the contrary, by the theorem-5, we have the continuous function h(t) has a nonnegative integer, and it
is defined by (4.1), and also equation (1.2) has non-negative solutions of r(t). Thus, we have

W) + X7 [Ai(O-Zier, Bi(t + 0 — )] 1t 1) < 0. (4.8)
Here 0 <h(t) < r(t), where h(t) is a non-negative function with a constant coefficient.

h'®) + 2[4 - T, Bi(t + 0, — 7)1 h (t-1) <0. 4.9)
Then, by Lemma -1, we know that the DDE is

g0+ XL [A(D) - Tier, Bi(t + 0 — 7)) g(t— 1) < 0. (4.10)

finally yields a non-negative solution.

Let w(s) = 29’9 Then u(s) is a positive and continuous function, and there exists s; > so with
g(s)

g(s1)> 0. such
that
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S
o(s) = g(s1) e J5, u(t) dt)

Moreover, (s) holds for the generalized characteristic equation

(EGY:D
u(s) = SL, Gy(s) et

Here,

Gi(s) = Ai(s) - Xfe,, Bit + 0, — 7))
Let

Q)= 2, [T Gi(t)dt
From (3.6) we get

H(S) = Zq— G(S) 6(3(5)$I;— Ti#(f)dt)

2511 Gi() |55 J L k@t | + B Gi(s) T
or
u(s) Z7- 4 f GOt — T, Gi(s) [, p(t)dt
LGi(s)(Ine [T Gi()dt)
Then for T, > T},
[ ) (E T G0de)ds - [P R Gi(s) (I, w@)dt) ds
> fTZ LG (Ine TG (t)dt)ds
By changing the order of integration, we get
22, G ([, @adt)ds = [ ([T EL, Gie)m(r)de)ds
= [T (T, Gils)ds)dt.
>y, fTTf‘” u(s) (ST Gy(6)de) ds. (4.14)
From (4.13) and (4.14), it follows that
Liu(s) G, TG deyds = [ 77 () (7T 2L, Gi(e) de)ds
> [ 5, Gu)m(e T, [T Gi(e) dt )ds (4.15)
Hence
Lo m(s) (7 Gie) de) ds
>sz LG (e [TTRL Gi(t) dt ) ds. (4.16)
By Lemma- 4, we know that
e de<t, (4.17)
Finally, by (4.16) and (4.17), we get

(4.11)

(4.12)
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T;

SLali w() ds = [FEL Gi(s) (e [T EL, Gi(tydr) ds

(T2 — 1) T +7
¢ In % > [)EL G®) In(e JTREL, Gi(v) dt)ds (4.18)

By (D¢) and lemma-2, we know that

]im Z?=1 M = o0

—— a(t) (4.19)
That is,
g(t—1tq) < o
toeo  g(t) T (4.20)

It completes the proof and this is the contradiction for (1.2).
Hence, all solutions of (1.2) is oscillate.
Conclusion:

In this chapter, in order to identify new oscillatory criteria, we give infinite integral conditions of first-order
ordinary delay differential equations with positive and negative coefficients.
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