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Abstract:-  In this research, we will investigate closed-form self-similar shock wave solutions for the 

inviscid Burgers equation in planar, cylindrical, and spherical geometries. We will derive the self-

similar forms of the equations, examine the corresponding ordinary differential equations, and discuss 

the physical implications of these solutions in different geometric contexts. The approach employed is 

based on Lee's method for deriving self-similar solutions to the Euler equations in compressible fluid 

dynamics. This includes two types of self-similarity: one constrained by integral relations and the other 

by the need for solution regularity along limiting characteristics. The findings highlight the theoretical 

basis for Taylor-Sedov blast waves (first kind) and Guderley implosion problems (second kind). This 

thorough analysis aims to enhance our understanding of shock wave behavior and offer a unified 

framework for exploring-similar phenomena across various geometries. 
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1. Introduction 

. Self-similar shock wave dynamics is a key area in the study of nonlinear partial differential equations, 

especially in the context of fluid dynamics. Also the study of shock waves in various geometries 

provides crucial insights into the behavior of dynamic systems described by nonlinear partial 

differential equations. Among the most significant equations in this field is the inviscid Burgers' 

equation, a fundamental model for shock wave phenomena in one-dimensional compressible flow. One 

prominent equation in this domain is the inviscid Burgers' equation, which is given by: 

∂𝑐

∂𝑡
+ 𝑐

∂𝑐

∂𝑥
= 0 (1) 

where 𝑐 is a scalar representing the wave's amplitude. This equation serves as a onedimensional model 

for studying compressible flow and fluid dynamics. The inviscid Burgers' equation incorporates the 

convective non-linearity inherent in the Euler equations for inviscid flow. Specifically, the convection 

speed 𝑐 is equal to the transported variable within the partial derivatives of both time and space. This 

characteristic leads to wave steepening in compressive regions, ultimately resulting in shock formation. 

The Burgers equation is often utilized to model various dynamical systems where the Euler equations 

simplify. In gas dynamics, weak shocks are frequently represented by the inviscid Burgers equation [2, 

3]. Moreover, in the realm of reactive compressible flows, reactive forms of the inviscid Burgers 

equation are commonly employed [4-6]. Additionally, several ad hoc extensions of the inviscid Burgers 

equation have been proposed as simplified models to explore certain nonlinear dynamics in 

compressible reactive flows [7-10]. 
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In this study, we seek to derive similarity solutions for shock waves that satisfy the inviscid Burgers' 

equation. These solutions will draw analogies with well-established results such as the Taylor-Sedov 

solutions for point blast explosions in compressible flows [11, 12] and the Guderley solution for self-

similar shock implosions [13]. To achieve this, we will use the systematic approach developed by Lee 

to unify self-similar shock propagation problems in perfect gases [14]. Notably, Mi et al. have 

previously proposed explosion solutions for planar problems modeled by the inviscid Burgers equation 

using the method of characteristics [10]. 

2.  THE BURGERS-FICKETT EQUATION 

The continuity equation, fundamental in the study of fluid dynamics and other fields, is expressed as: 

∂𝜌

∂𝑡
+
∂𝑞

∂𝑥
= −𝑞

𝑗

𝑥
(2) 

where: 

• 𝜌 represents the density of the conserved quantity. 

• 𝑞 denotes the flux, which is the rate of transfer of the quantity per unit time per unit area. 

• 𝑗 is a parameter that takes the values 0,1 , or 2 for planar, cylindrical, and spherical geometries, 

respectively. 

The equation reflects the principle of conservation of mass (or another conserved quantity) and 

describes how changes in density and flux are related in different geometric contexts. 

Following Fickett [15,16], who explored the application of the continuity equation in the context of gas 

dynamics, we consider a simplified approach for modeling. In this approach, the flux 𝑞 is modeled as a 

function of 𝜌 alone. One of the simplest and most common forms of flux is the Burgers flux, given by: 

𝑞 =
𝜌2

2
 

Substituting this into the continuity equation, we obtain a Burgers-like equation: 

∂𝜌

∂𝑡
+ 𝜌

∂𝜌

∂𝑥
= −

𝜌2

2

𝑗

𝑥
(3) 

This equation is a non-linear partial differential equation that describes the dynamics of the conserved 

quantity under the influence of the specified flux function. 

The Burgers-like equation provides a foundation for understanding more complex models. Similarity 

solutions, which reduce the partial differential equation to an ordinary differential equation by assuming 

specific forms for the solution, can be derived for this model equation. These solutions illustrate how 

the methodology applies to various extensions of the model. 

In particular, the approach pioneered by Lighthill and Whitham [16,17] has been instrumental in 

extending these concepts to other types of kinematic waves. Their work encompasses a range of 
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applications, including traffic flow, pedestrian flow, and flood waves, demonstrating the versatility of 

the continuity equation in modeling diverse flow phenomena. 

By analyzing similarity solutions and exploring different flux functions, researchers can gain insights 

into the behavior of material flows in various contexts and develop more accurate models for practical 

applications. 

3.  BEHAVIOR OF BURGERS' SHOCKS USING SIMILARITY VARIABLES 

Our focus is on shock dynamics. We will analyze a scenario involving strong shocks where the density 

𝜌 is zero in front of the shock. Let 𝐹(𝑡) denote the shock's path and 𝐹̇(𝑡) its 

velocity. We introduce similarity variables. 

𝜉 =
𝑥

𝐹(𝑡)
(4)

𝜙 =
𝜌

𝐹̇(𝑡)
(5)

(
∂

∂𝑡
)
𝑥
= (

∂

∂𝜉
)
𝑡′
(
∂𝜉

∂𝑡
)
𝑥
+ (

∂

∂𝑡′
)
𝜉
(
∂𝑡′

∂𝑡
)
𝑥

(6)

= −𝜉
𝐹̇

𝐹
(
∂

∂𝜉
)
𝑡′
+ (

∂

∂𝑡′
)
𝜉

(7)

 

and 

(
∂

∂𝑥
)
𝑡
= (

∂

∂𝜉
)
𝑡′
(
∂𝜉

∂𝑥
)
𝑡
=
1

𝐹
(
∂

∂𝜉
)
𝑡′

(8) 

By applying these transformations and looking for solutions where 𝜙 = 𝜙(𝜉) only, 1 can be 

reformulated as an ordinary differential equation: 

𝜙̇ = −

𝑗
2
𝜙2

𝜓 + 𝜃𝜙

𝜙 − 𝜉
(9)

 

provided 

𝜃 ≡
𝐹̈(𝑡)𝐹(𝑡)

𝐹̇(𝑡)2
(10) 

It does not rely on 𝑡. Because it is fundamentally not a function of 𝜉, it must be a constant. Thus, our 

objective is to find 𝜃 and the distribution 𝜙(𝜉) as described by (9). 

Since we can re-write (10) as: 

𝜃 =
𝐹̈𝐹

𝐹̇2
=
𝐹̈/𝐹̇

𝐹̇/𝐹
=
ln⁡ Ḟ

ln⁡ F
=  constant (11) 

we obtain immediately that the shock speed depends on distance as a power law: 
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𝐹̇ = 𝐴𝐹𝜃 (12) 

Where 𝐴 is an integration constant, the shock decay coefficient 𝜃 varies depending on the specific 

problem. Below, we present the method for determining 𝜃 for two types of selfsimilar problems related 

to the Burgers equation: similarity solutions of the first kind and the second kind. Our approach is based 

on blast wave theory in gas dynamics [14]. 

4.  SHOCK MOTION FROM POINT SOURCE MATERIAL RELEASE: SIMILARITY 

SOLUTIONS OF THE FIRST KIND 

Our goal is to address a problem similar to the Taylor-Sedov blast wave scenario, where energy is added 

to a gas at a specific location, along a line, or across a plane. This creates a diminishing strong shock 

wave and a self-similar pattern in variables such as speed, density, and pressure. For the Burgers 

equation, a parallel situation involves abruptly introducing a fixed quantity of material 𝑚𝑗 into a 

medium initially with 𝜌 = 0. Here, 𝑚1 denotes the material per unit area in a planar setup, 𝑚2 refers to 

the material per unit length in a cylindrical setup, and 𝑚3 indicates the material in a spherical context. 

We seek to determine the shock decay law and the self-similar density distribution behind the shock 

𝜌(𝑥, 𝑡), which must satisfy (1) for each geometry. 

When material is added at a point, line, or plane, the total amount of material within the decaying shock 

must remain constant since 𝜌 = 0 ahead of the shock. This is expressed by: 

∫  
𝐹(𝑡)

0

𝜌𝑘𝑗𝑥
𝑗 d𝑥 = 𝑚𝑗 

where 𝑚𝑗 is a constant. The geometrical factor 𝑘𝑗 is 4𝜋, 2𝜋, and 1 for spherical, cylindrical, and planar 

waves, respectively. By applying similarity variables and (12), we derive: 

𝑚𝑗 = 𝐴𝑋(𝑡)𝜃+𝑗+1𝐼𝑗 

where: 

𝐼𝑗 = ∫  
1

0

𝜙𝑘𝑗𝜉
𝑗 d𝜓 

Since 𝑚𝑗 remains constant over time, for a self-similar solution, the exponent of 𝐹(𝑡) must be zero, 

which leads to: 

𝜃 = −(1 + 𝑗) 

As a result, the blast decay coefficient 𝜃 equals -1 for planar problems, -2 for cylindrical problems, and 

-3 for spherical problems. The relationship between mass deposition and the integral 𝐼𝑗 is expressed by: 

𝑚𝑗 = 𝐵𝐼𝑗 
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The mass integral helps determine the shock decay profile for the given kinematic wave. In the Taylor-

Sedov solution, the pertinent integral for the blast solution is the energy integral of the total energy 

captured by the shock, corresponding to energy deposition. 

For decaying shock waves starting from 𝐹(𝑡 = 0) = 0, integrating (12) yields: 

𝐹 = 𝐶𝑡𝑁 

where 𝐶 = (𝐴(1 − 𝜃))𝑁 and 𝑁 =
1

1−𝜃
. The growth rates for blast wave radii are 𝑡1/4 for spherical 

waves, 𝑡1/3 for cylindrical waves, and 𝑡1/2 for planar waves. 

The shock speed adheres to the shock jump condition: 

𝐹̇ =
[
1
2
𝜌2]

0

𝑠

[𝜌]0
𝑠 =

1

2
𝜌 

where [𝛼]0
𝑠 = 𝛼𝑠 − 𝛼0, and: 

𝜙(𝜉 = 1) = 2 

With this boundary condition and the known blast decay coefficient 𝜃, the self-similar profile 𝜙(𝜉) that 

satisfies (9) is: 

𝜙 = 2𝜉 

This profile applies to planar, cylindrical, and spherical geometries. 

Given 𝜙(𝜉), the constant 𝐼𝑗 is calculated as: 

𝐼𝑗 =
2𝑘𝑗

𝑗 + 2
 

with values of 1,4/3𝜋, and 2𝜋 for planar, cylindrical, and spherical waves respectively. Consequently, 

the constant 𝐴 in the self-similar solution is 𝑚1,
3𝑚2

4𝜋
, and 

𝑚3

2𝜋
 for planar, cylindrical, and spherical waves 

respectively. Thus, the self-similar shock motion described by (12) is: 

 planar: 𝐹̇⁡= 𝑚1𝐹
−1

 cylindrical: 𝐹̇⁡= (
3𝑚2

4𝜋
)𝐹−2

 spherical: 𝐹̇⁡= (
𝑚3

2𝜋
)𝐹−3

 

Figure 1 shows the solution for a spherical explosion with 𝑚 = 1. The blue line represents the shock 

trajectory, while the black solid lines depict contours of 𝜌 and the black dashed lines show contours of 

the similarity variable 𝜉. The red lines illustrate the characteristics. Notably, the interior solution, given 

by 𝜌 =
𝑥

2𝑡
, remains unchanged by the addition of initial mass; only the shock trajectory is modified. The 

characteristics' trajectory, described by simple power laws derived from d𝑥/d𝑡 = 𝜌, defines the 

influence region of the lead shock 
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FIG. 1. Space-time diagram for the spherical explosion problem with 𝑚 = 1; the blue line represents 

the shock trajectory, the black solid lines indicate the contours of 𝜌, the black dashed lines show the 

contours of the similarity variable 𝜉, and the red lines depict the characteristics. 

motion, with the characteristics eventually aligning with it. Similar trends are seen in the planar and 

cylindrical problems, with the planar problem's solution matching that provided by Mi et al. [10]. 

5.  SECOND-KIND SIMILARITY SOLUTIONS: SELF-SIMILAR SHOCK IMPLOSION 

The second issue we need to address involves a situation where the shock decay coefficient 𝜃 cannot 

be derived from an integral conservation law of mass, momentum, or energy. In blast wave theory [14], 

these scenarios are referred to as similarity solutions of the second kind. We will now tackle the problem 

of shock implosion in cylindrical and spherical cases, focusing specifically on the Guderley problem in 

shock dynamics [13]. 

Self-similarity still requires power-law solutions for shock dynamics, as described by (12), with the 

distribution behind the shock represented by (9). Analyzing (9) reveals that the profiles become singular 

when the denominator approaches zero, i.e., when 𝜉 = 𝜙. To ensure a regular solution that avoids 

singularity, the numerator of (9) must also be zero at this point. Denoting this internal point as ⁡∗, we 

have 𝜉∗ = 𝜙∗. Setting the numerator to zero 

immediately provides: 

𝜃 = −𝑗/2 (13) 

The profiles can now be derived by directly integrating the ODEs (9). With the boundary condition at 

the shock 𝜙(1) = 2, the wave structure solutions are: 
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𝜙 =
2

𝜉
 for 𝑗 = 2 (spherical) 

𝜙 =
2

√𝜉
 for 𝑗 = 1 (cylindrical) 

(15) 

The saddle points in the solutions are at 𝜉∗ = 21/2 for spherically imploding waves and 𝜉∗ = 23/2 for 

cylindrically imploding waves. 

Although the solution is complete, it is useful to further explain the regularization criterion used to 

obtain the solution and its connection to the underlying dynamics of Burgers' equation. Burgers' 

equation (1) is a hyperbolic equation with a single set of characteristic curves given by: 

d𝑥

 d𝑡
= 𝜌 (16) 

which can be rewritten as: 

d𝑥

 d𝑡
= 𝜙𝐹̇ (17) 

A line of 𝜉 = constant corresponds to: 

d𝜉(𝑥, 𝑡) = (
∂𝜉

∂𝑥
)
𝑡

 d𝑥 + (
∂𝜉

∂𝑡
)
𝑥

 d𝑡 = 0 (18) 

which simplifies to: 

d𝑥

 d𝑡
= −

(
∂𝜉
∂𝑡
)
𝑥

(
∂𝜉
∂𝑥

)
𝑡

(19) 

By evaluating the partial derivatives from (5), this equation can be rewritten as: 

d𝑥

 d𝑡
= 𝜉𝐹̇ (20) 

Comparing (17) and (20) shows that the curve where 𝜉 = 𝜙 is where a characteristic surface intersects 

a constant 𝜓 line. This curve functions as a limiting characteristic, acting as an event horizon for the 

dynamics of the imploding shock wave. On this limiting characteristic, 𝜙 remains constant since the 

right-hand side of (9) is zero, indicating that the numerator 
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FIG. 2. Space-time diagram illustrating the spherical implosion problem with 𝐴 = −1. The blue line 

represents the shock trajectory, solid black lines depict contours of 𝜌, dashed black lines indicate 

contours of the similarity variable 𝜉, and red lines show the characteristics. 

must also be zero. Within the imploding shock wave structure, non-linearity leads to wave compression 

as per Burgers' equation, with additional effects from geometric terms involving 𝑗 in (9). This scenario 

mirrors the gas dynamics problem described by Guderley. 

The solutions for the implosion problem produce time-independent interior solutions, which are 

influenced by time-dependent shock motion and the time-dependent limiting characteristic. Figure 2 

illustrates the spherical implosion solution, where the density field is given by 𝜌 = 2𝐴/𝑥. The 

characteristic trajectories follow simple power laws, with d𝑥/d𝑡 = 𝜌. The limiting characteristic 

corresponds to the 𝜉 = 23/2 curve, which differentiates between characteristics affecting the implosion 

dynamics and those that do not, resembling the Guderley solution in gas dynamics. 

The cylindrical implosion problem exhibits qualitatively similar behavior, with the density field 

described by 𝜌 = 2𝐴/√𝑥. 

6.  CONCLUSIONS 

In this comprehensive study, we have successfully derived exact solutions for self-similar shock 

dynamics that adhere to the inviscid Burgers equation, expanding our understanding of shock wave 

behavior across different geometries [18-20]. For the first kind of self-similar shock dynamics, our 

solutions were derived using integral relations, offering a methodical 

approach to solving these nonlinear problems. For the second kind, the requirement of analyticity on 

the limiting characteristic provided a robust framework for obtaining solutions. 
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Our findings reveal that these results are not only consistent with but also directly comparable to those 

obtained from the inviscid Euler equations. This comparison offers a clear generalization of two 

classical problems in shock dynamics: the Taylor-Sedov blast wave problem, representing the first kind 

of self-similar shock dynamics, and the Guderley shock implosion problem, representing the second 

kind. By establishing these connections, we have demonstrated that our approach provides a unified 

and powerful method for analyzing self-similar shock waves. 

Furthermore, the techniques and methodologies developed in this study are versatile and can be readily 

applied to other one-way nonlinear wave equations that model kinematic waves. This adaptability 

underscores the broad applicability of our approach, making it a valuable tool for researchers 

investigating a wide range of nonlinear wave phenomena. 
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