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Abstract  

With the extensive growth of data mining, its applications have expanded significantly, encompassing various 

fields, including healthcare. Despite the abundance of medical data, healthcare providers sometimes rely on 

personal observations rather than data-driven insights. To address this gap, researchers and medical professionals 

employ data mining techniques, notably machine learning algorithms, for health data analysis. In this study, three 

machine learning algorithms, namely K-nearest Neighbor, Random Forest, and Naive Bayes, are employed. 

Additionally, an ensemble majority voting approach is used in conjunction with a discretization data preprocessing 

technique, providing flexibility in model selection. Multiple datasets related to Heart disease, Breast tissue, Breast 

cancer, and Cryotherapy are utilized, offering a diverse range of data for analysis. Among the models tested, the 

discretized majority voting approach outperforms other classifiers and established state-of-the-art models in the 

literature. It achieves accuracy rates of 91.9%, 79.7%, 77.1%, and 88.9% for the Heart disease, Breast tissue, 

Breast cancer, and Cryotherapy datasets, respectively. This proposed methodology presents an effective and 

suitable learning approach for intelligent healthcare classification systems, especially when precision and model 

robustness are paramount. 

Keywords: Machine Learning (K-Nearest Neighbor; Random Forest; Naive Bayes; Majority Voting); 

Discretization and Medical Data Mining 

Introduction  

Data mining has brought about a revolution in various sectors, spanning health [1], education [2], manufacturing 

[2] [3], fraud detection [4], surveillance [5], economics [6] [7], and criminal investigation [8]. In the realm of 

healthcare, data mining has emerged as a powerful tool for extracting valuable insights and knowledge from 

extensive clinical and medical databases, leading to the development of distinct terminologies such as healthcare 

data mining [9], medical data mining [10], and clinical data mining [11]. The abundance of medical records has 

generated a wealth of data that holds the potential to enhance patient care and inform evidence-based decision-

making [12]. 

The application of data mining in the healthcare domain plays a pivotal role in converting unstructured health data 

into actionable information. By employing data mining techniques and algorithms on comprehensive patient data, 

healthcare professionals and researchers can uncover hidden patterns, correlations, and trends that might elude 
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traditional analytical methods [13]. Data mining facilitates the identification of risk factors, disease patterns, 

treatment responses, and other critical insights, thereby significantly influencing clinical practices, policy 

formulation, and personalized treatment strategies. It encompasses diverse data sources, including electronic 

health records (EHRs), medical imaging, genetics, wearable technologies, and clinical trial data, providing a 

comprehensive understanding of a patient's health status and medical history [14]. 

The utilization of data mining in healthcare offers substantial advantages, such as the detection of disease patterns 

[15] and the development of predictive models for early diagnosis [16]. This empowers healthcare professionals 

to identify individuals at risk and implement preventive measures to mitigate the spread of diseases. Moreover, 

data mining plays a crucial role in the realm of personalized medicine, enabling physicians to tailor treatment 

regimens to each patient's unique requirements [12]. Furthermore, it has the potential to reduce the number of 

referrals to medical centers, thereby alleviating the burden on outpatient services and contributing to more 

efficient healthcare management. 

Despite the wealth of healthcare data and available data mining techniques, some medical professionals still 

heavily rely on their firsthand observations and clinical expertise when making patient assessments. Additionally, 

it's important to recognize that healthcare data mining encounters its fair share of challenges and limitations. 

Dealing with complex and extensive healthcare datasets involves daunting tasks such as data integration [17], 

standardization [18], and ensuring data quality, all of which present significant hurdles [19]. Effective data 

preparation methods become paramount to guarantee trustworthy outcomes. Moreover, the selection and 

customization of techniques to address specific clinical research inquiries while taking into account unique data 

characteristics like high dimensionality, class imbalance, and missing values become pivotal considerations. 

In light of these challenges, this research endeavors to establish a comprehensive data mining approach by 

employing data preprocessing techniques and machine learning algorithms on medical datasets. The machine 

learning classifiers employed in this study encompass random forest (RF), naïve Bayes (NB), and k-nearest 

neighbor (KNN), all applied to multiple medical datasets. Furthermore, the study adopts an ensemble approach 

that combines these three algorithms using a majority voting (MJV) scheme, allowing for the flexibility of 

incorporating or excluding a discretization (D) data preprocessing technique. It's noteworthy that only a limited 

number of publications have explored the amalgamation of discretization and voting Classifier approaches across 

multiple medical datasets. 

The subsequent sections of this paper are organized as follows: The following section delves into the relevant 

literature pertaining to heart disease prediction datasets. The "Methodology" section provides a concise overview 

of the models employed for result comparison and outlines the approach adopted for predicting heart disease. 

Detailed findings from the models are elucidated in the "Results and Discussion" section. Finally, the "Conclusion 

and Future Works" section offers a summary of the conclusions drawn and underscores the significance of 

employing voting Classifier and discretization techniques in the context of heart disease prediction. 

Literature Review  

Varun et al. [20] developed an Efficient Heart Disease Prediction System utilizing Logistic Regression. They 

sourced their dataset from Kaggle and achieved an accuracy of 87% with Logistic regression (LR). Other 

classifiers used in their study included Random Forest (RF) and Naïve Bayes (NB). 

Pahwa & Kalra [21] conducted heart disease analysis using a Multi-class Support Vector Machine technique with 

a dataset from the University of California Irvine (UCI). The classifiers employed were Multi-class SVM, Naïve 

Bayes, and J48, with Multi-class SVM achieving the highest accuracy at 90.09%. 

David & Belcy [22] applied data mining techniques to heart disease prediction using a UCI dataset. They selected 

Decision Tree, Naïve Bayes, and Random Forest as classifiers, with Random Forest achieving the highest 

precision at 81%. 
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Srivenkatesh [23] focused on cardiovascular disease (CVD) prediction using various Machine Learning (ML) 

classifiers. Support Vector Machines, K-nearest neighbor, Random Forest, Logistic Regression, and Naive Bayes 

were employed. Logistic regression emerged as the most effective algorithm, boasting an accuracy of 77.06%. 

Ware, Rakesh, & Choudhary [24] conducted research on heart attack prediction using fundamental machine 

learning techniques. They applied Random Forest, Support Vector Machine, K Nearest Neighbor, Logistic 

Regression, Decision tree, and Naive Bayes classifiers. Support Vector Machine (SVM) demonstrated the highest 

prediction accuracy at 89.34%. 

 

Vineeth [25] reported on heart disease prediction using Machine learning algorithms with a dataset from the UCI 

machine learning repository. The algorithms employed included Logistic Regression, K-Nearest Neighbors, 

Naïve Bayes, Decision tree, and Random Forest, with Random Forest exhibiting the highest efficiency, achieving 

an accuracy of 88%. 

Kamboj [26] conducted research on heart disease prediction using machine learning approaches. The prediction 

involved a range of machine learning classifiers such as Support Vector Machine, K-Nearest Neighbor (KNN), 

Random Forest, Naïve Bayes, Logistic Regression, and Decision Tree. Among these, K-Nearest Neighbor (KNN) 

achieved the highest prediction rate at 87%. The dataset for this research was sourced from the UCI machine 

learning repository. 

Amen & Mahmoud [27] focused on predicting multi-stage heart diseases using machine learning techniques. 

Their study incorporated machine learning classifiers like Gradient Tree Boosting, Logistic Regression, Support 

Vector Machine, Random Forest, and Extra Random Forest. Logistic Regression (LR) emerged as a strong 

performer with an accuracy of 82% in the experimental analysis. 

Anggraini [28] aimed to classify breast cancer utilizing data from routine patient examinations found in the Breast 

Cancer Coimbra (BCC) dataset, available in the UCI machine learning repository since 2018. The research 

employed backward elimination modeling, the Naïve Bayes algorithm, and split validation to optimize accuracy 

and validate the model. The study achieved an accuracy rate of 77.14%, demonstrating its effectiveness in breast 

cancer classification. 

Amin & Parvin [29] concentrated on enhancing the performance of the K-NN classification algorithm by using 

the Gain Ratio to select and reduce dataset attributes. They utilized the Breast Cancer Coimbra and Hepatitis C 

Virus datasets from the UCI Machine Learning Repository. The results indicated that applying the Gain Ratio 

improved K-NN's performance in both datasets. Specifically, the Breast Cancer Coimbra dataset achieved an 

accuracy of 72.85%, while the Hepatitis C Virus dataset demonstrated improved performance with an accuracy 

of 86.25%. 

Chumuang et al. [30] delved into the classification of electrical impedance in breast tissue to analyze breast cancer, 

employing Bootstrap Aggregating techniques. Their approach involved a comprehensive toolkit and a specialized 

understanding of pathological changes for in-situ breast cancer detection. The algorithm was rigorously assessed 

using a UCI dataset specifically focused on breast tissue impedance. Through 10-fold cross-validation involving 

106 objects, it achieved an accuracy rate of 74.47%. 

Arbawa et al. [31] aimed to classify breast tissue lesions using the Learning Vector Quantization (LVQ) method 

in conjunction with the Genetic Algorithm (GA) to optimize results. Despite a limited dataset comprising 106 

data points across 6 classes, the study revealed that the combination of LVQ with GA yielded a significantly 

improved accuracy rate of 73%, representing a roughly 50% increase compared to LVQ alone. 

Guimarães et al. [32] delved into predicting treatment susceptibility for Human Papillomavirus (HPV) using 

cryotherapy and immunotherapy. They introduced a hybrid model, the fuzzy neural network (FNN), capable of 

effectively analyzing complex medical research data. By applying F-score techniques to prune the FNN, the study 

achieved elevated accuracy rates—84.32% for immunotherapy and 88.64% for cryotherapy—outperforming other 
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models. This research underscores the potential of combining neural networks and fuzzy systems as valuable tools 

for predicting HPV treatment outcomes in cryotherapy and immunotherapy. 

Rahayu et al. [33] scrutinized the effectiveness of cryotherapy treatment and used a dataset as a benchmark for its 

evaluation. Their approach employed Neural Network machine learning with specific parameters: 500 training 

cycles, a learning rate of 0.03, and a momentum of 0.9. This resulted in highly accurate classification, boasting 

an accuracy rate of 87.78% and an AUC value of 0.955. 

 

In addition to these medical applications, intelligent methods have found extensive use in classification across 

diverse domains, including energy, finance, agriculture, and transportation. Table 1 provides a summary of recent 

papers that leverage artificial intelligence for medical classification. 

 

Table 1: Artificial intelligence-based medical classification papers recently published. 

Authors Year Classifier(s) Domain Outcome 

Wan et al. 

 

2018 

 

 

 

 

Deep MLP Parkinson's Disease 

diagnosis 

Analyzing patients' 

speech and 

movement patterns 

to predict levels of 

Parkinson's 

Disease. 

Alickovic & Subasi 2017 GA feature 

selection and 

rotation forest 

Breast cancer 

diagnosis 

Using feature 

extraction and 

individual or 

multiple classifiers 

to propose a 

diagnostic system 

that reduces 

computational 

complexity and 

speeds up 

classification tasks. 

Wang et al.  2018 SVM-based 

ensemble learning 

algorithm 

Breast cancer 

diagnosis 

A weighted receiver 

operating 

characteristic curve 

model is proposed 

Saqlain et al. 2017 Probabilistic 

principal 

component analysis 

(PPCA), SVM and 

RBF 

Heart diseases 

diagnosis 

Using PPCA to 

extract feature 

subsets and RBF 

kernel-based SVM 

to classify them for 

automatic 

diagnosis. 

Abdar et al. 2019 PSO, SVM and GA Coronary artery Development of a 

new genetic 
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training 

classification model 

based on feature 

selection 

Javeed et al. 2019 Random search 

algorithm (RSA), 

Random Forest 

model 

Heart disease 

diagnosis 

Development of a 

diagnostic system 

using RSA for 

feature selection 

and a random forest 

model. 

Chen et al. 2020 SVM and GA Human 

papillomavirus 

screening 

Analysing cervical 

secretions using 

multivariate 

statistical methods 

and Raman 

spectroscopy. 

Mahendran et al. 2020 Random Forest, 

SVM and MLP 

Major depressive 

diagnosis 

Developing a 

stacked 

generalization 

model based on 

machine learning 

classifiers. 

Zhang et al.  2022 MLP, Variational 

autoencoder 

Autism spectrum 

disorder diagnosis 

Proposing a filter 

feature-selection 

method and 

developing a deep 

learning model with 

simplified VAE 

Chawla et al 2023 Flexible analytic 

wavelet transforms, 

KNN 

Parkinson's disease 

detection 

Proposing a 

diagnostic 

methodology based 

on flexible analytic 

wavelet transform 

 

In summary, this paper makes two significant contributions: 

• Introduction of a novel learning method centered around majority voting for medical diagnosis. 

• Evaluation of the performance of this discrete learning-based technique on four widely recognized medical 

datasets, with a comparative analysis against existing state-of-the-art methods in the field. 

Methodology  

This research was conducted to evaluate the effectiveness of employing discretization and voting techniques, as 

detailed in Figure 1, which outlines the entire research process. The initial step involved the collection of data 

from credible sources, specifically UCI and Kaggle, to build a diverse dataset. Following this, rigorous 

preprocessing techniques were implemented, encompassing tasks such as data splitting and transformation. These 

preprocessing steps were crucial to ensure that the data was in an appropriate format for subsequent modeling. 
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Once the data was suitably prepared, machine learning algorithms were applied to this preprocessed dataset. To 

enhance the modeling process and leverage the strength of multiple algorithms, a majority voting approach was 

employed. This involved combining the outputs of these machine learning models to create an ensemble model, 

thereby increasing the robustness and reliability of the final predictive model. 

In the concluding phase of the study, the performance and accuracy of these models were rigorously assessed. 

This evaluation served as a critical benchmark to gauge the effectiveness of the discretization and voting 

techniques in enhancing the overall predictive capability of the models. 

Figure 1: Workflow of experimental design 

Dataset Used for the Study 

The study made use of four distinct datasets, each serving specific research purposes. A summarized dataset 

overview is presented in Table 2, which includes crucial information such as feature names, instance counts, and 

attribute details. The datasets employed in this study encompassed the following: 

• Statlog - Cleveland - Hungary - Long Beach – Switzerland (SCHULOS) heart disease dataset [34]: This dataset, 

derived from a combination of five datasets within the UCI Machine Learning repository, was a primary 

component of the research. 

• Breast tissue (BT) dataset [30]: This dataset, which was also utilized in the study, contains valuable information 

relevant to breast tissue analysis. 

• Breast cancer Coimbra (BCC) dataset [35]: This dataset provided essential data for breast cancer-related 

investigations, contributing to the comprehensive analysis. 

• Cryotherapy (CRY) dataset [36]: The Cryotherapy dataset was another integral component used in the research, 

specifically tailored for the study's objectives. 

Table 2 furnishes an overview of these datasets, offering insights into the features, their respective names, as well 

as the dimensions represented by rows (R) and columns (C). 

Table 1: depicting the total number of records in the dataset 

Dataset Features Column / Row 
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SCHULOS   

1. Age, 2. Sex, 3. Chest pain type, 4. Resting blood pressure, 6. 

Cholesterol Serum, 7. Fasting blood sugar, 8. Resting 

electrocardiographic results, 9. Maximum heart rate achieved, 10. 

Exercise-induced angina, 11. Old peak ST depression induced by 

exercise relative to rest, 12. The slope of the peak exercise ST segment, 

13. Target 

C =12 

R = 1190  

BT  

1. Impedivity (ohm) at zero frequency, 2. Phase angle at 500 KHz, 3. 

The high-frequency slope of phase angle, 4. Impedance distance 

between spectral ends, 5. The area under spectrum, area normalised by 

DA, 6. Maximum of the spectrum, the distance between I0 and real part 

of the maximum frequency point, 7. Length of the spectral curve 

C = 10 

R = 106 

BCC   

1. Age, 2. BMI, 3. Glucose, 4. Insulin, 5. Homeostatic Model 

Assessment (HOMA), 6. Leptin, 7. Adiponectin, 8. Resistin, 9. MCP.1, 

10. Classification 

C = 10  

R =116  

CRY 

1. Response to treatment, 2. Gender, 3. Age (year), 4. Time elapsed 

before treatment (month), 5. The number of warts, 6. Types of wart 

(Count), 7. The surface area of the wartsc (mm2 )  

C = 7 

R = 90 

 

Data Splitting 

In the realm of machine learning, it is a standard practice to divide a dataset into two distinct parts: the training 

set and the test set. The training set serves the purpose of instructing and fine-tuning the model, while the test set 

evaluates the model's performance on data it hasn't encountered during training. This partitioning is crucial for 

assessing how well the model can generalize its learnings and make predictions on new, unseen data. To ensure 

impartial results, the dataset is methodically shuffled and randomly separated, ensuring an even distribution of 

instances between the two sets. Typically, about 70% of the data is allocated to the training set, leaving the 

remaining 30% for testing. 

Discretization 

Discretization, within the domain of machine learning, is a technique employed to convert continuous variables 

into discrete ones [37]. It involves breaking down the range of a continuous variable into intervals or bins and 

then assigning values based on where they fall within these intervals. Various methods can be used for 

discretization, including equal-width or equal-frequency binning [38]. 

To illustrate, let's consider a continuous variable X with values 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛. The discretization process entails 

dividing the range of X into m intervals or bins, denoted as [𝑎1, 𝑏1], [𝑎2, 𝑏2], . . . [𝑎𝑚 , 𝑏𝑚].. Subsequently, the values 

of X are substituted with discrete values corresponding to the interval they belong to. This transformation 

simplifies the data representation and proves beneficial when employing machine learning algorithms that 

necessitate categorical or ordinal inputs [39]. However, it's important to bear in mind that discretization does result 

in the loss of information that was initially present in the continuous variables [40]. 

Machine Learning Models 

Within the realm of healthcare, numerous machine learning methods and strategies have demonstrated their 

potential to revolutionize the industry. This particular study harnessed the power of three supervised learning 

algorithms: K-Nearest Neighbors (KNN), Naive Bayes (NB), and Random Forest (RF). 

Naive Bayes 

Naive Bayes stands as a renowned machine learning algorithm grounded in Bayes' theorem, operating under the 

assumption of feature independence [41]. This theorem is employed to calculate the probability of each class label 
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given a feature vector. The "naive" aspect arises from the presumption that all features are independent, 

simplifying the mathematical calculations [42]. Mathematically, the probability of a class label y given a feature 

vector x is represented by equation (1): 

 

( ) ( ) ( )( ) ( )P y |  x   P y  *  P x |  y  /  P x=   (1) 

 

In this equation, P(y) denotes the prior probability of class y, P(x | y) signifies the likelihood of observing feature 

vector x given class y, and P(x) represents the probability of encountering feature vector x. To make a prediction, 

the algorithm computes the probability for each potential class label and selects the one with the highest 

probability, as outlined in equation (2): 

 

( )y _ pred  argmax _ y P y |  x=  𝑃(𝑥|𝑦)  (2) 

 

Here, y_pred represents the predicted class label. Estimations for the probabilities P(y) and P(x | y) can be derived 

from the training data using techniques such as maximum likelihood estimation or smoothing methods like 

Laplace smoothing to handle unobserved feature combinations. The independence assumption allows us to 

calculate P(x | y) as the product of individual probabilities for each feature given class y. 

Naive Bayes is recognized for its efficiency and success, making it suitable for tasks like text classification and 

spam filtering. Nonetheless, its accuracy may be compromised if the assumption of feature independence is 

violated or if significant correlations exist among the features. 

K-Nearest Neighbors (KNN) 

K-Nearest Neighbors (KNN) stands out as a prominent machine learning algorithm, well-suited for classification 

and regression tasks [43]. Its predictive power hinges on the similarity between a new instance and its k closest 

neighbors within the training data [44]. The underlying assumption is that instances sharing similar feature vectors 

are likely to belong to the same class label [45]. The choice of k plays a pivotal role, in striking a balance between 

model flexibility and stability [46]. Smaller k values increase flexibility but can be susceptible to noise, whereas 

larger k values offer more stable predictions at the cost of local accuracy [47]. 

Various distance measures come into play, with some of the most commonly used ones being: 

Euclidean : 
2

1

( )
k

i i

i

x y
=

−     (3) 

Manhattan : 
1

k

i i

i

x y
=

−     (4) 

Minkowski : ( )
1

1

qk
q

i i

i

x y
=

 
− 

 
    (5) 

Here, k denotes the number of dimensions, xi and yi represent data points, and q signifies the order of the norm. 

Unlike some other algorithms, KNN dispenses with explicit model training, relying solely on the training data 

during prediction. While this streamlines training, it can lead to slower predictions, particularly when dealing with 

large datasets. KNN, characterized by its versatility, excels in delineating complex or nonlinear decision 
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boundaries. However, it can be computationally demanding, especially with sizable datasets or high-dimensional 

features, as identifying the nearest neighbors can be time-intensive. 

Random Forest (RF) 

Random Forest emerges as an ensemble learning algorithm that amalgamates multiple decision trees to make 

predictions [48]. Its applicability spans both classification and regression tasks [49]. The mathematical 

representation of a Random Forest prediction for a new instance x is articulated as: 

( ) ( ) ( )( )y _ pred  majority _ vote T _1 x ,  T _ 2 x ,  ...,  T _ n x=    (6) 

Here, y_pred denotes the predicted class label, T_i(x) signifies the predicted class label from tree i, and 

majority_vote() assembles the class label with the most substantial votes. 

The Random Forest algorithm confronts overfitting by averaging predictions from multiple decision trees and 

introduces randomness via bootstrap sampling and feature subsampling [50] [51]. It boasts robustness, performs 

admirably with high-dimensional data, and offers insights into feature importance. However, if the dataset harbors 

irrelevant or noisy features, the algorithm might incorporate them into the model, potentially compromising its 

performance. 

 

Majority Voting 

The majority voting technique elevates prediction reliability and accuracy by harnessing the collective knowledge 

of multiple classifiers [52]. It empowers ensembles to make more dependable decisions by considering consensus 

among individual models. As elucidated by Raza [53], majority voting is extensively employed in classification 

problems and can serve as a meta-classifier for amalgamating ensemble technique results. 

Implementing majority voting involves deriving the final prediction based on individual model predictions. This 

can be achieved through a straightforward vote tallying mechanism: 

1. Initialise counters for each class: Count_A starts at 0 and Count_B starts at 0. 

2. For each model prediction Pi (where i ranges from 1 to N): 

• If Pi is 0, increment Count_A by 1. 

• If Pi is 1, increment Count_B by 1. 

3. Determine the majority class based on the counts: 

• If Count_A is greater than Count_B, the final prediction is Class A. 

• If Count_B is greater than Count_A, the final prediction is Class B. 

• If Count_A is equal to Count_B, the final prediction can be randomly selected or subjected to further processing 

using tie-breaking rules. 

In case of a tie, additional rules or random selection can be applied to finalize the prediction. 

In the context of majority voting, when individual models exhibit diverse biases, this approach proves invaluable 

in mitigating those biases [54]. Conversely, if ensemble models display strong correlations, their predictions may 

lack substantial variability [55]. In such scenarios, employing majority voting may not yield significant accuracy 

enhancements and could even lead to a decline. 

Evaluation Metric Adopted and Used  
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To facilitate performance comparisons, we have harnessed four key metrics: accuracy, recall, precision, and F-

score. These critical evaluation metrics are encapsulated by equations 9, 11, 12, 13, 14, and 15, delineating their 

precise mathematical representations. 

Accuracy (ACC) 
( )

( )

TP TN

TP FP TN FN

+
=

+ + +
    (7) 

Recall (REC)
( )

TP

TP FN
=

+
      (8) 

Precision (PRE)
( )

TP

TP FP
=

+
      (9) 

F-Score (FSC)
2*(Re *Pr )

(Re Pr )

call ecision

call ecision
=

+
     (10) 

Results and Discussion 

Once the prediction models were meticulously crafted, it became imperative to subject them to rigorous testing 

to ascertain their aptness for the intended predictive tasks. To comprehensively gauge the models' performance, a 

diverse array of evaluation metrics was judiciously employed. The ensuing results encapsulated in Table 2 and 

vividly depicted in Figure 2, offer a panoramic view of the models' effectiveness. 

 

The following insights were garnered by rigorously testing the model. Furthermore, we conducted an in-depth 

exploration of scenarios where preprocessing, notably discretization, was applied. Remarkably, this was done 

while keeping the foundational estimator consistent across the classifiers, encompassing KNN, RF, NB, and MJV 

of KNN-RF-NB. 

Table 2: Depict the comparison amongst the Models on various Dataset 

Dataset Metrics KNN RF NB MJV D-KNN D-RF D-NB D-MJV 

SCHULOS 

ACC  76.5 90.2 86.6 90.8 89.6 91.3 86.0 91.9 

PRE  75.5 92.7 88.3 92.7 90.7 93.2 87.8 93.4 

REC  81.2 88.2 85.5 89.2 89.2 89.8 84.9 90.9 

FSC 78.2 90.4 86.9 91.0 90.0 91.5 86.3 92.1 

BT 

ACC  62.5 62.5 62.5 71.9 53.1 56.3 50.0 79.7 

PRE  58.9 57.2 69.4 71.8 59.4 54.2 53.7 80.2 

REC  58.6 59.0 63.8 70.3 47.4 52.2 49.4 80.2 

FSC 58.6 56.4 63.3 68.7 51.8 52.0 47.6 79.8 

BCC 

ACC  48.6 60.0 48.6 57.1 68.6 71.4 48.6 77.1 

PRE  33.3 42.9 38.5 42.9 53.8 58.3 40.0 62.5 

REC  50.0 50.0 83.3 75.0 58.3 58.3 10.0 83.3 
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FSC 40.0 46.2 52.6 54.5 56.0 58.3 57.1 71.4 

CRY 

ACC  81.5 70.4 85.2 85.2 77.8 88.9 81.4 88.9 

PRE  73.3 61.1 75.0 75.0 66.7 80.0 73.3 80.0 

REC  91.7 91.7 100.0 100.0 100.0 100.0 91.6 100.0 

FSC 81.5 73.3 85.7 85.7 80.0 88.9 81.5 88.9 

 

 

Fig 2: Comparison evaluation performance for the models - subplot 

 

The data presented in Table 2 and Figure 2 offer a compelling insight into the performance of various models, 

particularly highlighting the superiority of the D-MJV model across multiple evaluation metrics. For instance, 

when applied to the SCHULOS dataset, the D-MJV model achieved remarkable scores with ACC at 91.9%, PRE 

at 93.4, REC at 90.9, and FSC at 92.1. Similarly, for the BT dataset, it exhibited impressive performance with 

ACC at 79.7, PRE at 80.2, REC at 80.2, and FSC at 79.8. The BCC dataset showed ACC at 77.1, PRE at 62.5, 

REC at 83.3, and FCS at 71.4, while the CRY dataset yielded ACC at 88.9, PRE at 80.0, REC at 100.0, and FCS 

at 88.9 when the D-MJV model was applied. 

These results underscore the effectiveness of the D-MJV model, which leverages both discretization, the process 

of converting numerical features into discrete variables, and the aggregation of predictions. This combination 

evidently enhances the overall accuracy and robustness of the model. 

However, it's noteworthy that discretization did not uniformly benefit all models. Specifically, NB experienced a 

negative impact from discretization. For example, when considering the BT dataset, D-NB exhibited a notably 

lower accuracy value of 50.0% compared to NB's accuracy of 62.5%. This represents a reduction of 12.5% in 

accuracy due to discretization. Furthermore, for the same BT dataset, all individual algorithms experienced 

decreased accuracy when subjected to the Discretization dataset. 

Additionally, KNN demonstrated the lowest accuracy (76.5%) among the SCHULOS heart dataset models, which 

can be attributed to its challenges when dealing with large input sizes. In the case of the BCC dataset, both KNN 

and D-NB exhibited the least accuracy, at 76.5%, largely because these algorithms are sensitive to specific 

features, and the presence of zeros in the BCC dataset had a detrimental effect on their performance. 
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Lastly, RF's performance was notably reduced for the CRY dataset, mainly due to its requirement for sufficient 

data to capture patterns and generalize effectively. 

In conclusion, this investigation underscores the significant impact of discretization and majority voting on model 

performance, with the D-MJV model emerging as the standout performer across various datasets and metrics. 

Comparison Analysis  

Table 3 provides a comprehensive performance comparison between our research and other existing studies, with 

a particular emphasis on the accuracy attained by our top-performing model, D-MJV. An in-depth analysis of the 

statistics presented in Table 3 unmistakably reveals that our proposed model surpasses the performance of the 

existing models, firmly establishing it as a superior predictor of accuracy. 

Table 3: Comparison of the proposed model with other existing hybrid research work 

Dataset Accuracy Reference 

SCHULOS 

88.4% Hybrid (HRFLM) Model [56]  

88.7% Hybrid model [57] 

91.9% Propose model D-MJV 

BT 

74.5% Bootstrap Aggregating Techniques [30] 

73.0% LVQ combine with GA [31] 

79.7% Propose model D-MJV 

BCC 

72.9% Gain Ratio on K-NN  [29] 

77.1% Backward elimination modeling - NB algorithm [28] 

77.1% Propose model D-MJV 

CRY 

88.6% Fuzzy neural network (FNN) [32] 

87.9% Neural Network [33] 

88.9% Propose model D-MJV 

 

The research analysis results presented in Table 3 underscore a noticeable contrast in prediction rates between 

existing works and our study. This discrepancy can primarily be attributed to a critical factor: the conversion of 

the dataset from continuous data to the discrete form. Our research distinguishes itself by demonstrating the 

effective application of data mining within the medical field, particularly in achieving exceptional classification 

across multiple datasets. 

Our approach leverages the power of dimensionality reduction through discretization. This process simplifies the 

modeling by diminishing the intricacies associated with continuous variables. Additionally, it enhances the 

performance of specific algorithms by reducing the influence of extraneous values. 

Moreover, our study reveals that the combination of predictions from multiple models yields higher accuracy 

compared to relying on individual models in isolation. This observation underscores the resilience of ensemble 

methods to noise and errors within individual models, ensuring more reliable predictions, even when a single 

model may falter. 

Conclusion 
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This study has a core objective: to enhance the prediction and early detection of various ailments through the 

application of data mining techniques. Given the vast volume of healthcare data generated, the potential to predict 

disease occurrences becomes a crucial avenue to explore. Leveraging machine learning algorithms for the analysis 

of medical records and the identification of patterns can significantly elevate the accuracy of these predictions. 

In our research, we worked with multiple datasets, each encompassing distinct aspects of health-related 

information. Specifically, these datasets comprise the Stat log - Cleveland -Hungary - Long Beach – Switzerland 

(SCHULOS) heart disease dataset, Breast tissue (BT), Breast cancer Coimbra (BCC), and Cryotherapy (CRY) 

dataset. Our investigation delves into the analysis of both discretized and non-discretized versions of these 

datasets. 

Discretization, a fundamental concept in machine learning, involves the transformation of continuous features 

into categorical variables, streamlining the data for analysis. Within this context, we applied three classification 

algorithms: K-Nearest Neighbors (KNN), Naive Bayes (NB), and Random Forest (RF). To enhance predictive 

accuracy further, we created a hybrid model that combined all three algorithms. Moreover, this hybrid model 

offered the flexibility to include or exclude discretization as a preprocessing technique. 

Our findings are notable, with the discretized hybrid model (D-MJV) emerging as a standout performer. It 

achieved impressive accuracy rates of 91.9%, 79.7%, 77.1%, and 88.9% across the aforementioned datasets. This 

study effectively underscores the pivotal role of discretization in amalgamating multiple models to attain precise 

predictions. As we look to the future, further research avenues could explore the integration of diverse medical 

datasets, encompass additional preprocessing techniques such as feature selection, and delve into advanced 

algorithm combinations, potentially incorporating deep learning. Such endeavors have the potential to 

significantly enhance the performance of healthcare prediction models. Ultimately, the insights gleaned from this 

study hold substantial promise for healthcare providers, aiding in treatment, accurate diagnosis, and early disease 

detection, ultimately contributing to improved patient survival rates. 
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