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Abstract:- In this article, we aim to examine glucose concentration for type I diabetic patient to strengthen 

diabetic’s research. Firstly, the model is integrated into the Caputo-Fabrizio fractional derivative with a non-

singular kernel in order to subdue the limitations of the conventional Riemann-Liouville and Caputo fractional 

derivatives. After that, the presented mathematical model is reviewed for the existence of system solutions in 

detail by applying the fixed-point postulate. We ascertain the conditions under which the uniqueness of this 

system of solutions can be obtained. 
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1. Introduction 

Mathematical modeling is a powerful tool due to its manifest importance and multifaceted uses against real-

world problems in engineering, finance, social sciences and biology. Models have been formulated using 

classical derivatives. The modeling concept was extended to the novel approach, applying fractional derivatives 

[2–4]. The basics of the fractional derivative, Caputo-Fabrizio, are given in [5-6 & 26-27]. Thus, some of the 

studies focused on the multiple applications of fractional operator, Caputo-Fabrizio derivatives, without a 

singular kernel. A variety of Fractional Models investigation is given in [7-13&25]. 

The glucose in human blood is the main source of energy and comes from the food insulin, a hormone made by 

the pancreas, which helps glucose from food to get into our cells and to use it for energy. Insulin also controls 

and adjusts the quantity of sugar in human body [14]. When a human body is unable to make the desired amount 

of insulin or is not able to use it well, then the glucose doesn’t reach the cells and stays in the blood. Frequent 

urination (polyurea), feeling more thirsty and hungry (polydipsia and polyphagia) are the symptoms which the 

patients having high blood sugar typically experience. Diabetes is known as a Raj Rog (meaning “kingship 

disease” or “royalty disease”) in ancient India, that is, a disease which affects those people having lots of wealth 

and lives a comfortable prosperous life by using servants for doing their works and chores. But, in recent years, 

it has become a problem which affects the whole society. In ancient times, this problem was seen in the age 

group above 70 years, but (in today’s era) it is a problem of all age groups. And, in very short time period, it has 

become a problem of the whole world. The issue is very serious and researchers are doing their best to control 

this problem. Generally, Type I diabetes requires a daily dose of insulin taken by the patient to regulate the 

amount of glucose in blood. Non-access of insulin leads to certain complications or danger to the patient’s life. 

Previously, some feedback controllers for insulin delivery have been investigated such as Fractional-Order (FO) 

proportional–integral–derivative control for diabetes patients using Bergman minimal model (BMM) [15]. In 

[16] adaptive FO Sliding Mode Control (SMC) for glucose concentration level of diabetic patients in the 

presence of the parameters uncertainty and multiple meal disturbances is used. A non-linear delay differential 

model of the glucose–insulin regulation system was studied and then an intelligent Mamdani-type fuzzy 
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controller is proposed. In [22], the theoretical model of nonlinear differential equations having three variables 

(glucose, Insulin, β-cell mass) with thirteen parameters has been discussed. The homotopy perturbation method 

(HPM) was used to find analytical expressions of the glucose, Insulin, and β -cell mass respectively. Also, HPM 

methods are also used in various other models [23 & 24]. Recently, various models based on FDDEs such as 

glucose-insulin interaction model [1 & 17-21] and so on have been discussed in the literature. The organization 

of this paper is as follows. Next section 2, contains background on definitions related to the Caputo-Fabrizio 

derivative. Section 3 includes mathematical model of glucose regulatory system for type-1 diabetic patient 

including the impact of carbohydrate by different food items on glucose level in the blood with Caputo-Fabrizio 

derivative whereas section 4 deals with theorems to prove existence and uniqueness of the solution using the 

fixed-point postulate. Lastly section 5 provides a conclusion. 

Background for Caputo-Fabrizio fractional derivative 

Definition 1: The Riemann – Liouville (R-L) fractional integral operator of order θ > 0, of function                 

f ∈ L1(ℝ+) is defined as 

                    Dθf(t) =
1

Γ(θ)
∫ (t − s)θ−1t

0
f(s)ds,                                                                1.1                                                                         

where is Γ(θ)the Euler gamma function. 

 

Definition 2: From [5], Let Ξ ∈ H1(b, c), c > 𝑏, λ ∈ [0,1] then, the definition of the arbitary order Caputo-

Fabrizio fractional derivative is given by 

    

                        Dt
λ

b
CF  (Ξ(t)) =

ℳ(λ)

1−λ
∫ Ξ′(z)exp

t

b
[−λ

t−z

1−λ
] dz.                                                                      1.2   

In the equation (1.2), ℳ(λ) represents normalization function with conditions  

ℳ(λ) = ℳ(0) = 1.  

Definition 3: From [6] Assume 0 < λ< 1, hence fractional order integral of order λ for function Ξ (z) is denoted 

as 
  

        

                         P𝑡
λ(Ξ(t)) =

2(λ−1)

(λ−2)ℳ(λ)
𝑔(𝑡) +

2λ

(2−λ)ℳ(λ)
∫ Ξ(s)

t

0
ds, t ≥ 0.                                                 1.3 

                                                               
2

  2ℳ(λ)−λℳ(λ)
= 1                                                                      1.4 

We get ℳ(λ) =
2

(2−λ)
, and with order 0 < λ< 1.  

The authors in [6] represent the new Caputo derivative in another form as 

 

Dt
λ

              b
                                                 CF  (Ξ(t)) =

ℳ(λ)

1−λ
∫ Ξ′(z)exp

t

0
[−λ

t−z

1−λ
] dz.                                                           1.5 

2. Objectives 

Mathematical model of glucose regulatory system for type-1 diabetic patient including the impact of 

carbohydrate by different food items on glucose level  

In this section, we present the fractional mathematical model of glucose regulatory system for type-1 diabetic 

patient including the impact of carbohydrate by different food items on glucose level with CF derivative which 

includes Blood Glucose Concentration denoted by G(t), Blood Insulin Concentration denoted by I(t) and 

Epinephrine denoted by E(t) respectively eG= Effect of physical exercise in increasing the utilization of 

Glucose, 𝑒𝐼 = Effect of physical exercise in accelerating the utilization of Insulin, 𝐺𝑒𝑥𝑡 = Output of 

carbohydrate metabolism system 𝑉 = Volume distribution space are the positive real-valued model parameters. 

𝑚1, 𝑚2, 𝑚3, … , 𝑚9 are the constants. FODEs model presented in (2.3) includes assumptions and descriptions of 

parameters as per the ordinary differential equation mathematical model presented in the paper [21]. Fractional 
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mathematical model of glucose regulatory system for type-1 diabetic patient including the impact of 

carbohydrate by different food items on glucose level with CF derivative is represented as ODE Model is 

represented by: 

        
𝑑𝐺

𝑑𝑡
= −(𝑚1 + 𝑒𝐺)𝐺 − 𝑚2𝐼 + 𝑚3𝐸 +

𝐺𝑒𝑥𝑡

𝑉
, 

        
 𝑑𝐼

𝑑𝑡
= 𝑚4𝐺 − (𝑚5 + 𝑒𝐼)𝐼 + 𝑚6𝐸, 

       
𝑑𝐸

𝑑𝑡
= 𝑚7𝐺 − 𝑚8𝐼 + 𝑚9𝐸.                                                                                           2.1 

For Simplification we can let  

        −(𝑚1 + 𝑒𝐺) = 𝜃1 , −𝑚2 = 𝜃2, 𝑚3 = 𝜃3,
𝐺𝑒𝑥𝑡

𝑉
= 𝜃4 

        𝑚4 = 𝜃5, −(𝑚5 + 𝑒𝐼) = 𝜃6, 𝑚6 = 𝜃7 

       𝑚7 = 𝜃8, −𝑚8 = 𝜃9,𝑚9 = 𝜃10.                                                                                   2.2 

Now instead of derivative of order 1 in ordinary differential equation model represented by (2.2) we taker order 

of 𝛼 to change the model into fractional order differential equation by using Caputo Fabrizio fractional 

derivative of order 𝛼 from 0 to 𝑡we get,CF Fractional model is given by equation (2.3) below, 

         𝐺𝑡
𝛼

0
𝐶𝐹 = 𝜃1𝐺 + 𝜃2𝐼 + 𝜃3𝐸 + 𝜃4, 

𝐼𝑡
𝛼

0
                 𝐶𝐹 = 𝜃5𝐺 + 𝜃6𝐼 + 𝜃7𝐸, 

            𝐸𝑡
𝛼

0
𝐶𝐹 = 𝜃8𝐺 − 𝜃9𝐼 + 𝜃10𝐸.                                                                                     2.3 

By using Caputo-Fabrizio fractional integral operator on the above system of equation (2. 3), we get  

          𝐺(𝑡) − 𝐺(0) = ℐ𝑡
𝛼

0
𝐶𝐹 {𝜃1𝐺 + 𝜃2𝐼 + 𝜃3𝐸 + 𝜃4}, 

            𝐼(𝑡) − 𝐼(0) = ℐ𝑡
𝛼

0
𝐶𝐹 {𝜃5𝐺 + 𝜃6𝐼 + 𝜃7𝐸}, 

           𝐸(𝑡) − 𝐸(0) = ℐ𝑡
𝛼

0
𝐶𝐹 {𝜃8𝐺 − 𝜃9𝐼 + 𝜃10𝐸}.                                                                   2.4 

For simplicity we let the kernels of the above equations in the form mentioned below 

            𝐾1 = {𝜃1𝐺 + 𝜃2𝐼 + 𝜃3𝐸 + 𝜃4}, 

             𝐾2 = {𝜃5𝐺 + 𝜃6𝐼 + 𝜃7𝐸}, 

            𝐾3 = {𝜃8𝐺 − 𝜃9𝐼 + 𝜃10𝐸}                                                                           2.5 

The definition of CF integral [5,6] is given by 

                           

ℐ𝑡
𝛼

0
𝐶𝐹 𝐹(𝑡) =

2(1 − 𝜌)

(2 − 𝜌)ℳ(𝜌)
𝐹(𝑡) +

2𝜌

(2 − 𝜌)ℳ(𝜌)
∫ 𝐹(𝑦)𝑑𝑦

𝑡

0

 

We will apply this definition on equation (4) by taking the kernels𝐾𝑖 , 𝑓𝑜𝑟 𝑖 = 1,2,3. Then we will get  



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 46 No. 1  (2025) 

__________________________________________________________________________________ 

16 

                    𝐺(𝑡) − 𝐺(0) =
2(1−𝜌)

(2−𝜌)ℳ(𝜌)
{𝐾1(𝑡, 𝐺)} +

2𝜌

(2−𝜌)ℳ(𝜌)
∫ {𝐾1(𝑦, 𝐺)}𝑑𝑦

𝑡

0
, 

                  𝐼(𝑡) − 𝐼(0) =
2(1−𝜌)

(2−𝜌)ℳ(𝜌)
{𝐾2(𝑡, 𝐼)} +

2𝜌

(2−𝜌)ℳ(𝜌)
∫ {𝐾2(𝑦, 𝐼)}𝑑𝑦

𝑡

0
,                                                          

                 𝐸(𝑡) − 𝐸(0) =
2(1−𝜌)

(2−𝜌)ℳ(𝜌)
{𝐾3(𝑡, 𝐸)} +

2𝜌

(2−𝜌)ℳ(𝜌)
∫ {𝐾3(𝑦, 𝐸)}𝑑𝑦

𝑡

0
                                   2.6                      

3. Methods 

Existence of solution for glucose regulatory system for type-1 diabetic patient including  

the impact of carbohydrate by different food items on glucose level FODEs mathematical model 

Now we will assume that 𝐺, 𝐼 and 𝐸are the non-negative bounded functions, such that    ‖𝐺(𝑡)‖ ≤ 𝛽1,                

 ‖𝐼(𝑡)‖ ≤ 𝛽2 and  ‖𝐸(𝑡)‖ ≤ 𝛽3 where  𝛽1,  𝛽2,  𝛽3 are the positive constants. Now we do the existence and 

uniqueness theorems. 

First theorem we will prove that the kernels satisfy Lipschitz and contraction mapping. 

Theorem 1: If the following inequality holds then kernels satisfy the Lipschitz condition and contraction 

mapping 𝟎 ≤ 𝑴 = 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒗𝒂𝒍𝒖𝒆 𝒐𝒇 {𝜸𝟏, 𝜸𝟐, 𝜸𝟑} < 𝟏. 

Proof: We take the first kernel 𝐾1. Let 𝐺 and 𝐺1 be any two functions. 

If we put those in first kernel 𝐾1 and taking norm we get. 

Now we apply the triangular inequality, we get         
‖𝐾1(𝑡, 𝐺) − 𝐾1(𝑡, 𝐺1)‖ ≤ ‖𝜃1(𝐺(𝑡) − 𝐺1(𝑡))‖ + ‖𝜃2𝐼‖ + ‖𝜃3𝐸‖ + ‖𝜃4‖ 

‖𝐾1(𝑡, 𝐺) − 𝐾1(𝑡, 𝐺1)‖ ≤ 𝜃1‖(𝐺(𝑡) − 𝐺1(𝑡))‖ + 𝜃2‖𝐼‖ + 𝜃3‖𝐸‖ + 𝜃4 

‖𝐾1(𝑡, 𝐺) − 𝐾1(𝑡, 𝐺1)‖ ≤ 𝜃1‖(𝐺(𝑡) − 𝐺1(𝑡))‖ + 𝜃2𝛽2 + 𝜃3𝛽3 + 𝜃4 

‖𝐾1(𝑡, 𝐺) − 𝐾1(𝑡, 𝐺1)‖ ≤ 𝜃1‖(𝐺(𝑡) − 𝐺1(𝑡))‖ 

Now 𝜃1 = 𝛾1 such that 0 ≤ 𝛾1 < 1 hence Lipschitz condition and contraction mapping for the kernel 𝐾1.Similar 

way we can prove other two kernels also. Now let us take equation (2.6) and shift the G(0), I(0) And E(0) on the 

right hand side, We get 

               𝐺(𝑡) = 𝐺(0) +
2(1−𝜌)

(2−𝜌)ℳ(𝜌)
{𝐾1(𝑡, 𝐺)} +

2𝜌

(2−𝜌)ℳ(𝜌)
∫ {𝐾1(𝑦, 𝐺)}𝑑𝑦

𝑡

0
, 

              𝐼(𝑡) = 𝐼(0) +
2(1 − 𝜌)

(2 − 𝜌)ℳ(𝜌)
{𝐾2(𝑡, 𝐼)} +

2𝜌

(2 − 𝜌)ℳ(𝜌)
∫ {𝐾2(𝑦, 𝐼)}𝑑𝑦

𝑡

0

, 

               𝐸(𝑡) = 𝐸(0) +
2(1−𝜌)

(2−𝜌)ℳ(𝜌)
{𝐾3(𝑡, 𝐸)} +

2𝜌

(2−𝜌)ℳ(𝜌)
∫ {𝐾3(𝑦, 𝐸)}𝑑𝑦

𝑡

0
.                                  3.1 

Using this equation (3.1) we can apply the recursive formula for the nth term and taking the initial values 𝐺(0) =

𝐺0(𝑡), 𝐼(0) = 𝐼0(𝑡), 𝐸(0) = 𝐸0(𝑡) we get 

              𝐺𝑛(𝑡) =
2(1−𝜌)

(2−𝜌)ℳ(𝜌)
{𝐾1(𝑡, 𝐺𝑛−1)} +

2𝜌

(2−𝜌)ℳ(𝜌)
∫ {𝐾1(𝑦, 𝐺𝑛−1)}𝑑𝑦

𝑡

0
, 

                𝐼𝑛(𝑡) =
2(1 − 𝜌)

(2 − 𝜌)ℳ(𝜌)
{𝐾2(𝑡, 𝐼𝑛−1)} +

2𝜌

(2 − 𝜌)ℳ(𝜌)
∫ {𝐾2(𝑦, 𝐼𝑛−1)}𝑑𝑦

𝑡

0

, 
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                   𝐸𝑛(𝑡) =
2(1−𝜌)

(2−𝜌)ℳ(𝜌)
{𝐾3(𝑡, 𝐸𝑛−1)} +

2𝜌

(2−𝜌)ℳ(𝜌)
∫ {𝐾3(𝑦, 𝐸𝑛−1)}𝑑𝑦

𝑡

0
.                                                3.2 

The successive term difference for above system is 

 𝛷𝑛(𝑡) =
2(1−𝜌)

(2−𝜌)ℳ(𝜌)
{𝐾1(𝑡, 𝐺𝑛−1) − 𝐾1(𝑡, 𝐺𝑛−2)} +

2𝜌

(2−𝜌)ℳ(𝜌)
∫ {𝐾1(𝑦, 𝐺𝑛−1) − 𝐾1(𝑦, 𝐺𝑛−2)}𝑑𝑦

𝑡

0
, 

𝛹𝑛(𝑡) =
2(1−𝜌)

(2−𝜌)ℳ(𝜌)
{𝐾2(𝑡, 𝐼𝑛−1) − 𝐾2(𝑡, 𝐼𝑛−2)}  +

2𝜌

(2−𝜌)ℳ(𝜌)
∫ {𝐾2(𝑦, 𝐼𝑛−1) − 𝐾2(𝑦, 𝐼𝑛−2)}𝑑𝑦

𝑡

0
, 

𝛯𝑛(𝑡) =
2(1−𝜌)

(2−𝜌)ℳ(𝜌)
{𝐾3(𝑡, 𝐸𝑛−1) − 𝐾3(𝑡, 𝐸𝑛−2)} +

2𝜌

(2−𝜌)ℳ(𝜌)
∫ {𝐾3(𝑦, 𝐸𝑛−1) − 𝐾3(𝑦, 𝐸𝑛−2)}𝑑𝑦

𝑡

0
               3.3 

Now the summation of all the differences can be written as 

   

𝐺𝑛(𝑡) = ∑ 𝛷𝑖(𝑡)

𝑛

𝑖=1

 

𝐼𝑛(𝑡) = ∑ 𝛹𝑖(𝑡)

𝑛

𝑖=1

 

                                                                                     𝐸𝑛(𝑡) = ∑ 𝛯𝑖(𝑡)𝑛
𝑖=1                                                                  3.4 

Now the norm 

‖𝛷𝑛(𝑡)‖ = ‖𝐺𝑛(𝑡) − 𝐺𝑛−1(𝑡)‖ 

From equation (3.3) 

‖𝛷𝑛(𝑡)‖ = ‖
2(1−𝜌)

(2−𝜌)ℳ(𝜌)
{𝐾1(𝑡, 𝐺𝑛−1) − 𝐾1(𝑡, 𝐺𝑛−2)} +

2𝜌

(2−𝜌)ℳ(𝜌)
∫ {𝐾1(𝑦, 𝐺𝑛−1) − 𝐾1(𝑦, 𝐺𝑛−2)}𝑑𝑦

𝑡

0
‖     3.5 

Now using the above two equations we can get 

‖𝐺𝑛(𝑡) − 𝐺𝑛−1(𝑡)‖ =  ‖
2(1−𝜌)

(2−𝜌)ℳ(𝜌)
{𝐾1(𝑡, 𝐺𝑛−1) − 𝐾1(𝑡, 𝐺𝑛−2)} +

2𝜌

(2−𝜌)ℳ(𝜌)
∫ {𝐾1(𝑦, 𝐺𝑛−1) − 𝐾1(𝑦, 𝐺𝑛−2)}𝑑𝑦

𝑡

0
‖    

3.6 

Now Appling triangular inequality 

‖𝛷𝑛(𝑡)‖ = ‖𝐺𝑛(𝑡) − 𝐺𝑛−1(𝑡)‖   

            ≤ ‖
2(1−𝜌)

(2−𝜌)ℳ(𝜌)
{𝐾1(𝑡, 𝐺𝑛−1) − 𝐾1(𝑡, 𝐺𝑛−2)}‖ + ‖

2𝜌

(2−𝜌)ℳ(𝜌)
∫ {𝐾1(𝑦, 𝐺𝑛−1) − 𝐾1(𝑦, 𝐺𝑛−2)}𝑑𝑦

𝑡

0
‖     

‖𝐺𝑛(𝑡) − 𝐺𝑛−1(𝑡)‖   

≤
2(1 − ρ)

(2 − ρ)ℳ(ρ)
‖{K1(t, Gn−1) − K1(t, Gn−2)}‖

+
2ρ

(2 − ρ)ℳ(ρ)
∫ ‖K1(y, Gn−1) − K1(y, Gn−2)‖dy

t

0

       

Now as we know the kernel 𝐾1 satisfy the Lipschitz condition and contraction for 𝛾1 we get, 
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‖𝐺𝑛(𝑡) − 𝐺𝑛−1(𝑡)‖

≤
2(1 − 𝜌)

(2 − 𝜌)ℳ(𝜌)
𝛾1‖{𝐺𝑛−1(𝑡) − 𝐺𝑛−2(𝑡)}‖ +

2𝜌

(2 − 𝜌)ℳ(𝜌)
𝛾1 ∫ ‖{𝐺𝑛−1(𝑦) − 𝐺𝑛−2(𝑦)}‖𝑑𝑦

𝑡

0

 

  Thus we obtain 

     ‖𝛷𝑛(𝑡)‖ ≤
2(1−𝜌)

(2−𝜌)ℳ(𝜌)
𝛾1‖{𝛷𝑛−1(𝑡)}‖ +

2𝜌

(2−𝜌)ℳ(𝜌)
𝛾1 ∫ ‖𝛷𝑛−1(𝑦)‖𝑑𝑦

𝑡

0
                       3.7 

Similarly we can do for others parts of the equation. Now we will use this result in next theorem. 

 

Theorem 2: If for 𝒕𝟎 > 0 and the inequalities below holds 

                                         
2(1−𝜌)

(2−𝜌)ℳ(𝜌)
𝛾1 +

2𝜌

(2−𝜌)ℳ(𝜌)
𝛾1𝑡0 < 1 

Then a solution exists 

Proof: Since all 𝐺, 𝐼, 𝐸 are the bounded functions and kernels fulfill Lipschitz condition which shows existence 

and smoothness of the functions. To complete the proof we prove the convergence of 𝐺𝑛(𝑡),  𝐼𝑛(𝑡), 𝐸𝑛(𝑡) is the 

solution of the CF model.  Let 𝐵𝑛(𝑡), 𝐶𝑛(𝑡), 𝐷𝑛(𝑡) as 𝐺(𝑡) − 𝐺(0) = 𝐺𝑛(𝑡) − 𝐵𝑛(𝑡) and for others also. 

Now 

‖𝐵𝑛(𝑡)‖ = ‖
2(1 − 𝜌)

(2 − 𝜌)ℳ(𝜌)
{𝐾1(𝑡, 𝐺) − 𝐾1(𝑡, 𝐺𝑛−1)} +

2𝜌

(2 − 𝜌)ℳ(𝜌)
∫ {𝐾1(𝑦, 𝐺) − 𝐾1(𝑦, 𝐺𝑛−1)}𝑑𝑦

𝑡

0

‖ 

Applying triangular inequality, we get 

‖Bn(t)‖ ≤ ‖
2(1 − ρ)

(2 − ρ)ℳ(ρ)
{K1(t, G) − K1(t, Gn−1)}‖ + ‖

2ρ

(2 − ρ)ℳ(ρ)
∫ {K1(y, G) − K1(y, Gn−1)}dy

t

0

‖ 

       ‖Bn(t)‖ ≤
2(1−ρ)

(2−ρ)ℳ(ρ)
γ1‖G − Gn−1‖ +

2ρ

(2−ρ)ℳ(ρ)
γ1 ∫ ‖G − Gn−1‖dy

t

0
                                                3.8 

Applying the process recursively we get 

       ‖Bn(t)‖ ≤ [
2(1−ρ)

(2−ρ)ℳ(ρ)
γ1 +

2ρ

(2−ρ)ℳ(ρ)
γ1t]

n+1

          

At t = t0 

      ‖Bn(t)‖ ≤ [
2(1−ρ)

(2−ρ)ℳ(ρ)
γ1 +

2ρ

(2−ρ)ℳ(ρ)
γ1t0]

n+1

                                                                                    3.9 

Now applying limits as n → ∞, we get 

                     ‖Bn(t)‖ → 0                                                                                                   3.10 

Similarly, we can do for other parts of the models equations I and  E. 

Theorem 3: CF Model have a unique solution if 

                                      

(1 − [
2(1 − ρ)

(2 − ρ)ℳ(ρ)
γ1 +

2ρ

(2 − ρ)ℳ(ρ)
γ1t])   > 0 

Proof: Assume G1(t) is the other solution of the equation of the CF model 
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Then                                  

‖G(t) − G1(t)‖ (1 − [
2(1 − ρ)

(2 − ρ)ℳ(ρ)
γ1 +

2ρ

(2 − ρ)ℳ(ρ)
γ1t]) ≤ 0 

Hence,               
G(t) = G1(t) 

Similarly,  

                                     I(t) = I1(t) 

                                                                   E(t) = E1(t)                                                             3.11                                                                 

 

4. Results 

The glucose regulatory system for type-1 diabetic patient has been validated using Existence and Uniqueness 

Theorem using fixed point postulate. The Caputo Fabrizio Fractional Derivative has been used in proving the 

theorems where the kernel  satisfies Lipschitz condition. 

5. Discussion 

For achieving better quality of life in diabetic patients it is necessary to pay attention towards a preventive and 

personalized approach of treatment. Mathematical modeling of diabetic condition and its associated 

complications provides a deep and clear understanding about the diverse and complex mechanism involved. A 

differential equation model has been proposed in this work with fractional derivative. Glucose-insulin 

concentration in blood model is extended to fractional calculus by using the CF fractional derivative and 

validation by uniqueness and existence of solution is shown with Lipschitz condition. The existence and 

uniqueness of the solution is found by employing the fixed-point theorem. Non-integer values of α the fractional 

parameter of CF fractional derivative create a significant mathematical model. This model will benefit diabetics’ 

research by substantially minimizing the cost of care. For future research a similar comparative analysis can also 

be undertaken of other integer order disease models. 
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