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Abstract: - In this work, advection-diffusion equation (ADE) has been studied by using a modified cubic B-
spline numerical method. This method produces good results with high accuracy. We have discretized the
advection-diffusion equation using the finite difference method. To demonstrate the fourth-order convergence of
the proposed method, error analysis is performed. A stability analysis is done by Von-Neumann method and the
method is shown to be unconditionally stable. Seven different advection-diffusion equations with Periodic,
Neumann, and Dirichlet boundary conditions have been solved to test the effectiveness of the proposed method.
The results from these examples highlight the benefits of the method, and comparisons with other methods
reveal that the proposed method performs better.
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1. Introduction

The advection-diffusion equation is a mathematical model that describes the phenomena where energy is
transformed due to diffusion and advection processes. This equation is useful in different areas, such as
engineering, environmental science, and fluid dynamics. The flow of fluid through the medium [1], the transfer
of energy [2], the diffusion of pollutants in rivers and streams [3], and the transportation of pollutants in the
atmosphere [4] may all be described by the advection-diffusion equation.

We consider the advection-diffusion equation as follows:
0X 0X %X
ot "u T Pauz

here, i is advection coefficient and p is diffusion coefficient.

The boundary conditions are defined as follows:
(1) The Periodic boundary conditions are defined by

X(m,t) = X(n,t). (1.2)

m<u<nand 0<t<T, (11)

The total heat is conserved when the boundary conditions are periodic

M(t) = fn X(u, t)dt, (1.3)
= h( crgnstant ).

(2) The Neumann boundary conditions are given by

0X t) = t 0X t) = t 1.4
MmO =[0, S0 =hHO. (14)
(3) The Dirichlet boundary conditions are defined as follows
Xmt)=g,(8), X(nt) =g,(0. (1.5)
The initial condition is given by
X(w,0) = ¢p(x). (1.6)
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Many researchers have studied numerical solution of advection-diffusion equation (ADE) using different
schemes. Gorgulu and Irk [5] developed Galerkin finite element method. Octic B-spline technique was used to
find numerical solution of advection-diffusion equation by Jena and Gebremedhin [6]. Anskari and Adibi [7]
presented meshless method to study ADE. Dag et al. [8] developed least square scheme for ADE. Quartic and
Quintic DQM (differential quadrature method) are used by Korkmaz and Dag [9]. Mittal and Jain [10] studied
the ADE using cubic B-spline collocation scheme. Finite element scheme was developed by Dhawan et al. [11]
to find numerical solution of advection-diffusion equation. Malik et al. [12] presented collocation scheme to
examine the advection-diffusion equation. Palav and Pradhan [13] used the uniform hyperbolic polynomial
(UHP) B-spline scheme to find numerical solutions of ADE. Finite difference technique was used by Andallah
and Khatun [14] to examine advection-diffusion equation. Nazir et al. [15] developed trigonometric B-splines
scheme to study the advection-diffusion equation. Operator splitting technique was used by Bahar and Gurarslan
[16]. Dursun et al. [17] presented extended cubic B-spline approach to find numerical results of ADE. Finite
element approach was used by Mojtabi and Deville [18]. Gurarslan et al. [19] developed sixth-order compact
finite difference technique to solve ADE.

The purpose of this study is to present a practical and effective numerical method for solving equation (1.1) with
variable diffusion and advection parameters, by employing various space and time grid point choices. First, we
discretize the equation (1.1) using finite difference scheme to get a system of linear equations. Von-Neumann
approach has been used for the stability analysis. It is observed that the cubic B-spline scheme is
unconditionally stable.

The outline of this research work is as follows: In Section 2, we have discussed the proposed method. The
discretization of the advection-diffusion equation (1.1) using finite difference scheme has been explained in
Section 3. The convergence has been checked in Section 4. Stability analysis has been done in Section 5. In
Section 6, the outcomes of numerical problem are shown in tables and illustrated graphically. A brief summary
is given in Section 7.

2. Cubic B-Spline Functions

Consider an interval [m,n ] where m = uy < u; < ---uy = n, which is divided into equal parts. The mesh
points are denoted by u;, = u, + ki, where k = 0,1,2,---, M and the step size is given by | =n —m/M. The
cubic B-spline basis function [20] is expressed as follows:

(U — ug—2)?, U € [ug g upy)
P+ 30w —up_q) + 31w — up_1)* = 3w — ug_1)®, 1w € [up_q, 1)
Y (u) = el 1B+ 302 (Uppq — w) + 31 (Uggr — w2 = 3(Upsr — w3, UE [upupsy) (21
(U2 — u)?, U € [Upeqq, Uks2)
0 otherwise.

The cubic spline functions are defined by the basis {¥_;(w), ¥o(w), ¥, (W), -, Yy (W), Ype1(w)} over the
interval [m, n]. Suppose H (u) is an approximate solution to the exact solution X (u). This approximation can be
represented as a linear combination of the basis functions i, where the unknown parameters S, are time-
dependent and determined by boundary conditions. As a result, the values of the function H (u) at the grid points
(uy, t) are obtained in the following manner:
M+1
Huw) = ) Sabe(uy). 22)

k=-1
We assume that the approximate solution H (u) satisfies the interpolating condition
H(uw) =X(w), Vk=0,1,2M, (2.3)

here, the function X (u) is smooth enough, and the cubic spline interpolant H (u) satisfies the specified boundary
conditions:

H'(m) =X'(m), H'(n)=X'(n), (2.4)

H"(m) =X"(m), H"(n) =X"(n). (2.5)

The cubic B-spline approximation is applied to function X and its first two derivatives at the i — th node. For
simplicity, we will use ¢; and C; in place of H; and H;', respectively.

4298



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 3 (2024)

i+1

1
Hi = Z Sklpk(u) = E(Si_l + 4’51 + Si+1)! (26)
k=i-1
i+1 1
= ) S =5 (=S + S, @)
k=i-1

1
C; = Z Sk (W) = l_z(Si—l —28; + Siy1)- (2.8)
k=i-1
Using (2.6) - (2.8), we get
1
g =X"(w) - MI4X(5)(ui) +-, (29)
1 1
C;i=X"(w) - E12)(<4> (W) + 360 X© ) + -, (2.10)
2.1. New approximation for X''(u) : For the new approximation of X'’ (u), we establish a representation for
C;_, at the u; node using equation (2.10) in the following manner:
1 1
Ciop = X"(uj—y) — EIZX(“)(ui_l) + %l4x(6)(ui—1) + -
5 1
= X”(ui) - lX(3) (ui) + _IZX(4) (ui) _— l3X(5) (ui) + .-,
12 12
similarly,
5 1
Civr = X" (u;) + IX® () + I 12X®(u,) + T BXG(u;) + . (2.11)

Let C; be the new approximation for X"’ (w),
C; = N,C; + N,Ci_y + N3Cipq.  (2.12)

To increase the order of error in C;, the values Ny, N,, and N, are chosen. The system of linear equations are
derived from the (2.12)

N1+N2+N3:1,
_N2+N3=0,
—N1+5N2+5N3 = 0.

After solving these equations, we get N; = Z and N, = N; = % Substituting the values of N;, N,, and N5 in
(2.12), we obtain

¢, (Si—y + 8Si_y — 18S; + 85,41 + Sit2). (2.13)

_ 1
1212
Four neighboring values at the node u, are used for new approximation of X"’ (u) as follow:
Co = NoCo + NGy + N,Cy + N5C3,  (2.14)
here,
5 1
C, = X"(up) + IX" (up) + F 12X® (uy) + T BX® (uy) + -,

23 7

Cy = X" (up) + 21X (uy) + Ezzx<4>(uo) + gl3X(5)(uo) Foe
53 17

C3 = X" (ug) + 31X"" (up) + F 12X™ (uy) + - BX® (ug) + .

Now using (2.14) as follows:
N0+N1 +N2+N3: 1,
N1 + ZNZ + 3N3 = 0,
—Ny + 5N; + 23N, + 53N; =0,
N; + 14N, + 51N; = 0.
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We get, Ny = Z,N1 = —i,N2 =2 and N; = — L after solving above equations. Substituting the values in
6 3 12

12
(2.14), we obtain

Co =

12[2 (14S_, — 33S, + 28S, — 14S, + 655 — S,). (2.15)

Similarly, at the node u,, approximation is given by

Cy = ——
M 1202
These relations will be used in approximating the partial differential equation.

(_SM—4 + 6SM_3 - 14SM—2 + 28SM—1 - 335M + 14SM+1)' (2.16)

3. Implementation

The finite difference method is used to discretize the equation (1.1) as follows:
Xntl — xn Xntl 4 xn XnHl 4 xn,

= .(3.1

e 1T P2 GD

After rearranging the terms, we obtain
1
g nAtxnt B pAtXIHt _xn_ nAtxXn? pAtX{}u (3.2)
2 2 2
fori=0
nAt
(ST + 4p4SpHY) 4+ 10 (S"+1 s - 412 (14s"+1 335§t + 2851t — 1487+ + 6571 — SPHY)
= (S™, +4St + S ———(s1 -S") M id (145" — 335} + 285! — 14S} + 65} — S),

412
we may rewrite the equation as follows:

a ST+ aySP + agSPTY 4 a4y SH + agSTT + agSIY = by ST + by SE + byST + by S + bsSY + bgSY,
(3.3)

here,

1 _ 377_At _ 7pAt 33pAt — 377_At _ 7pAt 7pAt 3pAt — p_At
M 3 Zit 721A2t ’ Tt e 334th o ' +3 At 7 th o 2l72 A,tas 3 2321.’ ' 412A7t

= 77_ [ — 4 _ >3pAt __3nAt | 7p _ p p _ _ pAt
by =1+ + 212’b2_ az D=1 -5+ b = =5, bs = S be = —
forl<i<M-1

nAt
(Sn+1 + 45n+1+517_1++11) +__(Szr-l+-+11 _ Sn+1 412 (Sn+1 + 8Sn+1 185n+1 + 85:}:-11 + Slr-l:él
r) At 3
= (Sy + 487+ S0) = 7 (ST — S2) + 22 (s +8St, — 185 +8S™, + SI,),

412
the above equation is rewritten as
—ASES + ST+ ST + ST — SIS = ASE, + fsSTa + f6ST + f:STa + STy (34)

Sn+1

here,
At 3nAt  2pAt 9pAt 3nAt  2pAt 3nAt | 2pAt _9pAt
f_ilz'fZ_ 12]—1_ l;z 'f3=4+§lz'f4_1+n l;z '](:5_1—}_17 Fl)z 'f6 zplzl
37]At 2pAt
f7 =1 +— 2 !
l
fori=M
nAt 3
(SIHL 4 48T+ 4 gnety 4 ——(5;;:11 —snHly - 4—12(145;;111 3350+ 4 28S0+1 — 1481+ 4 6SI+L —
At 3
=Sy + AT+ Sfar) = 120 (Sfhar = i) + o (14Sh,y — 3350 + 2850y — 148fi_y + 6502 — Si-a),

412
we may rewrite the equation as follows:
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SRl + 1 SEFL + St + 1 SEFL 4+ i SEYL + r SHtL

= t151|7}1_5 + tzSI\T,Ii_L} + t3511\}1_3 + t451\r,’i_2 + tSSI"\}I—l + tGSAr,’i, (3.5)
here,
pAt 3pAt 7pAt 3nAt  7pAt 33pAt 3nAt  7pAt pAt
T T T R R e T R T v
3pAt 7pAt 3nAt  7pAt 33pAt 3nAt  7pAt
th=—s tzg=———— =1+ ——F+—— s =4 ———— tg=1———+——.
27120 212 % 21 12 e 412 ¢ 21 212

Equations (3.3) - (3.5) may be written in the following system XS™*1=yS" Here, S =
[5—1'50'51"“'SM'SM+1]T
a, a 4az a, 4as Qg
_fl fz f3 f4 _fl
- ~fi o i £ —h
-h o fi —h
"o 3 Ty 15 Tg
b, b, b; by, bs bg
h fs fo fr h
wmdy<| A fo fi A
h s fo 7 h
by tp t3 ty U5 g
In this system, the number of unknowns is M + 3, while the number of equations is M + 1 equations. By
applying Neumann or Dirichlet boundary conditions, we may eliminate S_; and S,,,, to reduce the equations to
M + 1 with M + 1 unknowns. We only solve S, ---, Sy,—, for periodic boundary conditions. Once S_; and Sy, 4

are eliminated, the resulting system may be solved at any time level. By using B-spline approximation initial
vector can be calculated.

4. Error analysis

In this part, an error bound has been found for the proposed scheme. The following equations may be obtained
from
(2.1)
H(uk) = Sk—l + 4Sk + Sk+1’ (4’1)
H' () = 2 (Sear = Se-1), (42)
H' (W) = 5 (See1 = 25 + Sian), (4:3)

[H' (u-1) + 4H' () + H' (wpe41)] = ?[X(um) — X (ug-1)], (4-4)
PH"(u) = 6[X (Uyes1) — X(w)] — 212X (wy) + X' (ugr1)]. (4.5)
As stated in [21], we can utilize the operator notation E(H(uk)) = H(ug,q) and E = e'P where D = d/dx. We
obtain the following equations
l2D2 l4-D4- lGD6
2! + 4! + 6!
I3D% I°D> 1I’D7
3! + 5! + 7!

el +eP =2<1+ +---),(4.6)

ell —e~IP =2<lD+ +~~).(4.7)
Using above equations in (4.4) and (4.5), we get

3
IET*+ 4+ EJH (u,) = 7 (E —E"YX(u), (4.8)
IPH" (uy) = 6[E — 11X () — 212 + E)X' (wy). (4.9)
After applying equations (4.6) and (4.7) to equation (4.8), we get
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12p2  1*p*  1°p® , _ 6 Bp3 1°p% Up7
[4+2(1+T+ " + p +---)]H(uk)—?[lD+T+T+ o + ]X(uk).

The given expression can be simplified as follows:

6 13D% 15D "D’ I2D2  [*D* [5DS -
H(uk)=7[1D+ TR TR +---H4+2<1+ TR TR +>] X (ug).

The above expression can be further simplified as follows:

4n5

~ 180 +---)X(uk),(4.10)

l4X(5)(uk)+
180

H' (u,) = <D

H'(w) = (X’(uk) - ) +0(1°).(4.11)
Using equations (4.9) and (4.11), we get
2H" (uy) = 6[e® — 11X () — 21[2 + €'P] [X’(uk) - 1—;()14)((5)@,() + ] .(412)

After reorganizing the terms and expanding e'? in the above equation, we get

12X® (ux) n l4X(6)(uk)
12 360

H" (u,) = (X”(uk) - ) +0(19). (4.13)

4.1. Error analysis of advection-diffusion equation: The following expressions have been used for error
analysis

’ 12 1 4 (5) 6
H (uk) =X (uk) - ﬁl X (uk) + 0(1 ), (414)
12X®(u 1
H" (we) = X" (w) — 1—2(") + 365X @) + 0. (4.15)

The typical finite difference formula can be used to determine the truncation error related to the time
discretization of the advection-diffusion equation. Consider,

Xe = g(X, Xy, Xo,). (4.16)
We use finite difference to discretize the time derivative and obtain the following:

X;?+1 _XI? gn +gn+1
At 2

(4.17)

Using the Taylor series expansion, we get

1
Xk = gk + EAtzgtt + . (4.18)
The advection-diffusion equation has a truncation error
ex = Xk + Xk — Kk (4.19)
The truncation error of the advection-diffusion equation may be expressed as follows, by putting the values of

errors resulting from space and time approximations

e = (%) At?g, — 17 F}o xS —p % X + 0(At3,19). (4.20)
Therefore, the final truncation error is as follows:
e, = 0(At2) + 0(1Y). (4.21)
The pzropoied method uses spline approximation with uniformly distributed interior points, making it accurate to
O(At? +1%).

5. Stability analysis
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We have used the Von-Neumann method to assess the stability of the proposed method. We get the following
equation by using finite difference scheme on (1.1)

—fiSI5 + oS + f3STH + oI — SIS = fiSPy + fsSPy + foSI' + f7804 + f1ST4,- (5.1)
The values for f; 's are mentioned in the section 3. Putting S;* = A¢™exp (ki¢l), here ¢ is mode number, [ is
step length, k = v—1 and A is amplitude, we obtain
fie 8+ fre KL+ f, + e’ + f ek
_fle—Zkfl +fze—k$l +f3 _|_f4€k§l _ fleZkf
By putting values of f; 's in (5.2), we obtain the following equation
_ 41%(cos (&1) + 2) — pAt(9 — 8cos (€1) — cos (2¢1)) — 6knlAtsin (€1) (5.3)
412(cos (&1) + 2) + pAt(9 — 8cos (€1) — cos (2€1)) + 6knlAtsin (E1)"

¢ = - (5.2)

above equation may be written as

C, —iD
C, + iD
here, C; = 41?(cos(&l) + 2) — pAt(9 — 8 cos(&l) — cos(2&1)), C, = 41%(cos (1) + 2) + pAt(9 — 8 cos(&l) —
cos(2&1)) and D = 6nlAtsin(él), which gives |¢p|? = C? + D?/C? + D?. |¢| < 1 is necessary for stability.
That is, Zzigj < 1. For stability, we must prove that CZ < CZ. It can be seen that, CZ — C# < 0. Therefore, the
proposed approach is stable for any values of Au and At i. e., the proposed approach is unconditionally stable.

¢ = ,(5.4)

6. Numerical Results and Discussion

In this section, seven examples with Periodic, Neumann, and Dirichlet boundary conditions have been solved
using the proposed method. The maximum absolute error norm formula has been used to evaluate accuracy of
proposed method.

Lo = || X — XM|| , = max|XZ — XM|, (6.1)

here, XM is numerical solution. Xg*** and X}! are exact and numerical solution at the node wu,, respectively. The
formula to determine the rate of convergence is

_In(E(M;)/E(My))
B In (M, /M)

here, E(M,) and E(M,) are absolute error norms with grid points M, and M,, respectively.

,(62)

Periodic Problems:

Example 1: We consider advection-diffusion equation (1.1) with the following exact solution [22]
X, t) = e~ cos(2m(u —t)), 0<u<1,(6.3)

with the boundary and initial conditions given by

X(0,t) =X(1,t),(6.4)
X(u,0) = cos(2mu) . (6.5)

For numerical experiment, we take n = p = 1. In Table 1, calculated error norms at time t = 0.1, 0.2, 0.3, and
0.4 are depicted. Numerical outcomes at t = 0.1,0.2,0.3, and 0.4 with n = 1 and p = At = 0.001 have been
shown in Figure 1. It is evident that the B-spline method produces very good results.

The value of M(t) has been calculated at time ¢t = 0.1,0.2,0.3, and 0.4

M) = J " X(u, t)dt (6.6)
M(t) Z187E—o08

We can observe that the value of M (t) is constant at different values of t.
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X(u,t)

R I I I
o] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 1. Numerical simulation of Example 1 at n = 100
TABLE 1. Error norms for Example 1 at n = 100 with At = 0.0001

01 737e—08 131le—06 5.65e—09 1.88e—08

02 298e—-08 145e—06 6.90e—09 1.85e—08

03 3.26e—08 1.03e—06 9.66e—09 1.83e—08

04 898e—-08 1.12e—07 1.56e—09 1.82e—08

05 1.20e—07 696e—07 143e—08 1.84e—08

06 1.11le—07 135e—06 3.19e—08 1.86e—08

0.7 6.66e—08 149e—06 4.44e—08 1.90e—08

08 4.08e—-09 1.07e—06 4.72e—08 192e—08

09 527e—-08 250e—07 391e—08 193e-—08

Example 2: The exact solution to the advection-diffusion equation (1.1) is
X, t) = e Pt sin(2n(u — nt)), 0<u<1,(6.7)
the boundary condition is given by
X(0,t) =X(1,t),(6.8)
the initial condition is
X(u,0) =sin(2mu), (6.9)

For numerical simulation, we take At = 0.001,n = 50,7 = 1, and p = 107>,107°. In Table 2, evaluated error
norms at t = 0.2 and 0.4 have been presented. The numerical and exact values at t = 0.1, 0.2, 0.3, and 0.4 have
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been illustrated in Figure 2. It can be observed that the numerical values closely match the exact solution. We
computed M(t) and found that the value of M(t) is constant at different times.

M) = fn X(u, t)dt = 0.0025. (6.10)
m
Problems having Neumann's boundary conditions:
Example 3: We consider (1.1) with the exact solution [10][23]
X(u,t) =pe?®™, 0<u<1,(6.11)
the initial and Neumann's boundary conditions are given by
X(u,0) =pexp(—ru), (6.12)

fad @, () (gt -7 (613)
—_— = —prex B —_— = —prex -1), .
o) o) prexplq o) wp pr exp(q

here, r = —1V17+200 “;’:Hpb,p =1, and g = 0.1. For numerical simulation, we take n = 1 and p = 0.001. In Table 3,

with [ = 0.1 and At = 0.001 the calculated outcomes have been reported. We can see that our proposed
technique gives better results. In Figure 3, calculated results have been shown and the figure is identical to the
one shown by [10], [23].

TABLE 2. Error norms for Example 2

p=10"° p=10"°

0.1 | 499e—05 1.42e—04 | 9.27e—06 1.10e—05

0.2 588e—-06 150e—04 [ 587e—06 1.83e—05

0.3 | 404e—05 999e—-04 | 2.32e—07 1.85e—05

04 | 713e—05 1.17e—05 | 550e—06 1.17e—05

05 | 751e—05 810e—05 [ 9.13e—06 4.64e—07

0.6 | 496e—05 1.42e—04 | 9.27e—06 1.10e—05

0.7 | 587e—06 1.50e—04 | 587e—06 1.83e—05

0.8 | 404e—05 999e-—-04 | 2.32e—07 1.85e—05

09 | 7.14e—-05 1.17e—05 550e—-06 1.17e—05

Example 4: We consider advection-diffusion equation (1.1) with the exact solution [10]
X(u,t) = e*trt, 0<u<1,(614)
with the initial and boundary conditions as follows:
X(u,0) = e, (6.15)

6X t 6X e+yt
(_> —cent, (—) = et (6.16)
6u 0,) 6u [¢%5)
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For numerical experiment, we choose At = 0.001,n = 40,¢ = 0.02854797991928,y = —0.0999,n = 3.5,
and p = 0.022. In Table 4, calculated outcomes have been reported and compared with those calculated by [10].
We can see that our proposed scheme gives better results than the method given in [10]. The numerical results
have been illustrated in Figure 4.

——Numerical solution at t=0.1
—— Numerical solution at t=0.2
Numerical solution at t=0.3
—— Numerical solution at t=0.4 \
*  Exact solution at t=0.1 AN * 7
Exact solution at t=0.2 AN *
= Exact solution at t=0.3 ~N j‘
o,

= Exact solution at t=0.4
[ |

0.4 0.5 0.6 0.7 0.8 0.9 1
u

FIGURE 2. Numerical simulation of Example 2 with p = 107
TABLE 3. Error norms for Example 3atn = 10 withn = 1 and p = 0.001

u t=1 t=5 t=20

0.1 850e—11 587e—10 6.32e —09

0.2 854e—11 5.69e—10 6.20e —09

03 838e—11 58le—10 6.29e—09

04 840e—11 5.62e—10 6.16e —09

05 827e—11 576e—10 6.26e —09

06 826e—11 556e—10 6.12e —-09

0.7 812e—11 570e—10 6.22e —09

08 8.04e—11 548e—10 6.08e —09

09 790e—11 5.64e—10 6.19e—-09

Problems having Dirichlet boundary conditions:
Example 5: We consider advection-diffusion equation (1.1) with the exact solution [2]

(u—1)?

1
X(u,t) = —exp <—50 ), o0<u<l, (6.17)

the initial and boundary conditions are given by
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1 —50u?
X(u,0) = ;exp - ,

1 t?
X(0,t) = ;exp <—50 7),
(1-1t)?
r )'

1
X(1,¢t) = —exp (—50

here, r = 1 4+ 200pt. Computed error norms at various time levels have been depicted in Table 5. In Table 6,
the outcomes of the current approach are contrasted with those of Nazir et al. [15]. We found that the proposed
method gives better results than the results given in [15]. In Figure 5, exact and numerical solutions have been
depicted. It is evident that the numerical solutions align closely with the exact solutions.

Example 6: The exact solution [24] to the advection-diffusion equation (1.1) is given by

u
er —1

X(wt) = ———, 0<u<1,(618)
er —1

the boundary condition is given by
X(@,t) =0, X(1,t) =1(6.19)

Initial conditions are taken from the exact solution. Calculated error norms at time t = 2,4, and 10 have been
displayed in Table 7. We also calculate the rate of convergence at various values of n and illustrated in Table 8.
We can observe that our method gives minimum error. In Figure 6, the obtained numerical results have been
presented.

FIGURE 3. Numerical simulation of Example 3 with n = 10

TABLE 4. Comparison of error norms for Example 4

t Present Method ~ Method 1 [10]  Method 11 [10]

0.2 1.66e — 11 1.67e — 09 8.46e — 06
0.4 3.28e—11 3.29e¢ — 09 1.75e — 05
0.6 4.87e — 11 4.87e — 09 2.70e — 05
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0.8 6.42e — 11 6.42e — 09 3.63e — 05
1.0 7.94e — 11 7.93e — 09 4.54e — 05
5.0 3.78e — 10 3.27e — 08 1.95e — 04
20.0 7.19e — 10 7.18e — 08 4.30e — 04

x

FIGURE 4. Numerical simulation of Example 4 with At = 0.001 and n = 20
TABLE 5. Error norms for Example 5 with At = 0.001,n =10,andnp=p =1

u t=1 t=2 t=5

0.1 | 544e—10 | 1.58e—05 293 -12

0.2 | 8.60e—10 1.65e — 05 3.80e — 12

03 | 420e—12 | 1.72e—05 | 6.38e — 07

04 | 828e—10 | 1.77e — 05 | 4.09e —12

05 | 6.01e—10 1.82e — 05 3.63e — 12

06 | 3.36e—10 | 1.86e—05 | 2.96e —12

0.7 | 1.25e—10 | 1.89e—05 | 2.27e—12

08 | 5.19e—-11 1.91e — 05 1.69e — 12

09 | 3.10e—10 | 1.92e—05 | 1.69e—12

Example 7: The exact solution [24] for equation (1.1) is given by

X(u,t) = exp (5 (u - %)) exp <— z_zot) E sin (7t2_u) + cos (nz—u)], 0<u<1,(6.20)
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the initial condition is

X(u,0) = exp(5u) E sin (7t2_u) + cos (112_u)] (6.21)

Boundary conditions are taken from the exact solution. For numerical experiment, we take p = 0.1 and n = 1.
The calculated error norms have been presented in Table 9 with t = 2. It is evident from the table that the
present approach gives better outcomes than Mohebbi [25]. In Figure 7, approximate results have been
illustrated graphically.

TABLE 6. Comparison of error norms for Example 5withn =p =1

t=1 t=2
At = 0.001 At = 0.001 At =0.01 At = 0.001
n Present Method ~ Nazir etal. [15] Present Method  Nazir etal. [15]
4 6.34e — 07 3.38e — 05 9.49e — 09 6.66E — 06
8 3.07e — 08 7.93e — 06 1.47e — 08 1.63e — 06
16 3.90e — 09 1.92e — 06 1.64e — 08 4.08e — 07
32 1.95e — 09 4.66e — 07 1.65e — 08 1.02e — 07
64 1.83e — 09 1.03e — 07 1.65e — 08 2.56e — 08
128 1.83e — 09 1.14e — 08 1.66e — 08 6.54e — 09
0.08 I | T I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 5. Numerical simulation of Example 5 withn = p = 1,At = 0.001, and n = 50
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FIGURE 6. Numerical simulation of Example 6 with At = 0.1, = p = 1,and n = 20

TABLE 7. Error norms of Example 6 with n = 300 and At = 0.1

u t=2 t=4 t=10
0.1 458e—16 1.19e—15 6.59e—16
0.2 266e—15 3.58e—15 5.16e—15
03 879e—-15 994e-—-15 1.68e — 14
04 148e—14 2.14e—14 2.85e-—14
05 232e—14 330e—14 4.03e—14
06 239e—14 5.04e—14 4.57e—14
0.7 268e—14 523e—14 4.35e—14
0.8 195e—14 333e—14 1.59e-14
09 1.19e—-14 3.19e—14 2.33e—15

TABLE 8. Error norms and rate of convergence for Example 6 att = 1

n L, errors order of convergence
10 9.46e — 08 -

20 6.18e — 09 3.94

40 3.91e - 10 3.98

80 2.45e — 11 3.99
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160 1.51e-—12 4.02

40

30 ~

X(u,t)

20 -

FIGURE 7. Numerical simulation of Example 7 with At = 0.01,t < 2,and n = 20
TABLE 9. Error norms for Example 7att = 2

1 =0.02 [ =0.01
u Mohebbi [25]  Present Method Mohebbi [25]  Present Method
0.1 7.17e — 06 5.03e — 07 1.80e — 06 4.99e — 07
0.2 1.10e — 05 1.46e — 06 2.77e — 06 1.44e — 06
0.3 1.66e — 05 3.09e — 06 4.17e — 06 3.06e — 06
04 2.46e — 05 5.69e — 06 6.17e — 06 5.62e — 06
0.5 3.59e — 05 9.50e — 06 9.01e — 06 9.36e — 06
0.6 5.16e — 05 1.45e — 05 1.29e — 05 1.43e — 05
0.7 7.32e — 05 2.01e — 05 1.84e — 05 1.98e — 05
0.8 1.02e — 04 2.42e — 05 2.55e — 05 2.37e — 05
0.9 1.36e — 04 2.13e — 05 3.42e — 05 2.08e — 05

7. Conclusion

In this work, modified cubic B-spline approach has been applied on advection-diffusion equation to find the
numerical solutions. This method is a new approximation to solve the advection-diffusion equation. To
discretize the equation, finite difference scheme has been applied. Von Neumann's scheme has been employed
to perform the stability analysis. The proposed spline-based fourth-order method has been shown to be
unconditionally stable. The convergence study reveals that the suggested technique is 0(At? + [*) accurate. We
have studied seven significant advection-diffusion problems. The obtained outcomes have been illustrated in
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tables and displayed in graphs. It is evident that both diffusion-dominated and advection-dominated problems
may be solved using this approach. A wide class of partial differential equations with Periodic, Neumann, or
Dirichlet boundary conditions may be solved very effectively by this method.
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