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1. Introduction 

Every graph 𝐺 = (𝑉, 𝐸) that is taken into consideration here is simple. We refer [4] for terms related to graph 

theory. Two important and extensively researched topics in graph theory are graph coloring and domination. The 

book by Chartrand and Zhang [1] provides an outstanding discussion of a number of graph coloring problems. 

We refer Haynes et al.'s work [2] for the fundamental concepts of domination. Numerous advanced domination 

problems are covered in the book edited by Haynes et al. [3]. 

When colors are applied to the vertices of a graph 𝐺 such that neighboring vertices have different colors, this is 

defined to as proper vertex coloring. The smallest cardinality of all these colors is the chromatic number of a graph 

𝐺, denoted as 𝜒(𝐺). Graph colorings and domination problems are frequently related [5]. A newly developed 

family of graph colorings was recently introduced, leading to domination relations between color classes and 

vertices. The colorings that fall under this category are strong coloring [12], strict strong coloring [7], dominator 

coloring [6] and global dominator coloring [10]. 

A graph 𝐺 that has proper vertex coloring with dom-color classes and anti-dom-color classes are assigned to each 

vertex is said to have a global dominator coloring. The smallest cardinality of all such colors is called global 

dominator chromatic number of a graph 𝐺, denoted as 𝜒𝑔𝑑(𝐺). By Hamid et al. [10], the notation of global 

dominator coloring was introduced. Throughout this paper the global dominator coloring is referred as 𝑔𝑑-

coloring. For any graph 𝐺, let 𝒞 = {𝑉𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘} be a 𝑔𝑑-coloring in which each 𝑉𝑖 represents a color class. 

The 𝑔𝑑-coloring with 𝜒𝑔𝑑-colors is called 𝜒𝑔𝑑-coloring of 𝐺. If each 𝑣 ∈ 𝑉 has a dominating color class different 

from 𝑉𝑖 , then the color class is referred to as 𝑃𝑛(𝑉𝑖 , 𝒞) = 𝜙. 

2. Mycielskian Graph 

To construct a graph where the clique number is small and the chromatic number is high, Mycielski presented the 

Mycielskian graph 𝜇(𝐺) [11] in the following manner: “vertex set 𝑉(𝜇(𝐺)) = 𝑉(𝐺)  ∪  𝑉′  ∪  {𝑢} and edge set 

𝐸(𝜇(𝐺)) = 𝐸(𝐺)  ∪ {𝑣𝑖𝑣𝑗
′ ∶ 𝑣𝑖𝑣𝑗  ∈ 𝐸(𝐺)}  ∪ {𝑢𝑣𝑖

′ ∶ 1 ≤ 𝑖 ≤ 𝑛}, where 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} and 𝑉′ =

{𝑣1
′ , 𝑣2

′ , … , 𝑣𝑛
′ } in which 𝑣 and 𝑣′ are called twin vertices and 𝑢 is called a root vertex”. 

This section describes how we arrived at the global dominator chromatic number bounds for Mycielskian graphs 

and how the graphs that achieved these bounds were characterized. 

Theorem 2.1.  For any graph 𝐺, 

    𝜒𝑔𝑑(𝐺) + 1 ≤ 𝜒𝑔𝑑(𝜇(𝐺)) ≤ 𝜒𝑔𝑑(𝐺) + 2. 
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Furthermore, the gd-coloring 𝜇(𝐺) is equal to 𝜒𝑔𝑑(𝐺) + 1 if and only if 𝑃𝑛(𝑉𝑖 , 𝒞) = 𝜙, for some 𝑖. 

Proof.  

Let any 𝜒𝑔𝑑-coloring of 𝐺 be represented by 𝒞. Then, 𝜒𝑔𝑑(𝜇(𝐺)) ≤ 𝜒𝑔𝑑(𝐺) + 2, since 𝒞 ∪  {𝑉′}  ∪  {𝑢} is a 𝑔𝑑-

coloring of 𝜇(𝐺) utilizing 𝜒𝑔𝑑(𝐺) + 2 colors. Let 𝑢 ∈  𝑉1 and let 𝒞 = {𝑉𝑖 ∶ 1 ≤ 𝑖 ≤ 𝜒𝑔𝑑} be a 𝑔𝑑-coloring of 

𝜇(𝐺). 

Case 2.1. 𝑉1 = {𝑢}. 

Randomly select a vertex 𝑣′  ∈  𝑉𝑖 and its twin is recolored with color 𝑖 for each color class 𝑉𝑖 ⊂ 𝑉′ but not on 𝑉. 

This coloring is restricted to 𝐺, which results in a 𝑔𝑑-coloring of 𝐺 with 𝜒𝑔𝑑(𝐺) − 1 colors. 

Case 2.2. 𝑉1 ≠ {𝑢}. 

Clearly 𝑉1 ∩ 𝑉(𝐺)  ≠ 𝜙. Let 𝑆 = 𝑉1  ∩  𝑉(𝐺). It is evident that every 𝑣 ∈ 𝑉(𝐺) fails to dominate the color class 

𝑉1. Select a vertex 𝑣′ ∈ 𝑉𝑖 at random and apply color 𝑖 to its twin vertex, for each color class 𝑉𝑖 ⊂  𝑉′. For every 

𝑣 ∈ 𝑆, apply the twin vertex 𝑣′ color. Let 𝐶1 be the restricted coloring to 𝐺. Now, we claim that 𝐶1 is a proper 

coloring of 𝐺. Assume 𝑢𝑣 ∈ 𝐸(𝐺). If 𝑢, 𝑣 ∈ 𝑉 − 𝑆, then 𝑢 and 𝑣 recieve distinct colors. In case, 𝑢 ∈ 𝑆 and 𝑣 ∉ 𝑆, 

then also they receive different colors. Considering that 𝑢′𝑠 new color is the same as 𝑢′, its twin. Hence, different 

colors are given to 𝑢 and 𝑣. Consider a vertex 𝑣 ∈ 𝑉 which dominates the color class 𝑉𝑖 in 𝒞1 and anti-dominates 

some color class 𝑉𝑗, 𝑗 ≠ 𝑖 in 𝒞1. The vertex 𝑣 continues to dominate the color class 𝑉𝑖 ∈ 𝒞1 and anti-dominate the 

color class 𝑉𝑗 , 𝑗 ≠ 𝑖 ∈ 𝐶1, since {𝑖, 𝑗} ≠ 1. Consequently, inequality holds since 𝜒𝑔𝑑(𝐺) ≤ 𝜒𝑔𝑑(𝜇(𝐺)) − 1. 

Let 𝒞 = {𝑉𝑖 ∶ 1 ≤ 𝑖 ≤ 𝜒𝑔𝑑} be a 𝑔𝑑-coloring of 𝐺 using 𝜒𝑔𝑑-colors such that, for some 𝑖, 𝑃𝑛(𝑉𝑖 , 𝒞) = 𝜙. Let 𝒞1 =

(𝒞 − 𝑉𝑖) ∪  {𝑉′}  ∪  {𝑉𝑖 ∪  𝑢} be a coloring of 𝜇(𝐺) in which color 𝑖 is assigned to the root vertex 𝑢 and twin 

vertices receive a single color. It is evident from 𝒞1 of 𝜇(𝐺) that every 𝑣 ∈ 𝑉(𝐺) both dominates and anti-

dominates some color class. The root vertex 𝑢 dominate the color classes 𝑉′ and anti-dominate some color class 

𝑉𝑖 ∈ 𝒞 of 𝐺, while the twin vertices 𝑣′ ∈ 𝑉′ dominate and anti-dominate those color classes as its twin vertex 𝑣 ∈

𝑉(𝐺). Since 𝜒𝑔𝑑(𝜇(𝐺)) ≤ 𝜒𝑔𝑑(𝐺) + 1, equality holds. 

On the other hand, assume that 𝜒𝑔𝑑(𝜇(𝐺)) = 𝜒𝑔𝑑(𝐺) + 1. Let 𝑢 ∈ 𝑉1 and let 𝒞 = {𝑉𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘} be a 𝜒𝑔𝑑-

coloring of 𝜇(𝐺), where 𝑘 =  𝜒𝑔𝑑(𝐺) + 1. 

Case 2.3. 𝑉1 = {𝑢}. 

Assume 𝑉𝑘 = 𝑉′. The coloring 𝒞1 = 𝒞 −  ({𝑉𝑘} ∪  {𝑢}) of 𝐺 is a 𝑔𝑑-coloring utilizing at most 𝜒𝑔𝑑(𝜇(𝐺)) − 2 

colors. Which is not possible. So, let us assume that 𝑉𝑘 ⊂ 𝑉′. Selecting a representation 𝑣′ ∈ 𝑉𝑖  for any 𝑉𝑖 ⊂ 𝑉′ 

and its twin 𝑣 being recolored with color 𝑖; the other vertices are colored according to 𝒞 of 𝜇(𝐺) yields a new 

coloring 𝒞1 that is obtained from 𝒞. It is evident that 𝒞1 is a 𝑔𝑑-coloring of 𝐺. We now claim that a color class 𝑉𝑖 

exists in 𝒞1 such that 𝑃𝑛(𝑉𝑖 , 𝒞1) = 𝜙.  

Assume the case where each 𝑣 ∈ 𝑉 fails to dominate the color class 𝑉𝑘. Then in the restricted coloring 

𝒞1, 𝑃𝑛(𝑉𝑘, 𝒞1) = 𝜙. Select a vertex 𝑣𝑗
′ ∈ 𝑉𝑘 , if a vertex 𝑣 ∈ 𝑉(𝐺) dominate the color class 𝑉𝑘 ⊂ 𝑉′. Its twin vertex 

𝑣𝑗 ∈ 𝑉𝑖 is evident for some 𝑖 ≠ {1, 𝑘}. If the color class 𝑉𝑖 is not dominated by any vertex, then 𝑃𝑛(𝑉𝑖 , 𝒞1) = 𝜙. 

Let us assume that the color class 𝑉𝑖 is dominated by a vertex 𝑣 ∈ 𝑉 (𝐺). Thus, in this instance, both the color 

classes 𝑉𝑖 and 𝑉𝑘 are still dominated by the vertex 𝑣 ∈ 𝑉(𝐺). Thus, 𝑃𝑛(𝑉𝑖 , 𝒞1) = 𝜙. 

Case 2.4. 𝑉1 ≠ {𝑢}. 

It is evident no vertex 𝑣 ∈ 𝑉(𝐺) dominate the color class 𝑉1 ∈ 𝒞. In this case, the root vertex 𝑢 dominates some 

color class 𝑉𝑘 ⊆ 𝑉′. Let 𝑉𝑘 = 𝑉′. Then the restricted coloring 𝒞1 to 𝐺 implies that 𝑃𝑛(𝑉1, 𝒞1) = 𝜙. For 𝑉𝑘 ⊂ 𝑉′. 

Let us assume that the color class 𝑉𝑘 is dominated by a vertex 𝑣 ∈ 𝑉(𝐺). Consequently, the twin vertex 𝑣′ cannot 

dominate the color class 𝑉𝑘. In this instance, 𝑣′ dominate the color class 𝑉1. We now take into consideration a 

restricted coloring 𝒞1 to 𝐺 in the following manner: we randomly choose a vertex 𝑣′ ∈ 𝑉𝑖  for each color class 
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𝑉𝑖 ⊂ 𝑉′, 𝑖 ≠ 𝑘, and its twin 𝑣 is recolored with color 𝑖, 𝑖 ≠ 𝑘; the other vertices have the same color as 𝒞 of 𝜇(𝐺). 

The restricted coloring is a 𝑔𝑑-coloring of 𝐺 with 𝜒𝑔𝑑(𝜇(𝐺)) − 1 colors, where 𝑃𝑛(𝑉1, 𝒞1) = 𝜙. 

3. Iterated Mycielskian Graph 

In this section we give a bound for the global dominator chromatic number of a iterated Mycielsian graph 𝜇𝑘(𝐺) 

in terms of global dominator chromatic number of a graph 𝐺. The graphs that achieve the bounds are then 

characterized. Applying the Mycielskian operation 𝑘-times recursively for a graph 𝐺, we obtain the 𝑘-iterated 

Mycielskian graph 𝜇𝑘(𝐺), 𝑘 ≥ 1. 

Theorem 3.1. Let 𝐺 be a graph, then 

    𝜒𝑔𝑑(𝐺) + 𝑘 ≤ 𝜒𝑔𝑑(𝜇𝑘(𝐺)) ≤ 𝜒𝑔𝑑(𝐺) + 𝑘 + 1 

where 𝑘 ≥ 1. Furthermore, the 𝑔𝑑-coloring of 𝜇𝑘(𝐺) is equal to 𝜒𝑔𝑑(𝐺) + 𝑘 if and only if 𝑃𝑛(𝑉𝑖 , 𝒞) = 𝜙, for 

some 𝑖. 

Proof.  

Suppose some 𝜒𝑔𝑑-coloring 𝒞 of 𝐺 has 𝑃𝑛(𝑉𝑖 , 𝒞) = 𝜙, for some 𝑖. Then by applying Theorem 2.1 𝑘-times, we 

have 𝜒𝑔𝑑(𝜇𝑘(𝐺)) = 𝜒𝑔𝑑(𝐺) + 𝑘. If not, we have 𝜒𝑔𝑑(𝜇(𝐺)) = 𝜒𝑔𝑑(𝐺) + 2 by Theorem 2.1. We now claim that 

the 𝜇(𝐺) of any graph 𝐺 has a 𝜒𝑔𝑑-coloring such that 𝑃𝑛(𝑉𝑖 , 𝒞) = 𝜙. 

Suppose 𝒞 = {𝑉𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘}, is a 𝜒𝑔𝑑-coloring of 𝐺 where 𝑃𝑛(𝑉1, 𝒞) = 𝜙. Then the coloring 𝒞1 = (𝒞 − {𝑉1}) ∪

{𝑉1 ∪  {𝑢}} is a 𝑔𝑑-coloring of 𝜇(𝐺) utilizing 𝜒𝑔𝑑 colors where 𝑃𝑛(𝑉1, 𝒞) = 𝜙. Suppose 𝒞 has no coloring in 

which 𝑃𝑛(𝑉𝑖 , 𝒞) = 𝜙. Then, we have 𝜒𝑔𝑑(𝜇(𝐺)) = 𝜒𝑔𝑑(𝐺) + 2, by Theorem 2.1. In this case, 𝒞1 = 

{𝑉𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘} ∪ {𝑉′, {𝑢}} is a 𝑔𝑑-coloring of 𝜇(𝐺) using 𝜒𝑔𝑑  colors in which 𝑃𝑛(𝑉1, 𝒞) = 𝜙. Then, we have 

𝜒𝑔𝑑(𝜇𝑘(𝐺)) = 𝜒𝑔𝑑(𝐺) + 𝑘 + 1, applying Theorem 2.1 𝑘 − 1 times. 

Next, we prove “if and only if” condition. Let 𝜒𝑔𝑑(𝜇𝑘(𝐺)) = 𝜒𝑔𝑑(𝐺) + 𝑘. In case no 𝜒𝑔𝑑-coloring of 𝐺 contains 

a color class 𝑉𝑖 such that 𝑃𝑛(𝑉𝑖 , 𝒞) = 𝜙. Then, by above argument 𝜒𝑔𝑑(𝜇𝑘(𝐺)) = 𝜒𝑔𝑑(𝐺) + 𝑘 + 1, which is a 

contradiction. 

On the other hand, consider a case where a 𝜒𝑔𝑑-coloring of 𝐺 has a color class 𝑉𝑖 such that 𝑃𝑛(𝑉𝑖 , 𝒞) = 𝜙. Thus, 

using the prior argumentation, 𝜒𝑔𝑑(𝜇𝑘(𝐺)) = 𝜒𝑔𝑑(𝐺) + 𝑘. 
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