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Abstract:- This study presents the development and application of a Convolutional Neural Network (CNN) 

model for the detection and classification of moisture-related issues in buildings, specifically focusing on 

leakage, seepage, and dampness. The study highlights the challenges faced in data acquisition, including the 

similarities in visual characteristics of different moisture issues and the limitations posed by varying lighting 

conditions and image quality. A high-resolution mobile camera was employed to capture images, which were 

then processed using a CNN model. The results demonstrate the model’s accuracy and reliability, with an 

overall classification accuracy of 94%.  
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1. Introduction 

Moisture-related issues in buildings have significant implications, as they account for 75-80% of building 

envelope defects, according to WHO guidelines on indoor air quality [55]. Almas et al. also found that moisture 

is responsible for 76% of building defects [28], with repair costs ranging from 2.4% to 3.15% of total construction 

expenses, as noted by Alomari [29]. The economic impact is evident in the U.S., where dampness and mold 

contribute to 21% of asthma cases, costing $3.5 billion annually [55]. 

Building susceptibility to moisture problems like seepage and dampness is influenced by various factors, including 

climate and construction practices, as stated by the National Institute of Building Sciences (NIBS) [56]. The 

ASHRAE Handbook identifies contributors such as inadequate drainage, specific construction materials, high 

humidity, and poor ventilation [57]. The National Building Code of Canada (NBC) emphasizes that water-related 

issues threaten structural integrity, occupant health, and property value, necessitating timely detection [58]. 

Traditional detection methods, while effective, often rely on visual inspections and manual monitoring [58]. 

However, modern sensor instruments like moisture meters, infrared thermography cameras, and water leak sensors 

provide non-invasive, accurate moisture detection [59, 30, 38, 31]. AI and ML advancements further enhance 

detection efficiency and accuracy, offering a proactive approach to identifying and addressing moisture problems 

in buildings, as highlighted by Baduge and Dombale [39, 40]. 

1.1 Background and Importance of Moisture Detection 

Moisture problems such as leakage, seepage, and dampness are significant concerns in buildings. These issues 

can lead to structural damage, increased maintenance costs, and potential health hazards such as mold growth. 

Traditionally, the detection of these issues has relied on manual inspections, which are labor-intensive, time-

consuming, and prone to human error. 
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1.1.1 Leakage 

Leakage occurs when water enters a building through external imperfections such as cracks in walls, roofs, or 

foundations. This can lead to structural damage, mold growth, and material deterioration. Causes include both 

structural issues, like roof leaks and cracks, and maintenance problems, such as plumbing leaks and poor sealing 

around windows and doors. To prevent moisture-related issues, regular roof maintenance, sealing cracks, and 

proper sealing of openings are essential. Mitigation involves repairing damaged roofing, addressing structural 

cracks, and fixing plumbing issues to protect the building from future water intrusion. 

 

Figure 1. 1 - Leakage Images 

1.1.2 Seepage 

Seepage is the slow infiltration of water through porous materials like soil, concrete, or masonry, often going 

unnoticed until it causes significant damage. It can weaken structural integrity, lead to mold growth, and result in 

dampness that damages walls and floors. Causes include elevated groundwater levels, inadequate waterproofing, 

structural defects, and poor drainage systems. Seepage can lead to issues like efflorescence, damp patches, and 

material deterioration, especially during freeze-thaw cycles. Prevention requires effective waterproofing, proper 

drainage, and high-quality construction materials. Mitigation involves sealing seepage paths, improving drainage, 

reinforcing waterproofing, and monitoring groundwater levels to avoid further damage. 

 

Figure 1. 2 - Seepage Images 
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1.1.3 Dampness 

 

Figure 1. 3 - Dampness Images 

Dampness occurs due to excessive moisture or high humidity within a building, often caused by leaks, poor 

ventilation, or inadequate insulation. It can manifest as visible moisture on walls, floors, or ceilings, often 

accompanied by musty odors and mold growth. Key factors include leaks, seepage, condensation, and moisture 

from indoor activities. Dampness can lead to health risks, such as respiratory issues, and cause structural damage, 

including decay, rot, and instability, especially in wooden structures. Prevention involves improving ventilation, 

using proper insulation, and controlling moisture sources. Mitigation includes enhancing airflow, upgrading 

insulation, installing moisture barriers, and repairing indoor moisture sources to protect both the building and its 

occupants. 

2. Methodology  

 

Figure 2. 1 - Methodology flow chart 
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2.1 Problem identification 

The process of addressing moisture issues in buildings starts with collecting reports and observations from 

occupants to identify visible signs of leakage, seepage, and dampness. A preliminary site inspection follows to 

detect common indicators such as water stains and peeling paint. Historical data on construction, renovations, and 

weather conditions is reviewed to understand past water ingress issues and environmental influences. The 

investigation then focuses on identifying sources of moisture, evaluating construction materials, and categorizing 

potential problems. A comprehensive report is prepared, outlining findings, causes, and preliminary 

recommendations. This systematic approach ensures a thorough understanding of moisture problems and supports 

the development of effective long-term solutions. 

2.2 Data Collection 

To train a model for detecting water-related issues in buildings, high-resolution images were collected from 

various surfaces, including walls, ceilings, and floors. The dataset includes 20 images of leakage, 126 of seepage, 

and 298 of dampness, all captured under consistent lighting and angles to ensure uniform quality. Images were 

carefully annotated with labels and bounding boxes to indicate the type and severity of damage. This thorough 

and organized data collection provides a strong foundation for training an accurate and effective model for water 

damage detection. 

2.2.1 Leakage sample images  

 

Figure 2. 2 - Leakage sample images 

2.2.2 Seepage sample images  

 

Figure 2. 3 - Seepage sample images 
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2.2.3 Dampness sample images  

 

Figure 2. 4 - Dampness sample images 

2.3 Data Cleaning 

Data cleaning involves reviewing and refining the collected images by removing redundant or irrelevant data to 

maintain a focused dataset. Redundant images are eliminated to avoid repetition, and irrelevant images are filtered 

out to ensure the model only learns from informative data. Quality enhancement techniques such as adjusting 

brightness, contrast, and noise reduction are applied to improve image clarity. 

Following data cleaning, annotation is performed, categorizing images by the type (leakage, seepage, dampness). 

Bounding boxes or segmentation masks are used to precisely highlight damaged areas, facilitating accurate model 

training for effective water damage detection. 

2.4 Model selection 

For this study using a Convolutional Neural Network (CNN) to improve the detection and analysis of dampness, 

leakage, and seepage in buildings. This approach employs advanced deep learning techniques to automate and 

enhance the accuracy of monitoring building conditions. Unlike traditional inspection methods that depend on 

manual analysis and can be both slow and error-prone, the CNN model is trained on a diverse set of images that 

depict various moisture-related issues. By learning to recognize and differentiate between different types of 

damage through complex pattern analysis, the CNN can effectively process new images from inspections or 

surveillance systems. This allows for real-time detection and classification of moisture problems, leading to more 

efficient and accurate monitoring, timely interventions, and better maintenance strategies. 

2.4.1 CNN Model Architecture 

 

Figure 2. 5 - CNN key components 
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CNNs are feedforward networks where information flows from input to output, inspired by the visual cortex of 

the brain. For building applications, CNNs are commonly used for tasks like identifying maintenance issues 

through image classification. The architecture includes the following key components: 

1. Input Layer: Receives raw image data, organizing it for further processing. Images are typically 

preprocessed to uniform dimensions and normalized before entering the network. 

2. Convolutional Layers: Extract features by applying filters to the input images. These layers detect patterns 

like leaks or structural flaws, creating activation maps that highlight important features. 

3. Pooling Layers: Reduce the spatial resolution of feature maps, retaining essential information while lowering 

data size and computational demands. Max pooling is commonly used to emphasize the most significant 

features. 

4. Fully Connected Layers: Perform high-level inference by combining features extracted in previous layers, 

leading to the final prediction. They are essential for tasks like classifying water damage or structural defects. 

5. Output Layer: Converts the network's processing into final predictions or classifications. For classification 

tasks, softmax is used to output probabilities for each class, providing actionable insights for building 

analysis. 

This structured approach ensures that CNNs efficiently detect and classify issues in, supporting timely 

maintenance and repairs. 

2.5 Data Processing 

Data processing begins by dividing the dataset into training, validation, and test sets to ensure balanced and 

accurate model training. The training set, comprising 80-90% of the original data, is used to teach the model to 

recognize water-related issues. The validation set, accounting for 10-20% of the augmented training data, helps 

fine-tune the model's parameters, ensuring it generalizes well to unseen data. The test set, also 10-20% of the 

original data, is reserved for the final evaluation, providing an unbiased measure of the model's performance. 

 

Figure 2. 6 – Data structure before data augmentation 

To increase the model's robustness, data augmentation techniques such as rotation and brightness adjustments are 

applied, expanding each category (leakage, seepage, dampness) to 500 samples. Proper documentation and 

organization of this process are critical for replicating the work and validating results. This thorough preparation 

enhances the model's accuracy and reliability in detecting water-related issues in building images. 
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Figure 2. 7 – Data structure after data augmentation 

2.6 Model Design and Training 

A Convolutional Neural Network (CNN) was chosen for its ability to analyze visual data and detect issues like 

water leakage, seepage, and dampness in building images. The model was trained on an augmented dataset, which 

included a variety of examples to improve generalization. Normalization was applied to ensure consistency in 

inputs, stabilizing the training process. 

Training involved adjusting the model's weights using a loss function and an optimizer, with careful control of 

the learning rate. The model's performance was monitored using a validation set to prevent overfitting, and early 

stopping was implemented to end training when improvement ceased. The final model's accuracy and precision 

were assessed, confirming its effectiveness in detecting water-related issues in building images. 
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Figure 2. 8 – Visual data of detected issues 

2.7 Validation and Evaluation 

After training, the model was validated to fine-tune hyperparameters and ensure it generalizes well. Metrics such 

as accuracy, precision, recall, and F1-score were monitored to detect any signs of overfitting or underfitting. 

Adjustments were made as needed to enhance performance. 

The final evaluation was conducted on a reserved test set to assess the model's ability to generalize to new data. 

Performance metrics confirmed the model's accuracy and reliability in detecting water-related issues in building 

images, indicating its readiness for practical application. 

2.8 Deployment and Integration 

The successful deployment of a trained CNN model for managing moisture issues in buildings requires a well-

structured approach. This begins with selecting a suitable platform, whether web-based or desktop, that can 

accommodate various user needs and deployment scenarios. Integrating the CNN model into the user interface is 

essential for effective user interaction. The interface should allow easy image uploads and provide real-time 

feedback, making the model's results accessible and understandable to users with varying levels of technical 

expertise. This integration enhances the user experience by streamlining the process of detecting and addressing 

moisture issues in buildings. 

3. Results and Discussion  

CNNs, inspired by human visual perception, are powerful tools for image recognition tasks. Their ability to learn 

and extract features from raw pixel data makes them effective for detecting moisture-related issues such as 

dampness, leakage, and seepage in buildings. 

3.1 Classification Report of CNN:  

 

Figure 3. 1 - Classification Report of CNN 
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The CNN model for detecting dampness, leakage, and seepage in buildings was evaluated using precision, recall, 

F1-score, and support metrics. The model showed high precision (0.92-0.95) and recall (0.91-0.98) across all 

categories, with F1-scores indicating a strong balance between precision and recall (0.91-0.97). It achieved an 

overall accuracy of 94%, with consistent performance across all classes, as reflected by macro and weighted 

averages of 0.94 for precision, recall, and F1-score. The uniform support values confirm the robustness of the 

model's performance in detecting moisture issues in buildings. 

3.2 Confusion Matrix of CNN: 

The confusion matrix highlights the model's classification accuracy, correctly identifying 91 cases of dampness, 

98 cases of leakage, and 92 cases of seepage. However, some misclassifications occurred: 5 instances of dampness 

were misclassified as leakage, and 4 as seepage; 2 instances of leakage were misclassified as seepage; and 8 

instances of seepage were misclassified as dampness. Despite these errors, the model demonstrates strong overall 

accuracy, with opportunities for further refinement. 

 

Figure 3. 2 - Confusion Matrix of CNN 

3.3 Accuracy Plot Graph of CNN: 

 

Figure 3. 3 - Accuracy Plot Graph of CNN 
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The accuracy plot shows rapid improvement in training accuracy, reaching 97.09% after 50 epochs, while 

validation accuracy plateaus at 93.67%, indicating potential overfitting. To mitigate this, techniques like early 

stopping and learning rate adjustments are suggested to enhance generalization and improve validation accuracy. 

3.4 Loss Plot Graph of CNN:  

The loss plot illustrates the model's learning process, with both training and validation losses decreasing over 

time. The alignment of training and validation losses suggests that the model generalizes well without significant 

overfitting. Further improvements could be achieved by fine-tuning hyperparameters, though the model already 

shows reliable performance on both training and validation datasets. 

 

Figure 3. 4 - Loss Plot Graph of CNN 

3.5 Web Interface 

3.5.1. Login Form: 

 

Figure 3. 5 - Login form 
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Figure 3.5 presents the login page of a Flask web application designed for detecting leakage, seepage, and 

dampness in buildings using AI and ML. The form allows users to securely input their email and password to 

access the application. 

3.5.2. Image Upload Page: 

Figure 3.6 shows the image upload page, where users can select and upload an image from their device for 

analysis. The AI/ML model processes the image to detect potential moisture issues, providing users with detailed 

insights based on the visual data. 

 

Figure 3. 6 - Image Upload Page 

3.5.3. Dampness Detection: 

 

Figure 3. 7 - Dampness detection 

Figure 3.7 displays the results page where the uploaded image is analyzed for dampness. The AI model detects 

dampness with a 99.84% probability. The page includes the analyzed image, possible causes, corrective actions, 

and preventive measures, offering users practical advice. 
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3.5.4. Seepage Detection: 

Figure 3.8 shows the results page for seepage detection, with the AI model detecting seepage with a 97.80% 

probability. The page includes the analyzed image and offers insights, corrective actions, and preventive 

suggestions to manage the issue. 

 

Figure 3. 8 - Seepage detection 

3.5.5. Leakage Detection: 

 

Figure 3. 9 - Leakage detection 

Figure 3.9 presents the results page for leakage detection. The AI model identifies leakage with a 98.28% 

probability. The page provides the analyzed image, insights into leakage causes, suggested corrective actions, and 

preventive measures to help users address the issue effectively. 

4. Conclusions 

1. The study faced significant challenges in acquiring clear and accurate pictorial data for issues like leakage, 

seepage, and dampness. These challenges were mainly due to varying lighting conditions, the complexity of 

the affected areas, and the necessity for specialized equipment. To address this, a high-resolution mobile 

camera was utilized, ensuring effective documentation of problem areas. 
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2. The similarity in the visual signs of leakage, seepage, and dampness often led to confusion during data 

collection. This overlap in appearance posed difficulties in accurately distinguishing and documenting each 

type of issue, emphasizing the need for careful analysis. 

3. The analysis of the collected data indicated that poor construction practices, failures in waterproofing, and 

damaged plumbing are the primary causes of leakage, seepage, and dampness. Effective corrective measures 

include targeted repairs, proper sealing, and enhanced drainage systems, while preventive strategies involve 

regular maintenance, the use of high-quality materials, and adequate waterproofing techniques 

4. To predict moisture problems from pictorial data, a Convolutional Neural Network (CNN) algorithm was 

selected. This choice was driven by the algorithm's efficiency and its proven capability to process image-

based data effectively. 

5. In developing the front-end interface for the model, the focus was on user-friendliness, This was aimed to 

enhance usability of the model. 

6. The literature review revealed a gap in existing research, as no papers were found on predictive tools for 

moisture problems in buildings. This study seeks to address this gap by contributing new insights and aims 

to publish a journal paper on the subject. 
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