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Abstract:- Multi-principal element alloys (MPEAs) present an enormous (~ 102 distinct types of compositions),
largely uncharted compositional landscape, of which only a small fraction has been discovered to date. The critical
task for materials scientists and metallurgists is to identify potential compositions with tailored properties for
specific application while minimizing the reliance on laborious and energy-intensive experiments. In this study,
we developed a robust machine learning framework utilizing nature-inspired optimization method to navigate
potential MPEA candidates. Cuckoo Search Optimization (CSO), a metaheuristic algorithm based on the brood
parasitism behavior of cuckoo birds, was utilized to generate novel MPEAs with targeted mechanical properties
(yield strength, ultimate tensile strength and elongation). A dataset of 700 instances, sourced from experimental
literature on MPEAs, was utilized. CSO explored the search space to generate novel MPEAs with good
combinations of mechanical properties (yield strength (YS), ultimate tensile strength (UTS) and elongation (&),
by iteratively replacing inferior solutions with better ones, converging towards optimal or near-optimal solutions.
Pareto front solutions were then identified using Pareto dominance, ensuring that no individual objective among
the multi-objective criteria (YS, UTS and &) could be improved without compromising another. Thus, this
research leverages the potential of machine learning in accelerating the discovery of high-performance MPEAs,
paving the way for future innovations in materials design and engineering.

Keywords: Cuckoo Search Optimization, Machine learning, Mechanical properties, Multi-Principal Element
Alloys.

1. Introduction

Recently emerged new strategy of developing alloys that involves mixing of multiple principal elements in
equimolar or near-equimolar proportion to form multi-principal element alloys (MPEASs) also known as high-
entropy alloys (HEAS) or complex concentrated alloys (CCAS) has revolutionized the field of materials science.
MPEAs present a promising frontier in addressing real-world challenges, offering exceptional properties and
performance compared to conventional alloys along with its vast unearthed compositional space. Since the
inception of the MPEASs concept, numerous compositions with exceptional properties have been discovered and
developed. Notable examples include CoCrFeMnNi [1], Alx(CrFeCoNiCu) with varying Al concentration (x=0 to
3) [2], NbMoTaW [3], NbaoTizsAlisVio TasHfs W, [4], MoNbTavVW [5], HfNbTaZr [5], Reg.1Hfo.2sNbTaWo .4 [6]
Al103C017Cr7.5FegNisg 6 Tis g TaosM0og.gWo.4 [71. Al102C016.9Cr7.4Fe8.9Nis7.9Tis5.8M00.9Nb1.2W0o.4Co.4 [8]1,
CoCrFeNiTag4 [9] and CrFeCoNiNbgs [10]. Despite these advances, only a minuscule fraction of the potential
compositions within the vast compositional space (approximately 108 distinct types of compositions) have been
discovered so far. The conventional trial-and-error approach of discovering and developing new compositions is
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both laborious and time-intensive. In response to these challenges, machine learning (ML) has emerged as a
powerful tool for navigating the uncharted territories of MPEAs.

Several studies have adopted various machine learning approach in predicting mechanical properties of HEAs.
For instance, Bundela et al. [11] utilized various regression models, including linear regression, lasso, ridge,
random forest, XGBoost, and bagging regressor, to predict the microhardness of HEAs. Bhandari et al. [12]
employed a random forest regressor to predict the yield strength of MoNbTaTiW and HfMoNbTaTiZr across
different temperatures. Furthermore, Zhou et al. [13] developed three regressor models to predict Young's
modulus and hardness of novel high entropy ceramics by integrating data from previous density functional theory
(DFT) calculations and experimental results. Wen et al. [14] advanced a property-oriented materials design
strategy by combining machine learning with design of experiments (DOE). Their approach successfully
identified alloys with high hardness within the Al-Co-Cr-Cu-Fe-Ni HEA systems, resulting in the discovery of 35
alloys with hardness values exceeding the best in their training dataset. Moreover, Poonia et al. [15] employed
differential evolution, a metaheuristic optimization technique, to optimize the composition of an alloy with chosen
set of elements, aiming to maximize the hardness of the former.

While numerous studies have focused on discovering novel compositions by targeting individual properties, such
as hardness or yield strength, a significant gap remains in the literature regarding the simultaneous optimization
of multiple mechanical properties. This study aims to address this gap by employing machine learning techniques
to explore the vast, uncharted territory of MPEAs with the objective of identifying compositions that offer an
optimal combination of key mechanical properties: yield strength (YS), ultimate tensile strength (UTS), and
elongation (&). To explore the vast compositional space, the Cuckoo Search Optimization (CSQO) algorithm was
employed, while the Non-Dominated Sorting Genetic Algorithm 11 (NSGA-II) was used to navigate Pareto
optimal compositions that offer the optimal combination of mechanical properties.

2. Methodoly
2.1 Data collection

A comprehensive dataset comprising 700 instances of multi-principal element alloys (MPEAS) was meticulously
curated from experimental literature. This dataset encompasses detailed compositional and mechanical property
data, with the compositional information spanning 13 elements: Al, Co, Cr, Cu, Fe, Ni, Mn, Ti, V, C, Nb, Zr, and
Mo. The mechanical properties recorded in the dataset include Yield Strength (YS), Ultimate Tensile Strength
(UTS), and elongation (€).

To identify the best alloy composition that exhibits the most favorable combination of mechanical properties
within this dataset, we employed the Non-Dominated Sorting Genetic Algorithm Il (NSGA-II). A detailed
discussion about NSGA-II has been provided in the subsequent section. Through this analysis, the composition
AICoCrFeNiZrooos, characterized by YS, UTS, and elongation values of 1572 MPa, 3517 MPa, and 29.7%,
respectively, was identified as the best composition within the database. The results are visually represented in a
3D plot, with YS, UTS, and elongation depicted on the three axes, providing a clear illustration of the relationship
between these critical mechanical properties within the database, as shown in Fig. 1. The best combination of
mechanical properties is distinctly highlighted within a red square.
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Fig. 1. 3D plot illustrating the distribution of Yield Strength (YS), Ultimate Tensile Strength (UTS), and
elongation (%) values for each data point in the dataset. The data point encircled within a red square
represents the composition identified as having the optimal combination of these mechanical properties,
as determined by the NSGA-II.

2.2 Regression Model training and testing

To predict the mechanical properties of MPEAs, we employed several ML algorithms, including Neural Network
(NN), Random Forest Regressor (RFR), Extra Trees Regressor (ETR), CatBoost Regressor (CBR), and XGBoost
Regressor (XGB). The dataset was divided into an 80:20 ratio for training and testing the models. Standard scaling
was applied to normalize the data. The performance of these models is depicted in Fig. 2. Among all the regression
models, the CatBoost Regressor (CBR) demonstrated superior performance, achieving the highest R2 score of
0.91, along with the lowest Mean Squared Error (MSE) of 0.07 and Mean Absolute Error (MAE) of 0.16. Due to
its exceptional performance, CBR was selected for further optimization of the alloy compositions.
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Fig. 2. Performance (R2_score, Mean Squared Error, Mean Absolute Error) of each algorithm.

2.3 Exploration and navigation of novel alloys

Our objective is to discover new alloy compositions that not only match but potentially surpass the mechanical
properties of the benchmark composition AICoCrFeNiZrg os identified within the database. To achieve this goal,
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we implemented Cuckoo Search Optimization (CSO) within the CBR model, integrated into a multi-output
regressor framework. CSO is based on the brood parasitism behavior of cuckoo birds, which strategically lay their
eggs in the nests of other host birds. If the host bird detects the presence of alien eggs, it may either discard the
foreign eggs or abandon the nest to build a new one. This natural behavior forms the basis of the CSO algorithm,
which adeptly balances exploration and exploitation to solve complex optimization problems. The detailed
workflow of the CSO process is illustrated in Fig. 3.

CSO operates by mimicking Lévy flights, a random walk characterized by a series of long jumps, to explore the
search space extensively. Simultaneously, it replaces the worst solutions with potentially better ones, thereby
refining the solution set. This dual approach enables the CSO to navigate the expansive search space of MPEASs
efficiently. The compositional space was defined across 13 dimensions, with each dimension representing a
distinct elemental component. To efficiently explore this high-dimensional space, we configured key parameters
within the CSO algorithm, including n (population size), a (step size of the Lévy flights), f (Lévy flight
distribution), Pa (discovery rate of alien eggs), number of iterations and search space boundary. The choice of
CSO is particularly advantageous in this context due to its robustness and effectiveness in handling high-
dimensional and nonlinear optimization problems.
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Fig. 3. Workflow of cuckoo search optimization.

To navigate alloy compositions that offer the optimal combination of mechanical properties, we employed the
Non-Dominated Sorting Genetic Algorithm (NSGA-I1), a highly regarded technique in the field of multi-objective
optimization. The NSGA-II is particularly effective for problems where multiple objectives must be optimized
simultaneously, and it is widely used due to its ability to identify a diverse set of Pareto-optimal solutions. In the
context of multi-objective optimization, the term "non-dominated"” refers to solutions that are Pareto-optimal,
meaning that no other solution in the search space is superior when all objectives are considered together. These
solutions form what is known as the Pareto front, representing the best trade-offs between competing objectives.

3. Result and discussion

In an effort to discover new MPEA compositions that could potentially surpass the benchmark composition
(AlCoCrFeNiZrooos), we employed the Cuckoo Search Optimization (CSO) algorithm, incorporating Pareto
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dominance within our multi-objective optimization framework to identify non-dominated solutions. A list of novel
compositions representing these non-dominated solutions is presented in Table I.

Among the newly generated compositions, Alogs75C00.384675Cr1F€0.9544Ni0.84675Z10.00677 €Xhibits mechanical
properties that closely match those of the benchmark composition in the database, (AICoCrFeNiZrg.gos).
Furthermore, two compositions—MoNbTiVZr and MoNbTiV0.25Zr—were identified that surpass the
benchmark, demonstrating mechanical properties of [YS = 1748 MPa, UTS = 3800 MPa, & = 23%] and [YS =
1740 MPa, UTS = 3876 MPa, € = 27%], respectively. Notably, these compositions have been previously reported
in the literature but were not included in our original database. Their experimentally derived YS, UTS, and
elongation values are highlighted in red. A comparison of the predicted mechanical properties with the reported
experimental values reveals a strong correlation, thereby affirming the reliability of our optimization process.
Consequently, the mechanical properties predicted by our methodology exhibit close alignment with experimental
results, as validated by the compositions [MoNbTiVZr and MoNbTiV0.25Zr], underscoring the accuracy and
effectiveness of our approach.

Table: I Novel MPEA compositions optimized using CSO and Pareto front solutions.

S. No. Alloy Composition YS (MPa) UTS (MPa) & (%)
1. Al 7262C00.7785Cr0.8063F€0.7027N11M0g 0934 1209.976 3629.1116 19.9018
2. Alg 825Cr1Nig g225Z0 4528 1229.609 3254.284 29.3906
3 AICrogsa3Feos7sNio.g264Z 10,0058 1130.77 3158.11 25.85
4. Al 84575C00 84675Cr1F€0 9544Ni0.84675Z0.00677 1572 3506.71 29.7
5 Al;Cr1Cug 00937Ni0.9409 Tio.1028V0.3879 1150.3729 2889.0830 27.8307
6 Al;Cross6F€0.556Nio 5215 Tio 2384 1226.918 2126.552 23.589
7. Al g247F€0.9603Ni1Z10,0074 1017.25 3507.13 28.87

% Mo:NbTi.V.Zr, [16] 1748 (1786) | 3800 [3828] 23 [26]
9. Al 9756Cr1Fe0 8235Ni1Zr0 00747 1110.755 3821.219 29.175
10. Al 9328C01Crro 9827F€0 8760200062 1043.51 3487.12 29.0895
11. Al 9256Cro.752C U0 0987F€0.4703Ni1MNg 0567 T i0.1488ND0.1302Z 10,0071 MO0 0567 1087.4859 2693.45 17.719
12. Alg.0039C01Cro 0353F€0.9624Z10.00603 1655.31 3378.25 21.688
13. * Mo:Nb;Ti:V0.25Zr; [17] 1740 [1776] | 3876 [3893] 27 [30]
14. Al;CriFeq 7356Niy 1146.430 3400.346 26.564
15. Al;C00557Cr0.18028Ni0.767MNg.1734V0.1802 Co.01460 1290.797 2580.7718 22.9337

4. Conclusion

This study successfully employed advanced machine learning techniques, including the CatBoost Regressor
(CBR) and Cuckoo Search Optimization (CSO), to predict and optimize the mechanical properties of multi-
principal element alloys (MPEAs). Among the 700 alloy compositions analyzed, AICoCrFeNiZrogos was
identified as the optimal composition within the database, offering the best combination of yield strength, ultimate
tensile strength, and elongation. Subsequently, we employed CSO, in conjunction with the Non-Dominated
Sorting Genetic Algorithm 11 (NSGA-II) to navigate the vast compositional space defined across 13 dimensions
to find Pareto-optimal solutions. This approach led to the discovery of various novel compositions, including
Alo .84675C00.84675Cr1F€0.9544Ni0.84675Zr0.00677, Which C|OS€|y matched the mechanical properties of the benchmark
alloy (AICoCrFeNiZrgs). Moreover, the compositions MoNbTiVZr and MoNbTiV0.25Zr were found to surpass
the benchmark in key mechanical properties, with predicted values in strong agreement with those reported in the
literature. This research underscores the potential of integrating machine learning models with metaheuristic
optimization techniques to navigate the vast compositional space of MPEAs, providing a reliable method for
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discovering alloys with superior mechanical properties. These findings not only demonstrate the effectiveness of
our approach but also lay the groundwork for future experimental validation.
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