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Abstract:- In this work, we introduce the binomial sequence spaces 𝑏𝑝
𝑟,𝑠

 and 𝑏∞
𝑟,𝑠

 which include the 

spaces ℓ𝑝 and ℓ∞, in turn. Moreover, we show that the spaces 𝑏𝑝
𝑟,𝑠

 and 𝑏∞
𝑟,𝑠

 are 𝐵𝐾-spaces and prove 

that these spaces are linearly isomorphic to the spaces ℓ𝑝 and ℓ∞, respectively. Furthermore, we speak 

of some inclusion relations and give the Schauder basis of the space 𝑏𝑝
𝑟,𝑠

. Lastly, we determine the 

𝛼−, 𝛽, and 𝛾-duals of those spaces and give some geometric properties of the space 𝑏𝑝
𝑟,𝑠

. 

Keywords: matrix transformations; matrix domain; Schauder basis; 𝛼-, 𝛽 - and 𝛾-duals; matrix classes.  

 

1. The basic information and notations 

The set of all real (or complex) valued sequences is symbolized by 𝑤 which becomes a vector space 

under point-wise addition and scalar multiplication. Any vector subspace of 𝑤 is called a sequence 

space. The spaces of all bounded, null, convergent, and absolutely 𝑝-summable sequences are denoted 

by ℓ∞, 𝑐0, 𝑐, and ℓ𝑝, respectively, where 1 ≤ 𝑝 < ∞. 

A Banach sequence space is called a 𝐵𝐾-space provided each of the maps 𝑝𝑛: 𝑋 ⟶ ℂ defined by 

𝑝𝑛 = 𝑥𝑛 is continuous for all 𝑛 ∈ ℕ[1]. By considering the notion of 𝐵𝐾-space, one can say that the 

sequence spaces ℓ∞, 𝑐0, and 𝑐 are 𝐵𝐾-spaces according to their usual sup-norm defined by ∥ 𝑥 ∥∞=

sup𝑘∈ℕ  |𝑥𝑘| and ℓ𝑝 is a 𝐵𝐾-space according to its ℓ𝑝-norm defined by 

∥ 𝑥 ∥ℓ𝑝
= (∑  

∞

𝑘=0

  |𝑥𝑘|𝑝)

1
𝑝

 

where 1 ≤ 𝑝 < ∞. 

For an arbitrary infinite matrix 𝐴 = (𝑎𝑛𝑘) of real (or complex) entries and 𝑥 = (𝑥𝑘) ∈ 𝑤, the 𝐴-

transform of 𝑥 is defined by 

(𝐴𝑥)𝑛 = ∑  

∞

𝑘=0

 𝑎𝑛𝑘𝑥𝑘 (1.1) 

and is supposed to be convergent for all 𝑛 ∈ ℕ [2]. In terms of the ease of use, we prefer that the 

summation without limits runs from 0 to ∞. 

Given two sequence spaces 𝑋 and 𝑌, and an infinite matrix 𝐴 = (𝑎𝑛𝑘), the sequence space 𝑋𝐴 is 

defined by 
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𝑋𝐴 = {𝑥 = (𝑥𝑘) ∈ 𝑤: 𝐴𝑥 ∈ 𝑋} (1.2) 

which is called the domain of an infinite matrix 𝐴. Also, by (𝑋: 𝑌), we denote the class of all matrices 

such that 𝑋 ⊂ 𝑌𝐴. If 𝑎𝑛𝑘 = 0 for 𝑘 > 𝑛 and 𝑎𝑛𝑛 ≠ 0 for all 𝑛, 𝑘 ∈ ℕ, an infinite matrix 𝐴 = (𝑎𝑛𝑘) is 

called a triangle. Also, a triangle matrix 𝐴 uniquely has an inverse 𝐴−1 which is a triangle matrix. 

Let the summation matrix 𝑆 = (𝑠𝑛𝑘) be defined as follows: 

𝑠𝑛𝑘 = {
1, 0 ≤ 𝑘 ≤ 𝑛
0, 𝑘 > 𝑛

 

for all 𝑘, 𝑛 ∈ ℕ. Then the spaces of all bounded and convergent series are defined by means of the 

summation matrix such that 𝑏𝑠 = (ℓ∞)𝑆 and 𝑐𝑠 = 𝑐𝑆, respectively. 

The theory of matrix transformation was set in motion by the theory of summability which was 

developed by Cesàro, Norlund, Riesz, etc. By taking into account this theory, many authors have 

constructed new sequence spaces. For example, (ℓ∞)𝑁𝑞
 and 𝑐𝑁𝑞

 in [3], 𝑋𝑝 and 𝑋∞ in [4], 𝑎𝑝
𝑟  and 𝑎∞

𝑟  

in [5]. Furthermore, many authors have used especially the Euler matrix for defining new sequence 

spaces. These are 𝑒0
𝑟 and 𝑒𝑐

𝑟 in [6], 𝑒𝑝
𝑟 and 𝑒∞

𝑟  in [7] and [8], 𝑒0
𝑟(Δ), 𝑒𝑐

𝑟(Δ) and 𝑒∞
𝑟 (Δ) in [9], 

𝑒0
𝑟(Δ(𝑚)), 𝑒𝑐

𝑟(Δ(𝑚)) and 𝑒∞
𝑟 (Δ(𝑚)) in [10], 𝑒0

𝑟(𝐵(𝑚)), 𝑒𝑐
𝑟(𝐵(𝑚)), and 𝑒∞

𝑟 (𝐵(𝑚)) in [11], 

𝑒0
𝑟(Δ, 𝑝), 𝑒𝑐

𝑟(Δ, 𝑝), and 𝑒∞
𝑟 (Δ, 𝑝) in [12], 𝑒0

𝑟(𝑢, 𝑝) and 𝑒𝑐
𝑟(𝑢, 𝑝) in [13]. 

In this work, we introduce the binomial sequence spaces 𝑏𝑝
𝑟,𝑠

 and 𝑏∞
𝑟,𝑠

 which include the spaces ℓ𝑝 

and ℓ∞, in turn. Moreover, we show that the spaces 𝑏𝑝
𝑟,𝑠

 and 𝑏∞
𝑟,𝑠

 are 𝐵𝐾-spaces and prove that these 

spaces are linearly isomorphic to the spaces ℓ𝑝 and ℓ∞, respectively. Furthermore, we speak of some 

inclusion relations and give the Schauder basis of the space 𝑏𝑝
𝑟,𝑠

. Lastly, we determine 

the 𝛼−, 𝛽 −, and 𝛾-duals of those spaces and give some geometric properties of the space 𝑏𝑝
𝑟,𝑠

. 

2 The binomial sequence spaces which include the spaces ℓ𝑝 and ℓ∞ 

In this part, we define the binomial sequence spaces 𝑏𝑝
𝑟,𝑠

 and 𝑏∞
𝑟,𝑠

 which include the spaces ℓ𝑝 and ℓ∞, 

respectively. Furthermore, we show that those spaces are 𝐵𝐾-spaces and are linearly isomorphic to 

the spaces ℓ𝑝 and ℓ∞. Also, we show that the binomial sequence space 𝑏𝑝
𝑟,𝑠

 is not a Hilbert space 

except the case 𝑝 = 2, where 1 ≤ 𝑝 < ∞. 

Let 𝑟, 𝑠 be nonzero real numbers with 𝑟 + 𝑠 ≠ 0. Then the binomial matrix 𝐵𝑟,𝑠 = (𝑏𝑛𝑘
𝑟,𝑠) is defined as 

follows: 

𝑏𝑛𝑘
𝑟,𝑠 = {

1

(𝑠 + 𝑟)𝑛
(

𝑛

𝑘
) 𝑠𝑛−𝑘𝑟𝑘 , 0 ≤ 𝑘 ≤ 𝑛

0, 𝑘 > 𝑛

 

for all 𝑘, 𝑛 ∈ ℕ0. For 𝑠𝑟 > 0, one can easily check that the following properties hold for the binomial 

matrix 𝐵𝑟,𝑠 = (𝑏𝑛𝑘
𝑟,𝑠) : 

(i) ∥𝐵𝑟,𝑠∥ < ∞ 

(ii) lim𝑛→∞  𝑏𝑛𝑘
𝑟,𝑠 = 0( each 𝑘 ∈ ℕ), 

(iii) lim𝑛→∞  ∑𝑘  𝑏𝑛𝑘
𝑟,𝑠 = 1. 
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Thus, the binomial matrix is regular whenever 𝑠𝑟 > 0. Here and in the following, unless stated 

otherwise, we suppose that 𝑠𝑟 > 0. 

By taking into account the binomial matrix 𝐵𝑟,𝑠 = (𝑏𝑛𝑘
𝑟,𝑠), the binomial sequence spaces 𝑏𝑝

𝑟,𝑠
 and 𝑏∞

𝑟,𝑠
 

are defined by 

𝑏𝑝
𝑟,𝑠 = {𝑥 = (𝑥𝑘) ∈ 𝑤: ∑𝑛   |

1

(𝑠 + 𝑟)𝑛
∑𝑘=0

𝑛   (
𝑛

𝑘
) 𝑠𝑛−𝑘𝑟𝑘𝑥𝑘|

𝑝

< ∞} ,  1 ≤ 𝑝 < ∞ 

and 

𝑏∞
𝑟,𝑠 = {𝑥 = (𝑥𝑘) ∈ 𝑤: sup

𝑛∈ℕ
  |

1

(𝑠 + 𝑟)𝑛
∑  

𝑛

𝑘=0

  (
𝑛

𝑘
) 𝑠𝑛−𝑘𝑟𝑘𝑥𝑘| < ∞} 

By considering the notation of (1.2), the binomial sequence spaces 𝑏𝑝
𝑟,𝑠

 and 𝑏∞
𝑟,𝑠

 can be redefined by 

the matrix domain of 𝐵𝑟,𝑠 = (𝑏𝑛𝑘
𝑟,𝑠) as follows: 

𝑏𝑝
𝑟,𝑠 = (ℓ𝑝)

𝐵𝑟,𝑠   and  𝑏∞
𝑟,𝑠 = (ℓ∞)𝐵𝑟,𝑠 (2.1) 

Let us define a sequence 𝑦 = (𝑦𝑘) as follows: 

(𝐵𝑟,𝑠𝑥)𝑘 = 𝑦𝑘 =
1

(𝑠 + 𝑟)𝑘
∑  

𝑘

𝑗=0

  (
𝑘

𝑗
) 𝑠𝑘−𝑗𝑟𝑗𝑥𝑗 (2.2) 

for all 𝑘 ∈ ℕ. This sequence will be frequently used as the 𝐵𝑟,𝑠-transform of 𝑥. 

We would like to touch on a point, if we take 𝑠 + 𝑟 = 1, we obtain the Euler matrix 𝐸𝑟 = (𝑒𝑛𝑘
𝑟 ). So, 

the binomial matrix 𝐵𝑟,𝑠 = (𝑏𝑛𝑘
𝑟,𝑠) generalizes the Euler matrix. 

Now, we want to continue with the following theorem which is needed in the next. 

Theorem 2.1 The binomial sequence spaces 𝑏𝑝
𝑟,𝑠

 and 𝑏∞
𝑟,𝑠

 are 𝐵𝐾-spaces according to their norms 

defined by 

∥ 𝑥 ∥𝑏𝑝
𝑟,𝑠= ∥𝐵𝑟,𝑠𝑥∥ℓ𝑝

= (∑  

∞

𝑛=1

  |(𝐵𝑟,𝑠𝑥)𝑛|𝑝)

1
𝑝

 

and 

∥ 𝑥 ∥𝑏∞
𝑟,𝑠= ∥𝐵𝑟,𝑠𝑥∥∞ = sup

𝑛∈ℕ
 |(𝐵𝑟,𝑠𝑥)𝑛| 

where 1 ≤ 𝑝 < ∞. 

Proof We know that the sequence spaces ℓ𝑝 and ℓ∞ are 𝐵𝐾-spaces with their ℓ𝑝-norm and sup-norm, 

respectively, where 1 ≤ 𝑝 < ∞. Furthermore, (2.1) holds and the binomial matrix 𝐵𝑟,𝑠 = (𝑏𝑛𝑘
𝑟,𝑠) is a 

triangle matrix. By taking into account these three facts and Theorem 4.3.12 of Wilansky [2], we 

conclude that the binomial sequence spaces 𝑏𝑝
𝑟,𝑠

 and 𝑏∞
𝑟,𝑠

 are 𝐵𝐾-spaces, where 1 ≤ 𝑝 < ∞. This 

completes the proof of the theorem. 
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Theorem 2.2 The binomial sequence spaces 𝑏𝑝
𝑟,𝑠

 and 𝑏∞
𝑟,𝑠

 are linearly isomorphic to the sequence 

spaces ℓ𝑝 and ℓ∞, in turn, where 1 ≤ 𝑝 < ∞. 

Proof To refrain from the usage of similar statements, we prove the theorem for only the sequence 

space 𝑏𝑝
𝑟,𝑠

, where 1 ≤ 𝑝 < ∞. For the proof of the theorem, we need to show the existence of a linear 

bijection between the spaces 𝑏𝑝
𝑟,𝑠

 and ℓ𝑝. Let 𝐿 be a transformation such that 𝐿: 𝑏𝑝
𝑟,𝑠 ⟶ ℓ𝑝, 𝐿(𝑥) =

𝐵𝑟,𝑠𝑥. By the definition of the binomial sequence space 𝑏𝑝
𝑟,𝑠

, we conclude that, for all 𝑥 ∈

𝑏𝑝
𝑟,𝑠, 𝐿(𝑥) = 𝐵𝑟,𝑠𝑥 ∈ ℓ𝑝. Furthermore, it is obvious that 𝐿 is a linear transformation and 𝑥 = 0 

whenever 𝐿(𝑥) = 0. Therefore, 𝐿 is injective. 

For given 𝑦 = (𝑦𝑘) ∈ ℓ𝑝, let us define a sequence 𝑥 = (𝑥𝑘) such that 

𝑥𝑘 =
1

𝑟𝑘
∑  

𝑘

𝑗=0

(
𝑘

𝑗
) (−𝑠)𝑘−𝑗(𝑠 + 𝑟)𝑗𝑦𝑗 

for all 𝑘 ∈ ℕ. Then we get 

∥ 𝑥 ∥𝑏𝑝
𝑟,𝑠  = ∥𝐵𝑟,𝑠𝑥∥ℓ𝑝

 = (∑  

∞

𝑛=1

  |(𝐵𝑟,𝑠𝑥)𝑛|𝑝)

1
𝑝

 = (∑  

∞

𝑛=1

  |
1

(𝑠 + 𝑟)𝑛
∑  

𝑛

𝑘=0

  (
𝑛

𝑘
) 𝑠𝑛−𝑘𝑟𝑘𝑥𝑘|

𝑝

)

1
𝑝

 = (∑  

∞

𝑛=1

  |
1

(𝑠 + 𝑟)𝑛
∑  

𝑛

𝑘=0

  (
𝑛

𝑘
) 𝑠𝑛−𝑘 ∑  

𝑘

𝑗=0

 (
𝑘

𝑗
) (−𝑠)𝑘−𝑗(𝑠 + 𝑟)𝑗𝑦𝑗|

𝑝

)

1
𝑝

 = (∑  

∞

𝑛=1

  |𝑦𝑛|𝑝)

1
𝑝

 =∥ 𝑦 ∥ℓ𝑝

 =∥ 𝐿(𝑥) ∥ℓ𝑝
< ∞

 

Hence, we conclude that 𝐿 is norm preserving and 𝑥 ∈ 𝑏𝑝
𝑟,𝑠

, namely 𝐿 is surjective. As a consequence, 

𝐿 is a linear bijection. This means that the spaces 𝑏𝑝
𝑟,𝑠

 and ℓ𝑝 are linearly isomorphic, that is, 𝑏𝑝
𝑟,𝑠 ≅

ℓ𝑝, where 1 ≤ 𝑝 < ∞. This completes the proof of the theorem. 

Theorem 2.3 The binomial sequence space 𝑏𝑝
𝑟,𝑠

 is not a Hilbert space except the case 𝑝 = 2, where 

1 ≤ 𝑝 < ∞. 

Proof Let 𝑝 = 2. Remembering Theorem 2.1, one can say that 𝑏2
𝑟,𝑠

 is a 𝐵𝐾-space according to its ℓ2-

norm defined by 
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∥ 𝑥 ∥𝑏2
𝑟,𝑠= ∥𝐵𝑟,𝑠𝑥∥ℓ2

= (∑  

∞

𝑛=1

  |(𝐵𝑟,𝑠𝑥)𝑛|2)

1
2

 

Moreover, this norm can be generated by an inner product such that 

∥ 𝑥 ∥𝑏2
𝑟,𝑠= ⟨𝐵𝑟,𝑠𝑥, 𝐵𝑟,𝑠𝑥⟩

1
2 

Therefore, 𝑏2
𝑟,𝑠

 is a Hilbert space. 

Now, we assume that 1 ≤ 𝑝 < ∞ and 𝑝 ≠ 2. We define two sequences 𝑦 = (𝑦𝑘) and 𝑧 = (𝑧𝑘) as 

follows: 

𝑦𝑘 =
−𝑠 + 𝑘(𝑟 + 𝑠)

𝑟
(−

𝑠

𝑟
)

𝑘−1

  and  𝑧𝑘 = −
𝑠 + 𝑘(𝑟 + 𝑠)

𝑟
(−

𝑠

𝑟
)

𝑘−1

 

for all 𝑘 ∈ ℕ. Then we obtain 

∥ 𝑦 + 𝑧 ∥𝑏𝑝
𝑟,𝑠

2 +∥ 𝑦 − 𝑧 ∥𝑏𝑝
𝑟,𝑠

2 = 8 ≠ 2
2
𝑝

+2
= 2 (∥ 𝑦 ∥𝑏𝑝

𝑟,𝑠
2 +∥ 𝑧 ∥𝑏𝑝

𝑟,𝑠
2 ) 

Thus, the norm of the binomial sequence space 𝑏𝑝
𝑟,𝑠

 does not satisfy the parallelogram equality. As a 

consequence, the norm cannot be generated by an inner product, that is, the binomial sequence space 

𝑏𝑝
𝑟,𝑠

 is not a Hilbert space whenever 𝑝 ≠ 2. This completes the proof of the theorem. 

3 The inclusion relations and Schauder basis 

In this part, we speak of some inclusion relations and give the Schauder basis for the binomial 

sequence space 𝑏𝑝
𝑟,𝑠

, where 1 ≤ 𝑝 < ∞. 

Theorem 3.1 The inclusions 𝑒𝑝
𝑟 ⊂ 𝑏𝑝

𝑟,𝑠
 and 𝑒∞

𝑟 ⊂ 𝑏∞
𝑟,𝑠

 strictly hold, where 𝑒𝑝
𝑟 and 𝑒∞

𝑟  are the Euler 

sequence spaces which include the spaces ℓ𝑝 and ℓ∞, respectively. 

Proof If 𝑟 + 𝑠 = 1, one can easily see that 𝐸𝑟 = 𝐵𝑟,𝑠. Therefore, the inclusion 𝑒∞
𝑟 ⊂ 𝑏∞

𝑟,𝑠
 holds. 

Suppose that 0 < 𝑟 < 1 and 𝑠 = 5. Let us now consider a sequence 𝑥 = (𝑥𝑘) such that 𝑥𝑘 = (−
4

𝑟
)

𝑘
 

for all 𝑘 ∈ ℕ. Then it is clear that 𝑥 = (𝑥𝑘) = ((−
4

𝑟
)

𝑘
) ∉ ℓ∞, 𝐸𝑟𝑥 = ((−3 − 𝑟)𝑘) ∉ ℓ∞ and 

𝐵𝑟,𝑠𝑥 = ((
1

5+𝑟
)

𝑘
) ∈ ℓ∞. As a result of this, 𝑥 = (𝑥𝑘) ∈ 𝑏∞

𝑟,𝑠 ∖ 𝑒∞
𝑟 . This shows that the inclusion 

𝑒∞
𝑟 ⊂ 𝑏∞

𝑟,𝑠
 is strictly. We can prove the other part of the theorem by using a similar technique. This 

completes the proof of the theorem. 

Theorem 3.2 The inclusion ℓ𝑝 ⊂ 𝑏𝑝
𝑟,𝑠

 is strict, where 1 ≤ 𝑝 < ∞. 

Proof First we assume that 1 < 𝑝 < ∞. From the definition of the space ℓ𝑝, we write 

∑  

𝑘

|𝑥𝑘|𝑝 < ∞ 
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for all 𝑥 = (𝑥𝑘) ∈ ℓ𝑝. For given an arbitrary sequence 𝑥 = (𝑥𝑘) ∈ ℓ𝑝, by taking into account the 

equality (2.2) and the Hölder inequality, we obtain 

|(𝐵𝑟,𝑠𝑥)𝑘|𝑝 =|
1

(𝑠 + 𝑟)𝑘
∑  

𝑘

𝑗=0

  (
𝑘

𝑗
) 𝑠𝑘−𝑗𝑟𝑗𝑥𝑗|

𝑝

≤(
1

|𝑠 + 𝑟|𝑘
)

𝑝

[(∑  

𝑘

𝑗=0

  (
𝑘

𝑗
) |𝑠|𝑘−𝑗|𝑟|𝑗)

𝑝−1

× (∑  

𝑘

𝑗=0

  (
𝑘

𝑗
) |𝑠|𝑘−𝑗|𝑟|𝑗|𝑥𝑗|

𝑝
)]

 =
1

|𝑠 + 𝑟|𝑘
∑  

𝑘

𝑗=0

  (
𝑘

𝑗
) |𝑠|𝑘−𝑗|𝑟|𝑗|𝑥𝑗|

𝑝

 = ∑  

𝑘

𝑗=0

 (
𝑘

𝑗
) |

𝑠

𝑠 + 𝑟
|
𝑘

|
𝑟
𝑠

|
𝑗

|𝑥𝑗|
𝑝

 

where 1 ≤ 𝑝 < ∞. And 

 ∑  

𝑘

  |(𝐵𝑟,𝑠𝑥)𝑘|𝑝 ≤ ∑  

𝑘

 ∑  

𝑘

𝑗=0

  (
𝑘

𝑗
) |

𝑠

𝑠 + 𝑟
|

𝑘

|
𝑟

𝑠
|

𝑗

|𝑥𝑗|
𝑝

 = ∑  

𝑗

  |𝑥𝑗|
𝑝

∑  

∞

𝑘=𝑗

 (
𝑘

𝑗
) |

𝑠

𝑠 + 𝑟
|
𝑘

|
𝑟

𝑠
|

𝑗

 = |
𝑠 + 𝑟

𝑠
| ∑  

𝑗

  |𝑥𝑗|
𝑝

 

If we consider the comparison test, we conclude that 𝐵𝑟,𝑠𝑥 ∈ ℓ𝑝, namely 𝑥 ∈ 𝑏𝑝
𝑟,𝑠

. As a consequence 

ℓ𝑝 ⊂ 𝑏𝑝
𝑟,𝑠

, where 1 < 𝑝 < ∞. 

Now, we keep in view the sequence 𝑣 = (𝑣𝑘) defined by 𝑣𝑘 = (−1)𝑘 for all 𝑘 ∈ ℕ. Then it is clear 

that 𝑣 = (𝑣𝑘) ∉ ℓ𝑝 and 𝐵𝑟,𝑠𝑣 = ((
𝑠−𝑟

𝑠+𝑟
)

𝑘
) ∈ ℓ𝑝, namely 𝑣 = (𝑣𝑘) ∈ 𝑏𝑝

𝑟,𝑠
. Because of 𝑣 = (𝑣𝑘) ∈

𝑏𝑝
𝑟,𝑠 ∖ ℓ𝑝, the inclusion ℓ𝑝 ⊂ 𝑏𝑝

𝑟,𝑠
 is strict. In case of 𝑝 = 1, the theorem can be proved by using a 

similar method. This completes the proof of the theorem. 

Theorem 3.3 The spaces 𝑏𝑝
𝑟,𝑠

 and ℓ∞ overlap but these spaces do not include each other, where 1 ≤

𝑝 < ∞. 

Proof It is obvious that 𝑣 = ((−1)𝑘) ∈ ℓ∞ and 𝑣 = ((−1)𝑘) ∈ 𝑏𝑝
𝑟,𝑠

. So, the spaces 𝑏𝑝
𝑟,𝑠

 and ℓ∞ 

overlap, where 1 ≤ 𝑝 < ∞. Here, we consider the sequences 𝑒 = (1,1,1, … ) and 𝑢 = (𝑢𝑘) defined by 

𝑢𝑘 = (−
𝑠

𝑟
)

𝑘
 for all 𝑘 ∈ ℕ, where |

𝑠

𝑟
| > 1. Then we conclude that 𝑒 ∈ ℓ∞ but 𝐵𝑟,𝑠𝑒 = 𝑒 ∉ ℓ𝑝, that is, 

𝑒 ∉ 𝑏𝑝
𝑟,𝑠

 and 𝑢 ∉ ℓ∞ but 𝐵𝑟,𝑠𝑢 = (1,0,0, … ) ∈ ℓ𝑝, namely 𝑢 ∈ 𝑏𝑝
𝑟,𝑠

. As a consequence, 𝑒 ∈ ℓ∞ ∖ 𝑏𝑝
𝑟,𝑠

 

and 𝑢 ∈ 𝑏𝑝
𝑟,𝑠 ∖ ℓ∞. On account of this, 𝑏𝑝

𝑟,𝑠
 and ℓ∞ do 

not include each other, where 1 ≤ 𝑝 < ∞. This completes the proof of the theorem. 
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Theorem 3.4 The inclusions ℓ∞ ⊂ 𝑏∞
𝑟,𝑠

 and 𝑏𝑝
𝑟,𝑠 ⊂ 𝑏∞

𝑟,𝑠
 are strict, where 1 ≤ 𝑝 < ∞. 

Proof The inequality 

∥ 𝑥 ∥𝑏∞
𝑟,𝑠= sup

𝑘∈ℕ
  |

1

(𝑠 + 𝑟)𝑘
∑  

𝑘

𝑗=0

  (
𝑘

𝑗
) 𝑠𝑘−𝑗𝑟𝑗𝑥𝑗| ≤∥ 𝑥 ∥∞ 

holds for all 𝑥 ∈ ℓ∞. In this way, the inclusion ℓ∞ ⊂ 𝑏∞
𝑟,𝑠

 holds. Now, we consider the sequence 𝑣 =

(𝑣𝑘) defined by 𝑣𝑘 = (−
𝑠+𝑟

𝑟
)

𝑘
 for all 𝑘 ∈ ℕ. Then we conclude that 𝑣 = (𝑣𝑘) ∉ ℓ∞ but 𝐵𝑟,𝑠𝑣 =

((−
𝑟

𝑟+𝑠
)

𝑘
) ∈ ℓ∞, namely 𝑣 = (𝑣𝑘) ∈ 𝑏∞

𝑟,𝑠
. Therefore, the inclusion ℓ∞ ⊂ 𝑏∞

𝑟,𝑠
 strictly holds. 

For given 𝑥 = (𝑥𝑘) ∈ 𝑏𝑝
𝑟,𝑠

, where 1 ≤ 𝑝 < ∞, by taking into account Theorem 2.2 and the inclusion 

ℓ𝑝 ⊂ ℓ∞, we conclude that 𝐵𝑟,𝑠𝑥 ∈ ℓ∞, namely 𝑥 ∈ 𝑏∞
𝑟,𝑠

. Thus, the inclusion 𝑏𝑝
𝑟,𝑠 ⊂ 𝑏∞

𝑟,𝑠
 holds. Also, 

it is clear that 𝑒 ∈ 𝑏∞
𝑟,𝑠 ∖ 𝑏𝑝

𝑟,𝑠
. Hence, the inclusion 𝑏𝑝

𝑟,𝑠 ⊂ 𝑏∞
𝑟,𝑠

 is strict. This completes the proof of the 

theorem. 

Now, let us continue with the definition of the Schauder basis of a normed space. Let (𝑋, ∥⋅∥𝑋) be a 

normed sequence space and 𝑑 = (𝑑𝑘) be a sequence in 𝑋. If for every 𝑥 ∈ 𝑋, there exists a unique 

sequence of scalars 𝜆 = (𝜆𝑘) such that 

lim
𝑛→∞

 
∥
∥
∥
∥

𝑥 − ∑  

𝑛

𝑘=0

 𝜆𝑘𝑑𝑘
∥
∥
∥
∥

𝑋

= 0 

then 𝑑 = (𝑑𝑘) is called a Schauder basis for 𝑋[1]. 

Theorem 3.5 Let 𝜇𝑘 = {𝐵𝑟,𝑠𝑥}𝑘 be given for all 𝑘 ∈ ℕ. We define the sequence 𝑔(𝑘)(𝑟, 𝑠) =

{𝑔𝑛
(𝑘)

(𝑟, 𝑠)}
𝑛∈ℕ

 of the elements of the binomial sequence space 𝑏𝑝
𝑟,𝑠

 as follows: 

𝑔𝑛
(𝑘)

(𝑟, 𝑠) = {
0, 0 ≤ 𝑛 < 𝑘
1

𝑟𝑛
(

𝑛

𝑘
) (−𝑠)𝑛−𝑘(𝑠 + 𝑟)𝑘 , 𝑛 ≥ 𝑘

 

for all fixed 𝑘 ∈ ℕ. Then the sequence {𝑔(𝑘)(𝑟, 𝑠)}
𝑘∈ℕ

 is a Schauder basis for the binomial sequence 

space 𝑏𝑝
𝑟,𝑠

, and every 𝑥 ∈ 𝑏𝑝
𝑟,𝑠

 has a unique representation of the form 

𝑥 = ∑  

𝑘

𝜇𝑘𝑔(𝑘)(𝑟, 𝑠) 

where 1 ≤ 𝑝 < ∞. 

Proof Let 𝑥 = (𝑥𝑘) ∈ 𝑏𝑝
𝑟,𝑠

 be given, where 1 ≤ 𝑝 < ∞. For all non-negative integer 𝑚, we define 

𝑥[𝑚] = ∑  

𝑚

𝑘=0

𝜇𝑘𝑔(𝑘)(𝑟, 𝑠) 
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Then, if we apply the binomial matrix 𝐵𝑟,𝑠 = (𝑏𝑛𝑘
𝑟,𝑠) to 𝑥[𝑚], we write 

𝐵𝑟,𝑠𝑥[𝑚] = ∑  

𝑚

𝑘=0

𝜇𝑘𝐵𝑟,𝑠𝑔(𝑘)(𝑟, 𝑠) = ∑  

𝑚

𝑘=0

(𝐵𝑟,𝑠𝑥)𝑘𝑒(𝑘) 

and 

{𝐵𝑟,𝑠(𝑥 − 𝑥[𝑚])}
𝑛

= {
0, 0 ≤ 𝑛 ≤ 𝑚
(𝐵𝑟,𝑠𝑥)𝑛, 𝑛 > 𝑚

 

for all 𝑚, 𝑛 ∈ ℕ. 

For any given 𝜖 > 0, there exists a non-negative integer 𝑚0 such that 

∑  

∞

𝑛=𝑚0+1

|(𝐵𝑟,𝑠𝑥)𝑛|𝑝 ≤ (
𝜖

2
)

𝑝

 

for all 𝑚 ≥ 𝑚0. Thus, 

∥∥𝑥 − 𝑥[𝑚]∥∥𝑏𝑝
𝑟,𝑠  = ( ∑  

∞

𝑛=𝑚+1

  |(𝐵𝑟,𝑠𝑥)𝑛|𝑝)

1
𝑝

 ≤ ( ∑  

∞

𝑛=𝑚0+1

  |(𝐵𝑟,𝑠𝑥)𝑛|𝑝)

1
𝑝

 ≤
𝜖

2
< 𝜖

 

for all 𝑚 ≥ 𝑚0. This shows us that 

𝑥 = ∑  

𝑘

𝜇𝑘𝑔(𝑘)(𝑟, 𝑠) 

Lastly, we should show the uniqueness of this representation. For this purpose, assume that 

𝑥 = ∑  

𝑘

𝜆𝑘𝑔(𝑘)(𝑟, 𝑠) 

Since the linear transformation 𝐿 defined from 𝑏𝑝
𝑟,𝑠

 to ℓ𝑝 in the proof of Theorem 2.2 is continuous, 

we have 

(𝐵𝑟,𝑠𝑥)𝑛 = ∑  

𝑘

𝜆𝑘{𝐵𝑟,𝑠𝑔(𝑘)(𝑟, 𝑠)}
𝑛

= ∑  

𝑘

𝜆𝑘𝑒𝑛
(𝑘)

= 𝜆𝑛 

for every 𝑛 ∈ ℕ, which contradicts the fact that (𝐵𝑟,𝑠𝑥)𝑛 = 𝜇𝑛 for every 𝑛 ∈ ℕ. Therefore, every 𝑥 ∈

𝑏𝑝
𝑟,𝑠

 has a unique representation. This completes the proof of the theorem. 
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From Theorem 2.1, we know that 𝑏𝑝
𝑟,𝑠

 is a Banach space, where 1 ≤ 𝑝 < ∞. If we consider this fact 

and Theorem 3.5, we can give the next corollary. 

Corollary 3.6 The binomial sequence space 𝑏𝑝
𝑟,𝑠

 is separable, where 1 ≤ 𝑝 < ∞. 

4 The 𝛼−, 𝛽-, and 𝛾-duals 

In this part, we determine the 𝛼−, 𝛽 −, and 𝛾-duals of the binomial sequence spaces 𝑏𝑝
𝑟,𝑠

 and 𝑏∞
𝑟,𝑠

, 

where 1 ≤ 𝑝 < ∞. 

Now, we start with a definition. The multiplier space of the sequence spaces 𝑋 and 𝑌 is denoted by 

𝑀(𝑋, 𝑌) and defined by 

𝑀(𝑋, 𝑌) = {𝑦 = (𝑦𝑘) ∈ 𝑤: 𝑥𝑦 = (𝑥𝑘𝑦𝑘) ∈ 𝑌 for all 𝑥 = (𝑥𝑘) ∈ 𝑋} 

By taking into account the definition of a multiplier space, the 𝛼−, 𝛽 −, and 𝛾-duals of a sequence 

space 𝑋 are defined by 

𝑋𝛼 = 𝑀(𝑋, ℓ1),  𝑋𝛽 = 𝑀(𝑋, 𝑐𝑠)  and  𝑋𝛾 = 𝑀(𝑋, 𝑏𝑠) 

respectively. 

For use in the next lemma, we now give some properties: 

 sup
𝑛∈ℕ

 ∑  

𝑘

  |𝑎𝑛𝑘|𝑞 < ∞ (4.1)

 sup
𝑛,𝑘∈ℕ

 |𝑎𝑛𝑘| < ∞ (4.2)

 lim
𝑛→∞

 𝑎𝑛𝑘 = 𝑎𝑘   for each 𝑘 ∈ ℕ, (4.3)

 sup
𝐾∈ℱ

 ∑  

𝑘

  |∑  

𝑛∈𝐾

 𝑎𝑛𝑘|

𝑞

< ∞ (4.4)

 lim
𝑛→∞

 ∑  

𝑘

  |𝑎𝑛𝑘| = ∑  

𝑘

  | lim
𝑛→∞

 𝑎𝑛𝑘| (4.5)

 sup
𝑘∈ℕ

 ∑  

𝑛

  |𝑎𝑛𝑘| < ∞ (4.6)

 

where ℱ is the collection of all finite subsets of ℕ,
1

𝑝
+

1

𝑞
= 1 and 1 < 𝑝 ≤ ∞. 

Lemma 4.1 (see [14]) Let 𝐴 = (𝑎𝑛𝑘) be an infinite matrix, then the following hold: 

(i) 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ1: ℓ1) ⇔ (4.6) holds, 

(ii) 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ1: 𝑐) ⇔ (4.2) and (4.3) hold, 

(iii) 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ1: ℓ∞) ⇔ (4.2) holds, 

(iv) 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ𝑝: ℓ1) ⇔ (4.4) holds with 
1

𝑝
+

1

𝑞
= 1 and 1 < 𝑝 ≤ ∞, 

(v) 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ𝑝: 𝑐) ⇔ (4.1) and (4.3) hold with 
1

𝑝
+

1

𝑞
= 1 and 1 < 𝑝 < ∞, 

(vi) 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ𝑝: ℓ∞) ⇔ (4.1) holds with 
1

𝑝
+

1

𝑞
= 1 and 1 < 𝑝 < ∞, 
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(vii) 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ∞: 𝑐) ⇔ (4.3) and (4.5) hold, 

(viii) 𝐴 = (𝑎𝑛𝑘) ∈ (ℓ∞: ℓ∞) ⇔ (4.1) holds with 𝑞 = 1. 

Theorem 4.2 Let 𝑣1
𝑟,𝑠

 and 𝑣2
𝑟,𝑠

 be defined as follows: 

𝑣1
𝑟,𝑠 = {𝑎 = (𝑎𝑘) ∈ 𝑤: sup

𝐾∈ℱ
 ∑  

𝑘

  |∑  

𝑛∈𝐾

  (
𝑛

𝑘
) (−𝑠)𝑛−𝑘𝑟−𝑛(𝑟 + 𝑠)𝑘𝑎𝑛|

𝑞

< ∞} 

and 

𝑣2
𝑟,𝑠 = {𝑎 = (𝑎𝑘) ∈ 𝑤: sup

𝑘∈ℕ
 ∑  

𝑛

  |(
𝑛

𝑘
) (−𝑠)𝑛−𝑘𝑟−𝑛(𝑟 + 𝑠)𝑘𝑎𝑛| < ∞} 

Then {𝑏1
𝑟,𝑠}𝛼 = 𝑣2

𝑟,𝑠
 and {𝑏𝑝

𝑟,𝑠}
𝛼

= 𝑣1
𝑟,𝑠

, where 1 < 𝑝 ≤ ∞ 

Proof Let 𝑎 = (𝑎𝑛) ∈ 𝑤 be given. Remembering the sequence 𝑥 = (𝑥𝑛), which is defined in the 

proof of Theorem 2.2, we have 

𝑎𝑛𝑥𝑛 = ∑  

𝑛

𝑘=0

(
𝑛

𝑘
) (−𝑠)𝑛−𝑘𝑟−𝑛(𝑟 + 𝑠)𝑘𝑎𝑛𝑦𝑘 = (𝐻𝑟,𝑠𝑦)𝑛 

for all 𝑛 ∈ ℕ. Then, by considering the equality above, we deduce that 𝑎𝑥 = (𝑎𝑛𝑥𝑛) ∈ ℓ1 whenever 

𝑥 = (𝑥𝑘) ∈ 𝑏1
𝑟,𝑠

 or 𝑥 = (𝑥𝑘) ∈ 𝑏𝑝
𝑟,𝑠

 if and only if 𝐻𝑟,𝑠𝑦 ∈ ℓ1 whenever 𝑦 = 

(𝑦𝑘) ∈ ℓ1 or 𝑦 = (𝑦𝑘) ∈ ℓ𝑝, respectively, where 1 < 𝑝 ≤ ∞. This shows us that 𝑎 = (𝑎𝑛) ∈ {𝑏1
𝑟,𝑠}𝛼 

or 𝑎 = (𝑎𝑛) ∈ {𝑏𝑝
𝑟,𝑠}

𝛼
 if and only if 𝐻𝑟,𝑠 ∈ (ℓ1: ℓ1) or 𝐻𝑟,𝑠 ∈ (ℓ𝑝: ℓ1), respectively, where 1 < 𝑝 ≤

∞. If we combine these two facts and Lemma 4.1(i) and (iv), we obtain 

𝑎 = (𝑎𝑛) ∈ {𝑏1
𝑟,𝑠}𝛼 ⇔ sup

𝑘∈ℕ
 ∑  

𝑛

|(
𝑛

𝑘
) (−𝑠)𝑛−𝑘𝑟−𝑛(𝑟 + 𝑠)𝑘𝑎𝑛| < ∞ 

or 

𝑎 = (𝑎𝑛) ∈ {𝑏𝑝
𝑟,𝑠}

𝛼
⇔ sup

𝐾∈ℱ
 ∑  

𝑘

|∑  

𝑛∈𝐾

  (
𝑛

𝑘
) (−𝑠)𝑛−𝑘𝑟−𝑛(𝑟 + 𝑠)𝑘𝑎𝑛|

𝑞

< ∞ 

respectively, where 1 < 𝑝 ≤ ∞. Therefore, {𝑏1
𝑟,𝑠}𝛼 = 𝑣2

𝑟,𝑠
 and {𝑏𝑝

𝑟,𝑠}
𝛼

= 𝑣1
𝑟,𝑠

, where 1 < 𝑝 ≤ ∞. This 

completes the proof of the theorem. 

Theorem 4.3 Let 𝑣3
𝑟,𝑠, 𝑣4

𝑟,𝑠, 𝑣5
𝑟,𝑠, 𝑣6

𝑟,𝑠
, and 𝑣7

𝑟,𝑠
 be defined as follows: 
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𝑣3
𝑟,𝑠 ={𝑎 = (𝑎𝑘) ∈ 𝑤: ∑  

∞

𝑗=𝑘

 (
𝑗

𝑘
) (−𝑠)𝑗−𝑘𝑟−𝑗(𝑟 + 𝑠)𝑘𝑎𝑗 exists for each 𝑘 ∈ ℕ}

𝑣4
𝑟,𝑠 ={𝑎 = (𝑎𝑘) ∈ 𝑤: sup

𝑛,𝑘∈ℕ
  |∑  

𝑛

𝑗=𝑘

  (
𝑗

𝑘
) (−𝑠)𝑗−𝑘𝑟−𝑗(𝑟 + 𝑠)𝑘𝑎𝑗| < ∞}

𝑣5
𝑟,𝑠 ={𝑎 = (𝑎𝑘) ∈ 𝑤: lim

𝑛→∞
 ∑  

𝑘

  |∑  

𝑛

𝑗=𝑘

  (
𝑗

𝑘
) (−𝑠)𝑗−𝑘𝑟−𝑗(𝑟 + 𝑠)𝑘𝑎𝑗|

= ∑  

𝑘

  |∑  

∞

𝑗=𝑘

 (
𝑗

𝑘
) (−𝑠)𝑗−𝑘𝑟−𝑗(𝑟 + 𝑠)𝑘𝑎𝑗|}

𝑣6
𝑟,𝑠 ={𝑎 = (𝑎𝑘) ∈ 𝑤: sup

𝑛∈ℕ
  ∑  

𝑛

𝑘=0

  |∑  

𝑛

𝑗=𝑘

  (
𝑗

𝑘
) (−𝑠)𝑗−𝑘𝑟−𝑗(𝑟 + 𝑠)𝑘𝑎𝑗| < ∞} ,  1 < 𝑞 < ∞

𝑣7
𝑟,𝑠 ={𝑎 = (𝑎𝑘) ∈ 𝑤: sup

𝑛∈ℕ
  ∑  

𝑛

𝑘=0

  |∑  

𝑛

𝑗=𝑘

  (
𝑗

𝑘
) (−𝑠)𝑗−𝑘𝑟−𝑗(𝑟 + 𝑠)𝑘𝑎𝑗| < ∞}

 

Then the following equalities hold: 

(I) {𝑏1
𝑟,𝑠}𝛽 = 𝑣3

𝑟,𝑠 ∩ 𝑣4
𝑟,𝑠

, 

(II) {𝑏𝑝
𝑟,𝑠}

𝛽
= 𝑣3

𝑟,𝑠 ∩ 𝑣6
𝑟,𝑠

, where 1 < 𝑝 < ∞, 

(III) {𝑏∞
𝑟,𝑠}𝛽 = 𝑣3

𝑟,𝑠 ∩ 𝑣5
𝑟,𝑠

, 

(IV) {𝑏1
𝑟,𝑠}𝛾 = 𝑣4

𝑟,𝑠
, 

(V) {𝑏𝑝
𝑟,𝑠}

𝛾
= 𝑣6

𝑟,𝑠
, where 1 < 𝑝 < ∞, 

(VI) {𝑏∞
𝑟,𝑠}𝛾 = 𝑣7

𝑟,𝑠
. 

Proof To avoid the repetition of similar statements, we give the proof of the theorem for only the 

sequence space 𝑏𝑝
𝑟,𝑠

, where 1 < 𝑝 < ∞. 

Let 𝑎 = (𝑎𝑘) ∈ 𝑤 be given. By considering the sequence 𝑥 = (𝑥𝑘), which is used in the proof of 

Theorem 2.2, we obtain 

∑  

𝑛

𝑘=0

 𝑎𝑘𝑥𝑘 = ∑  

𝑛

𝑘=0

  [
1

𝑟𝑘
∑  

𝑘

𝑗=0

  (
𝑘

𝑗
) (−𝑠)𝑘−𝑗(𝑟 + 𝑠)𝑗𝑦𝑗] 𝑎𝑘

 = ∑  

𝑛

𝑘=0

  [∑  

𝑛

𝑗=𝑘

  (
𝑗

𝑘
) (−𝑠)𝑗−𝑘𝑟−𝑗(𝑟 + 𝑠)𝑘𝑎𝑗] 𝑦𝑘

 = (𝐺𝑟,𝑠𝑦)𝑛

 

for all 𝑛 ∈ ℕ, where the matrix 𝐺𝑟,𝑠 = (𝑔𝑛𝑘
𝑟,𝑠) is defined by 
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𝑔𝑛𝑘
𝑟,𝑠 = {

∑  

𝑛

𝑗=𝑘

  (
𝑗

𝑘
) (−𝑠)𝑗−𝑘𝑟−𝑗(𝑟 + 𝑠)𝑘𝑎𝑗, 0 ≤ 𝑘 ≤ 𝑛

0, 𝑘 > 𝑛

 

for all 𝑘, 𝑛 ∈ ℕ. Then: 

(II) 𝑎𝑥 = (𝑎𝑘𝑥𝑘) ∈ 𝑐𝑠 whenever 𝑥 = (𝑥𝑘) ∈ 𝑏𝑝
𝑟,𝑠

 if and only if 𝐺𝑟,𝑠𝑦 ∈ 𝑐 whenever 𝑦 = (𝑦𝑘) ∈ ℓ𝑝, 

where 1 < 𝑝 < ∞. This fact shows that 𝑎 = (𝑎𝑘) ∈ {𝑏𝑝
𝑟,𝑠}

𝛽
 if and only if 𝐺𝑟,𝑠 ∈ (ℓ𝑝: 𝑐), where 1 <

𝑝 < ∞. By combining this result and Lemma 4.1(v), we deduce that 

sup
𝑛∈ℕ

  ∑  

𝑛

𝑘=0

  |∑  

𝑛

𝑗=𝑘

  (
𝑗

𝑘
) (−𝑠)𝑗−𝑘𝑟−𝑗(𝑟 + 𝑠)𝑘𝑎𝑗|

𝑞

< ∞ (4.7) 

and 

∑  

∞

𝑗=𝑘

(
𝑗

𝑘
) (−𝑠)𝑗−𝑘𝑟−𝑗(𝑟 + 𝑠)𝑘𝑎𝑗  exists for each 𝑘 ∈ ℕ 

where 1 < 𝑝 < ∞ and 
1

𝑝
+

1

𝑞
= 1. As a result of this, we obtain {𝑏𝑝

𝑟,𝑠}
𝛽

= 𝑣3
𝑟,𝑠 ∩ 𝑣6

𝑟,𝑠
, where 1 < 𝑝 <

∞. 

(V) By following a similar way, 𝑎𝑥 = (𝑎𝑘𝑥𝑘) ∈ 𝑏𝑠 whenever 𝑥 = (𝑥𝑘) ∈ 𝑏𝑝
𝑟,𝑠

 if and only if 𝐺𝑟,𝑠𝑦 ∈

ℓ∞ whenever 𝑦 = (𝑦𝑘) ∈ ℓ𝑝, where 1 < 𝑝 < ∞. This says us that 𝑎 = (𝑎𝑘) ∈ {𝑏𝑝
𝑟,𝑠}

𝛾
 if and only if 

𝐺𝑟,𝑠 ∈ (ℓ𝑝: ℓ∞), where 1 < 𝑝 < ∞. By using this result and Lemma 4.1(vi), we conclude that (4.7) 

holds, where 1 < 𝑝 < ∞ and 
1

𝑝
+

1

𝑞
= 1. As a consequence of this, we obtain {𝑏𝑝

𝑟,𝑠}
𝛾

= 𝑣6
𝑟,𝑠

, where 

1 < 𝑝 < ∞. This completes the proof of the theorem. 

5 Geometric properties of the binomial sequence space 𝑏𝑝
𝑟,𝑠

 

In this part, we give some geometric properties of the binomial sequence space 𝑏𝑝
𝑟,𝑠

. Let us start with 

some notions. 

Let (𝑋, ∥⋅∥𝑋) be a Banach space. Then 𝑋 is said to have the BanachSaks property, if every bounded 

sequence 𝑢 = (𝑢𝑛) contains a subsequence 𝑣 = (𝑣𝑛) such that the Cesàro means 
1

𝑛+1
∑𝑘=0

𝑛  𝑣𝑘 are 

norm convergent [15]. 

𝑋 is said to have the weak Banach-Saks property, if every weakly null sequence 𝑢 = (𝑢𝑛) contains a 

subsequence 𝑣 = (𝑣𝑛) such that the Cesàro means 
1

𝑛+1
∑𝑘=0

𝑛  𝑣𝑘 are norm convergent [15]. 

𝑋 is said to have Banach-Saks type 𝑝, if every weakly null sequence 𝑢 = (𝑢𝑛) has a subsequence 𝑣 =
(𝑣𝑛) such that, for some 𝑀 > 0, 

∥
∥
∥
∥

∑  

𝑛

𝑘=0

 𝑣𝑘
∥
∥
∥
∥

𝑋

≤ 𝑀(𝑛 + 1)
1
𝑝 
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for all 𝑛 ∈ ℕ, where 1 < 𝑝 < ∞[16]. 

Let 𝐶 be a weakly compact convex subset of 𝑋. Then 𝑋 is said to have the weak fixed point property, 

if every self mapping 𝑇: 𝐶 ⟶ 𝐶 that provides ∥ 𝑇𝑥 − 𝑇𝑦 ∥≤∥ 𝑥 − 𝑦 ∥ for all 𝑥, 𝑦 ∈ 𝐶 has a fixed 

point [17]. 

Let 𝑋 be a normed linear space and 𝑆(𝑋) be a unit sphere of 𝑋. Then the Gurarii modulus of 

convexity is defined as follows: 

𝛽𝑋(𝜖) = inf {1 − inf
0≤𝜆≤1

  ∥ 𝜆𝑥 + (1 − 𝜆)𝑦 ∥: 𝑥, 𝑦 ∈ 𝑆(𝑋), ∥ 𝑥 − 𝑦 ∥= 𝜖} 

where 0 ≤ 𝜖 ≤ 2[18]. 

Theorem 5.1 (see [19]) A Banach space 𝑋 has the weak fixed point property, if 𝑋 provides the 

condition 

𝑅(𝑋) = sup {lim inf
𝑛→∞

 ∥∥𝑥𝑛 + 𝑥∥∥} < 2 

where the supremum is taken over all weakly null sequences (𝑥𝑛) of the unit ball and all points 𝑥 of 

the unit ball. 

Theorem 5.2 The binomial sequence space 𝑏𝑝
𝑟,𝑠

 is of the Banach-Saks type 𝑝. 

Proof Let (𝑢𝑛) be a weakly null sequence in the 𝐵(𝑏𝑝
𝑟,𝑠) unit ball of 𝑏𝑝

𝑟,𝑠
. We suppose that (𝜖𝑛) is a 

sequence of positive numbers provided ∑𝜖𝑛 ≤
1

2
. Construct 𝑣0 = 𝑢0 = 0 and 𝜈1 = 𝑢𝑛1

= 𝑢1. Then 

we can find an 𝑚1 ∈ ℕ such that 

∥
∥
∥
∥
∥

∑  

∞

𝑖=𝑚1+1

 𝑣1(𝑖)𝑒(𝑖)

∥
∥
∥
∥
∥

𝑏𝑝
𝑟,𝑠

< 𝜖1 

By virtue of 𝑢𝑛 →
𝑤

0 implying 𝑢𝑛 ⟶ 0 coordinatewise, we can find an 𝑛2 ∈ ℕ such that 

∥
∥
∥
∥
∥

∑  

𝑚1

𝑖=0

 𝑢𝑛(𝑖)𝑒(𝑖)

∥
∥
∥
∥
∥

𝑏𝑝
𝑟,𝑠

< 𝜖1 

as 𝑛 ≥ 𝑛2. Construct 𝑣2 = 𝑢𝑛2
. Then we can find an 𝑚2 > 𝑚1 such that 

∥
∥
∥
∥
∥

∑  

∞

𝑖=𝑚2+1

 𝑣2(𝑖)𝑒(𝑖)

∥
∥
∥
∥
∥

𝑏𝑝
𝑟,𝑠

< 𝜖2 

If we use 𝑥𝑛 ⟶ 0 coordinatewise one more time, we can find an 𝑛3 > 𝑛2 such that 

∥
∥
∥
∥
∥

∑  

𝑚2

𝑖=0

 𝑢𝑛(𝑖)𝑒(𝑖)

∥
∥
∥
∥
∥

𝑏𝑝
𝑟,𝑠

< 𝜖2 
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as 𝑛 ≥ 𝑛3. 

By continuing this method, we can constitute two increasing sequences (𝑚𝑘) and (𝑛𝑘) such that 

∥
∥
∥
∥
∥

∑  

𝑚𝑘

𝑖=0

 𝑢𝑛(𝑖)𝑒(𝑖)

∥
∥
∥
∥
∥

𝑏𝑝
𝑟,𝑠

< 𝜖𝑘 

for all 𝑛 ≥ 𝑛𝑘+1 and 

∥
∥
∥
∥
∥

∑  

∞

𝑖=𝑚𝑘+1

 𝑣2(𝑖)𝑒(𝑖)

∥
∥
∥
∥
∥

𝑏𝑝
𝑟,𝑠

< 𝜖𝑘 

where 𝑣𝑘 = 𝑢𝑛𝑘
. Thus 

∥
∥
∥
∥

∑  

𝑛

𝑘=0

 𝑣𝑘
∥
∥
∥
∥

𝑏𝑝
𝑟,𝑠

 =

∥
∥
∥
∥
∥

∑  

𝑛

𝑘=0

 ( ∑  

𝑚𝑘−1

𝑖=0

 𝑣𝑘(𝑖)𝑒(𝑖) + ∑  

𝑚𝑘

𝑖=𝑚𝑘−1+1

 𝑣𝑘(𝑖)𝑒(𝑖) + ∑  

∞

𝑖=𝑚𝑘+1

 𝑣𝑘(𝑖)𝑒(𝑖))

∥
∥
∥
∥
∥

𝑏𝑝
𝑟,𝑠

 ≤

∥
∥
∥
∥
∥

∑  

𝑛

𝑘=0

 ( ∑  

𝑚𝑘

𝑖=𝑚𝑘−1+1

 𝑣𝑘(𝑖)𝑒(𝑖))

∥
∥
∥
∥
∥

𝑏𝑝
𝑟,𝑠

+ 2 ∑  

𝑛

𝑘=0

 𝜖𝑘

 

and 

∥
∥
∥
∥
∥

∑  

𝑛

𝑘=0

  ∑  

𝑚𝑘

𝑖=𝑚𝑘−1+1

 𝑣𝑘(𝑖)𝑒(𝑖)

∥
∥
∥
∥
∥

𝑏𝑝
𝑟,𝑠

𝑝

 = ∑  

𝑛

𝑘=0

  ∑  

𝑚𝑘

𝑖=𝑚𝑘−1+1

  |
1

(𝑠 + 𝑟)𝑖
∑  

𝑖

𝑗=0

  (
𝑖

𝑗
) 𝑠𝑖−𝑗𝑟𝑗𝑣𝑘(𝑗)|

𝑝

 ≤ ∑  

𝑛

𝑘=0

 ∑  

∞

𝑖=0

  |
1

(𝑠 + 𝑟)𝑖
∑  

𝑖

𝑗=0

  (
𝑖

𝑗
) 𝑠𝑖−𝑗𝑟𝑗𝑣𝑘(𝑗)|

𝑝

≤ 𝑛 + 1

 

Thus we obtain 

∥
∥
∥
∥

∑  

𝑛

𝑘=0

 𝑣𝑘
∥
∥
∥
∥

𝑏𝑝
𝑟,𝑠

≤ (𝑛 + 1)
1
𝑝 + 1 ≤ 2(𝑛 + 1)

1
𝑝 

As a consequence, the binomial sequence space 𝑏𝑝
𝑟,𝑠

 is of the Banach-Saks type 𝑝. This completes the 

proof of the theorem. 

We know from Theorem 2.2 that 𝑏𝑝
𝑟,𝑠

 is linearly isomorphic to ℓ𝑝. So, it is clear that 𝑅(𝑏𝑝
𝑟,𝑠) =

𝑅(ℓ𝑝) = 2
1

𝑝. 

By combining this fact and Theorem 5.1, we can give the next theorem. 

Theorem 5.3 The binomial sequence space 𝑏𝑝
𝑟,𝑠

 has the weak fixed point property, where 1 < 𝑝 < ∞. 
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Theorem 5.4 The inequality 𝛽𝑏𝑝
𝑟,𝑠(𝜖) ≤ 1 − [1 − (

𝜖

2
)

𝑝
]

1

𝑝
 holds, where 0 ≤ 𝜖 ≤ 2. 

Proof Let 0 ≤ 𝜖 ≤ 2 be given. By assuming the inverse of the binomial matrix 𝐵𝑟,𝑠 is 𝐷, we construct 

two sequences 𝑢 and 𝑣 as follows: 

𝑢 = ((𝐷 (1 − (
𝜖

2
)

𝑝

))

1
𝑝

, 𝐷 (
𝜖

2
) , 0,0, … )

𝑣 = ((𝐷 (1 − (
𝜖

2
)

𝑝

))

1
𝑝

, 𝐷 (−
𝜖

2
) , 0,0, … )

 

Then we obtain 

∥𝐵𝑟,𝑠𝑢∥ℓ𝑝
=∥ 𝑢 ∥𝑏𝑝

𝑟,𝑠= 1  and  ∥𝐵𝑟,𝑠𝑣∥ℓ𝑝
=∥ 𝑣 ∥𝑏𝑝

𝑟,𝑠= 1 

This shows that 𝑢, 𝑣 ∈ 𝑆(𝑏𝑝
𝑟,𝑠) and ∥𝐵𝑟,𝑠𝑢 − 𝐵𝑟,𝑠𝑣∥ℓ𝑝

=∥ 𝑢 − 𝑣 ∥𝑏𝑝
𝑟,𝑠= 𝜖. For 0 ≤ 𝜆 ≤ 1, we have 

∥ 𝜆𝑢 + (1 − 𝜆)𝑣 ∥
𝑏𝑝

𝑟,𝑠
𝑝

 = ∥∥𝜆𝐵𝑟,𝑠𝑢 + (1 − 𝜆)𝐵𝑟,𝑠𝑣∥∥ℓ𝑝

𝑝

 = 1 − (
𝜖

2
)

𝑝

+ |2𝜆 − 1| (
𝜖

2
)

𝑝  

and 

inf
0≤𝜆≤1

  ∥ 𝜆𝑢 + (1 − 𝜆)𝑣 ∥
𝑏𝑝

𝑟,𝑠
𝑝

= 1 − (
𝜖

2
)

𝑝

(5.1) 

Thus, we obtain 

𝛽𝑏𝑝
𝑟,𝑠(𝜖) ≤ 1 − [1 − (

𝜖

2
)

𝑝

]

1
𝑝
 

This completes the proof of the theorem. 

By using the equality (5.1), we find two more results. 

Corollary 5.5 Since 𝛽𝑏𝑝
𝑟,𝑠(𝜖) = 1, the binomial sequence space 𝑏𝑝

𝑟,𝑠
 is strictly convex. 

Corollary 5.6 Since 0 < 𝛽𝑏𝑝
𝑟,𝑠(𝜖) ≤ 1, for 0 < 𝜖 ≤ 2, the binomial sequence space 𝑏𝑝

𝑟,𝑠
 is uniformly 

convex. 

6 Conclusion 

By taking into account the binomial matrix 𝐵𝑟,𝑠 = (𝑏𝑛𝑘
𝑟,𝑠), we conclude that 𝐵𝑟,𝑠 = (𝑏𝑛𝑘

𝑟,𝑠) reduces in 

the case 𝑟 + 𝑠 = 1 to 𝐸𝑟 = (𝑒𝑛𝑘
𝑟 ) which is called the Euler matrix of order 𝑟. Therefore, our results 

obtained from the matrix domain of the binomial matrix 𝐵𝑟,𝑠 = (𝑏𝑛𝑘
𝑟,𝑠) are more general and more 
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extensive than the results on the matrix domain of the Euler matrix of order 𝑟. Furthermore, the 

binomial matrix 𝐵𝑟,𝑠 = (𝑏𝑛𝑘
𝑟,𝑠) is not a special case of the weighed mean matrices. Thus, this paper has 

filled up a gap in the existent literature. 
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