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Abstract 

More simplified beam models can anticipate the dynamic behavior of a cylindrical shell in a variety of applications. 

The goal of this work is to identify the design parameters that allow a cylindrical shell to function like a beam. The 

governing equations for long cylinders with simply-supported boundary conditions at both ends are produced using 

the Hamilton's principle, along with the analytical solution for both the Flugge and Donnell-Mushtari shell theories. 

Next, the shell-to-beam transition conditions for both theories are determined by equalizing the vibration 

frequencies of the shell and the beam. The finite element approach is used to determine the ideal transition 

conditions with the fewest approximations possible, taking into consideration the effects of shear distortion and the 

shell's rotatory inertia. Lastly, the frequency response and the transition parameters are examined in relation to 

boundary conditions. The requirements that were established just state whether or not the shell may be taken to be a 

beam under particular geometrical and material circumstances. 

Keywords: Vibration; shell mode, beam mode, transition condition, design requirement  

 

1.Introduction 

One of the most functional constructions in a variety of technical applications, such as storage tanks, pipelines and 

ducts, and spacecraft, is a cylindrical shell. The cylindrical shells are susceptible to different loading situations 

during operation, which changes the intricate issue of the shell structure's dynamic response i.e., natural frequency 

and mode forms which becomes a difficult challenge. 

 A typical cylinder's mode shapes may be classified into three types based on the circumferential deformations: 

axisymmetric (breathing), beam, and self-balancing modes as seen in Fig. 1. The circumferential wave number is 

represented by the quantity "n". A continuous radial shift in circumferential direction is described by the 

axisymmetric mode (n=0), which implies that the circular cross-sections maintain their circular origin.  

In the case when the cylindrical shell is taken to have a circular cross-section beam, its behavior is described by the 

beam mode (n=1). In another way, only the circle's origin varies while the circular cross-section stays constant in 

the beam mode.  

As seen in Fig. 1, the self-balancing modes occur when the circular cross section's form varies. The beam-like 

modes are of interest in many practical instances, including low-frequency vibration of pipes in industrial facilities. 

Additionally, for a variety of applications, more straight forward beam models are able to correctly anticipate the 

dynamic behavior of the cylindrical shell. These estimates come in particularly handy when dealing with the 

difficult issue of how a spacecraft responds to dynamic loads. 
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Fig. 1. Shell modes (n 1) and beam mode (n=1) for cylindrical shells 

Much work has been done in the last few years to accurately anticipate the dynamic behavior of cylindrical shells 

using several shell theories [1-2]. The complicated (often eighth-order) equations are handled for every shell 

problem as the shell equations should be permitted for scenarios with many circumferential waves. The minimal 

natural frequency, however, often corresponds to the axisymmetric and beam-type modes for long and moderately 

thick cylinders [1], which may be successfully predicted for a broad range of instances by using a simple beam 

model.  

A few studies are trying to use beam approximations to examine the complicated shell equations. Using beam 

approximations, Forsberg [3] investigated the breathing and beam-type vibrations of cylindrical shells and 

contrasted the findings with explicit solutions from Flugge's shell equations. The beam functions were utilized by 

Soedel 4] to approximate the vibration of cylindrical shells, while Farshidianfar et al [5] extracted the modal 

amplitudes of a long cylindrical shell using the same methodology. Using beam approximation functions, Olizadeh 

et al [6, 7] investigated the free vibration of simply supported cylindrical shells with four distinct shell theories and 

reported the impact of various parameters on mode shapes and natural frequencies. The natural frequencies of thin 

cylindrical shells with radial stresses were studied by Kumar et al. [8].In their study of the beam mode vibration of 

an infinitely filled cylindrical shell, Sakar and Sonti [9] discovered that at low frequencies, the cylindrical shell in  

a Timoshenko beam is formed by the beam mode. Vinson [10] investigated the beam-type vibration of cylindrical 

shells using Green's functions and the Rayleigh-Ritz approach. The stability and beam-mode dynamic properties of 

cantilevered functionally graded fluid-conveying shells were investigated by Shen et al. [11]. The vibrations of a 

spinning cylindrical shell with a noncircular cross-section in beam mode were studied by Pavlov and Kuptsov [12]. 

The axisymmetric (n=0) vibration of an orthotropic cylindrical shell with end disks was investigated by Lopatin and 

Morozov [13] using clamped-clamped beam approximation functions for axial displacement and deflection. The 

dynamic behavior of multiwall carbon nanotubes in beam and axisymmetric modes was investigated by Wang et al 

[14]. In order to discover shell-like modes in the free vibration of thin-walled isotropic and composite structures, 

Fazzolari [15] devised a Ritz formulation. Using the beam approach, Winfield et al. [16] investigated the vibration 

of a long, thick laminated conical tube. While the simplified beam models are often employed to examine the shell 

structures, little is known about the circumstances under which the beam-type modes predominate. Put differently, 
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there is a need to place greater emphasis on the criteria that govern the shift from shell modes (that is, axisymmetric 

and self-balancing modes) to beam modes. The majority of earlier studies take into account a few particular 

circumstances and use beam approximations to solve the shell equations. For instance, Blaauwendraad and 

Hoefakker [17] established the similar process for cylindrical shell static analysis and specified the circumstances 

under which the shell functions as a beam. A long, thin shell (L/R>10 and R/h>10) was taken into consideration by 

Forsberg [3], who also discussed the drawbacks of these approximations. To the best of the authors' knowledge, no 

documented condition exists that specifies the changeover condition between axisymmetric and shell modes to 

beam modes.  

This work proposes a design criterion wherein the circular cylindrical shell exhibits beam-like behavior. Both the 

linear shell and beam equations are used to get the natural frequencies for this purpose. Both Flugge and Donnell-

Mushtari shell theories are used to derive the differential equations, and for long cylinders with simply-supported 

boundary conditions at both ends, an analytical solution is found. We then derive the basic shell-to-beam transition 

criteria for both theories. The finite element approach is utilized to discover the optimal transition conditions with 

the fewest approximation assumptions because the effects of shear distortion and the shell's rotatory inertia have 

been overlooked in thin shell theories. Lastly, the frequency response and the transition parameters are examined in 

relation to boundary conditions. The requirements that were established just state whether or not the shell may be 

taken to be a beam under particular geometrical and material circumstances.  

2 An analytical solution to the shell to beam mode transition 

2.1 Displacements and strains 

Figure 1 depicts a typical isotropic cylindrical shell with coordinates of (x, θ, z), where x, θ, and z stand for 

longitudinal, circumferential, and radial coordinates, respectively. Consequently, the shell's radius, length, and 

thickness are represented by the parameters R, L, and h. The symbols u, v, and w represent the deflection of the 

center surface of the shell along the x, θ, and z axes, respectively. The displacement field (u, v, w) is caused by the 

Kirchhoff theory to be 

𝑢(𝑥, 𝜃, 𝑧, 𝑡) = 𝑢(𝑥, 𝜃, 𝑡) − 𝑧
𝜕𝑤𝑜 (𝑥,𝜃,𝑡)

𝜕𝑥
  

𝑣(𝑥, 𝜃, 𝑧, 𝑡) = 𝑣(𝑥, 𝜃, 𝑡) − 
𝑧

𝑅

𝜕𝑤𝑜 (𝑥,𝜃,𝑡)

𝜕𝜃
  

  𝑤(𝑥, 𝜃, 𝑧, 𝑡) = 𝑤𝑜(𝑥, 𝜃, 𝑡)            (1) 

where (u0, v0, w0) represent the mid-plane displacements along x and θ directions, respectively. 

Fig.2.Geometry of a typical cylindrical shell. 
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Using the thin shell theory of Donnell-Mushtari, the strains can be written as [1] 

 

 

{

𝑒𝑥
𝑒𝜃
𝑒𝑥𝜃

} = {

𝜖𝑥
𝜖𝜃
𝛾𝑥𝜃

} + 𝑧 {

Κ𝑥
Κ𝜃
Κ𝑥𝜃

}                                                                                                     (2) 
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−
2

𝑅
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                                                                (3) 

 

The parameters (𝜖𝑥, 𝜖𝜃,𝛾𝑥𝜃)  a r e  membrane strains and (Κ𝑥 , Κ𝜃,Κ𝑥𝜃) are the curvatures. 

2.2 Constitutive relations  

  For isotropic materials, the constitutive relations can be shown as 

  

{

𝜎𝑥
𝜎𝜃
𝜎𝑥𝜃

} = [

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] {

𝑒𝑥
𝑒𝜃
𝑒𝑥𝜃

}                                                                                   (4) 

 

Where 𝑄11 = 𝑄22 =
𝐸

1−𝜐2
 , 𝑄12 =

𝜐𝐸

1−𝜐2
, 𝑄66 =

𝐸

2(1+𝜐)
                                                (5) 

where E, G and ν are Young’s modulus, shear modulus and Poisson’s ratio, respectively. 

2.3 Governing equations for vibration of cylindrical shells 

The governing equations of isotropic cylindrical shells are derived by the use of Hamilton’s principle as 

∫ (𝛿𝑈 + 𝛿𝑉 − 𝛿𝐾)𝑑𝑡 = 0  
𝑇

0
                                                                                      (6) 

where 𝛿𝑈, 𝛿𝑉 and 𝛿𝐾   are virtual strain energy, virtual potential energy and virtual kinetic energy  

respectively and defined as 

𝛿𝐾 =  ∫ 𝜌 (𝑢1̇𝛿𝑢1̇ + 𝑣1̇𝛿𝑣1̇ + 𝑤1̇𝛿𝑤1̇)𝑑𝑉  

= ∫ ∫ 𝜌 [(𝑢̇ − 𝑧
𝜕𝑊̇

𝜕𝑥
) (𝛿𝑢̇ − 𝑧

𝜕𝛿𝑤̇

𝜕𝑥
) + [𝑣̇ +

1

𝑅
𝑧 (𝑣̇𝑐𝑜𝑠𝛼 −

𝜕𝑤̇

𝜕𝜃
)] [𝛿𝑣̇ +

1

𝑅
𝑧 (𝛿𝑣̇𝑐𝑜𝑠𝛼 −

𝜕𝛿𝑤̇

𝜕𝜃
)]

ℎ/2

−ℎ/2

 

𝐴

+ 𝑤̇𝛿𝑤̇]  𝑅𝑑𝑥𝑑𝜃𝑑𝑧    

= ∫ {𝐼𝑜(𝑢̇𝛿𝑢̇ + 𝑣̇𝛿𝑣̇ + 𝑤̇𝛿𝑤̇) +
1

2
𝐼2𝛿 [(

𝜕𝑤̇

𝜕𝑥
)
2

+
1

𝑅2
(𝑣̇ 𝑐𝑜𝑠𝛼 −

𝜕𝑤̇

𝜕𝜃
)
2

]}
 

𝐴
 𝑅𝑑𝑥𝑑𝜃                   (7) 

𝛿𝑈 = ∫ 𝜎𝑖𝑗𝛿𝜀𝑖𝑗𝑑𝑉 = ∫ ∫ 𝜎𝑖𝑗𝛿𝜀𝑖𝑗
ℎ/2

−ℎ/2

 

𝐴

 

𝑉
 𝑅𝑑𝑠𝑑𝜃 𝑑𝑧                                                 

= ∫ [𝑁𝑥𝛿𝜀𝑥 +𝑀𝑥𝛿𝐾𝑥 + 𝑁𝜃𝛿𝜀𝜃 +𝑀𝜃𝛿𝐾𝜃 + 𝑁𝑥𝜃𝛿𝜀𝑥𝜃 +𝑀𝑥𝜃𝛿𝐾𝑥𝜃]
 

𝐴
 𝑅𝑑𝑠𝑑𝜃                   (8) 

 

𝛿𝑉 = ∫ [𝑁̂𝑥𝛿𝑢 + 𝑇̂𝑥𝛿𝑣 + 𝑆̂𝑥𝛿𝑤 + 𝑀̂𝑥𝛿 (
𝜕𝑤

𝜕𝑥
)]

 

Γ
 𝑅𝑑𝜃                                                                   (9) 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024) 

__________________________________________________________________________________ 

3221 

where ρ is the density and Ii s are the mass inertias defined as 

 

𝐼𝑖 = ∫ 𝜌𝑧𝑖𝑑𝑧               (𝑖 = 0,2)
ℎ/2

−ℎ/2
                                                                                   (10) 

In  addition , parameters  𝑁̂𝑥, 𝑇̂𝑥, 𝑆̂𝑥 , 𝑀̂𝑥 are stress resultants due to applied axial load, and (N, M) are stress 

resultants measured per unit length and defined as 

[
 
 
 
 
 
𝑁𝑥
𝑁𝜃
𝑁𝑥𝜃
𝑀𝑥

𝑀𝜃

𝑀𝑥𝜃]
 
 
 
 
 

= ∫

[
 
 
 
 
 
𝜎𝑥
𝜎𝜃
𝜎𝑥𝜃
𝑧 𝜎𝑥
𝑧 𝜎𝜃
𝑧 𝜎𝑥𝜃]

 
 
 
 
 

ℎ/2

−ℎ/2
 𝑑𝑧                                                                                                     (11) 

Substituting Eqs. (3), (4) and (11) into Eqs. (7), (8) and (9), neglecting I2 due to thin shell assumptions       and then 

imposing all into Eq. (6), we have [1] 

𝛿𝑢:
𝜕𝑁𝑥

𝜕𝑥
+

1

𝑅

𝜕𝑁𝑥𝜃

𝜕𝜃
= 𝐼0

𝜕2𝑢

𝜕𝑡2
  

𝛿𝑣:
1

𝑅

𝜕𝑁𝜃

𝜕𝜃
+

𝜕𝑁𝑥𝜃

𝜕𝑥
+

1

𝑅

𝜕𝑀𝑥𝜃

𝜕𝑥
+

1

𝑅2

𝜕𝑀𝜃

𝜕𝜃
= 𝐼0

𝜕2𝑣

𝜕𝑡2
  

𝛿𝑤:−
1

𝑅
𝑁𝜃 +

𝜕2𝑀𝑥

𝜕𝑥2
+

1

𝑅

𝜕2𝑀𝑥𝜃

𝜕𝑥𝜕𝜃
+

1

𝑅

𝜕2𝑀𝑥𝜃

𝜕𝑥𝜕𝜃

1

+𝑅2

𝜕2𝑀𝜃

𝜕𝜃2
= 𝐼0

𝜕2𝑤

𝜕𝑡2
                                           (12) 

2.4 Vibration analysis of long cylindrical shell 

In the case that the longitudinal wavelength is long, the solution functions can be considered as [1] 

  𝑢(𝑥, 𝜃, 𝑡) = 𝑈 𝑐𝑜𝑠𝑛𝜃𝑒𝑖𝜔𝑡    

 𝑣(𝑥, 𝜃, 𝑡) = 𝑉 𝑠𝑖𝑛𝑛𝜃𝑒𝑖𝜔𝑡  

𝑤(𝑥, 𝜃, 𝑡) = 𝑊 𝑐𝑜𝑠𝑛𝜃𝑒𝑖𝜔𝑡                                                                                                  (13) 

 

where (U, V, W) are the amplitudes, n is the circumferential wave number and ω is the frequency of the cylindrical 

shell. Applying Eq. (13) in governing equations yields a set of algebraic equations as [1] 

[
 
 
 
 
1−𝜐

2
𝑛2 −

𝜌(1−𝜐2)𝑅2𝜔𝑆
2

𝐸
0 0

0 𝑛2 −
𝜌(1−𝜐2)𝑅2𝜔𝑆

2

𝐸
𝑛

0 𝑛 (1 + 𝑘𝑛4) −
𝜌(1−𝜐2)𝑅2𝜔𝑆

2

𝐸 ]
 
 
 
 

{
𝑈
𝑉
𝑊
} = {

0
0
0
}     (14) 

The subscript “s” denotes the frequency formula obtained from shell equations and 

 

𝑘 =
ℎ𝑒
4

12
              (15)  

 

in which he is the equivalent thickness, defined as 

ℎ𝑒 = √
ℎ

𝑅
                                                                                                                                  (16) 

It can be seen from Eq. (15) that the motion in axial (longitudinal) direction is completely uncoupled from the other 

two modes. Therefore, finding the roots of the second order determinant for non-axial modes, arising from Eq. (15) 

yields the frequencies of the long cylindrical shells with Donnell-Mushtari shell theory as 
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𝜔𝑠
2 =

𝐸

2𝜌(1−𝜐2)𝑅2
[(1 + 𝑛2 + 𝑘𝑛4) ∓ √(1 + 𝑛2 + 𝑘𝑛4)2 − 4𝑘𝑛6] 𝑛 ≠ 0    (17) 

Following the same procedure, the frequency parameter for circumferential modes of long cylindrical shell 

according to Flugge shell theory can be extracted as [3] 

𝜔𝑠
2 =

𝐸

2𝜌(1−𝜐2)𝑅2
[(1 + 𝑛2 + 𝑘𝑛4) ∓ √(1 + 𝑛2)2 − 2𝑘𝑛6] 𝑛 ≠ 0                (18) 

 2.5 Vibration of the simply-supported beam 

The vibration characteristics of an Euler-Bernoulli beam with simply-supported boundary conditions at both ends 

can be easily found in any reference book (see for example Craig and Kurdila [19] as 

𝜔𝑏 = (
𝑚𝜋

𝐿
)
2

√
𝐸𝐼

𝜌𝐴
                                                                           (19) 

 

where m is the longitudinal half wave number and the subscript “b” denotes the frequency formula obtained from 

beam equation, I is the second moment of area and A is the cross-section area. For a thin tube, the Eq. (20) can be 

represented as 

 

𝜔𝑏 = 𝑅 (
𝑚𝜋

𝐿
)
2

√
𝐸

2𝜌
                                                                                     (20) 

 

2.6 Condition of transition from beam modes to shell modes 

The transition conditions in which, the vibration of the cylindrical shell converts from shell modes to the beam 

modes can be easily extracted when the frequencies from shell equations (i.e. either Eq. (18) or Eq. (19)) be 

equalized with the frequencies obtained from beam solution (Eq. (21)). Considering the beam mode (n=m=1), 

neglecting higher terms of k and performing some mathematical simplification, the transition conditions can be 

stated as 

𝐿𝑒ℎ𝑒 = 𝐶√(1 − 𝜐2)
4

                                             (21) 

where Le is the equivalent length defined as 

𝐿𝑒 =
𝐿

𝑅
                                                                                         (22)   

              

and C is the constant depends on the applied shell theory. For Donnel-Mushtari and Flugge shell theories the 

critical value of the C constant can be extracted as 

Ccr  5.847 Donnell-Mushtari theory 

Ccr  5.284 Flugge theory                                                                                  (23) 

The above relation depicts that the shell acts as a beam when the geometrical and material conditions of the shells 

are in the way that C>Ccr, the shell behaves like a beam and vice versa. 

3. Finite element analysis for the transition from shell to beam mode 

The aim of this section is to find the transition conditions from shell-like modes to beam-like modes using finite 

element analysis. To this end, the finite element procedure is described first and then, the effects of material 

properties on the transition condition are studied. Finally, the value of the Ccr is obtained and the results are 

discussed in detail. 
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3.1 Finite element analysis 

Since the shell theories are simplified with some assumptions, the finite element (FE) analysis is employed to find the 

best conditions (with less error) for transition from shell to beam modes. A cylindrical shell made from Aluminum 

(E=70 Gpa and ν=0.3) with different radii and thicknesses is considered. By changing the length, thickness and 

radius of the shell, the minimum value of the geometrical properties with beam-like mode (i.e. n=1) can be 

obtained. In the next step, the mechanical properties and boundary conditions are changed and the effects of these 

parameters on the shell-to-beam transition are studied. 

The Finite element analysis is conducted by Ansys software with four nodes shell element    4-node 

Quadrilateral Shell Element (SHELL 181) that has six degrees of freedom at each node, three translational 

displacements in the nodal directions and three rotational displacements about the nodal axes. SHELL181 is a linear 

element formulation, reduced-integration, and hourglass control. The eigenvalue problem is solved using Block 

Lanczos method. 

Generally, the result of the FE analysis is affected by number of elements. Hence, the convergence of the analysis 

results versus the number of total elements are studied. In order to select appropriate mesh size, a compromise 

between time and number of elements is needed. In other words, by increasing the number of elements, there is no 

specific change in the solution and indeed the cost of computation can overcome the changes of the solution. The 

final FE model of the structure is composed of 7560 elements and 7860 nodes. 

3.2 Effects of elastic modulus 

In this section, the effect of different values of Young moduli and Poisson ratios on the transition condition is 

investigated. It should be noted that from previous studied, we know that the elastic modulus has no effect on the 

transition conditions. However, to ensure from the correctness and accuracy of the results, the Young modulus is 

changed and the its effects on the results are studied. 

To study the elastic modulus, a cylindrical shell with constant radius R=10mm and thickness h=1mm with 

ρ=2700Kg/m3 and ν=0.3 is considered. The values of elastic modulus are varied from 3 to 300 GPa and the 

minimum value of the shell length, in which, the beam-like mode (n=1) occurs is obtained. The results are shown in 

Table 1. It can be seen that the elastic modulus has no effect on transition condition. 

Table 1. Effects of Young's modulus on equivalent length and thickness. 

 

E (GPa) 3 70 100 150 180 210 240 300 

he 0.3162 0.3162 0.3162 0.3162 0.3162 0.3162 0.3162 0.3162 

Le 14 14 14 14 14 14 14 14 

 

3.3 Effects of Poisson’s ratio 

From previous studies, it can be concluded that the shell-to-beam mode transition condition is proportional with the 

forth root of the (1-ν2), as seen in Eq. (21). However, to ensure from the Poisson’s ratio effects, the above-

mentioned aluminum cylinder (i.e. R=10mm, h=1mm, ρ=2700Kg/m3 and E=70GPa) is considered. The values of 

Poisson’s ratio are varied from 0.18 to 0.4 and the minimum length in which the beam mode occurs is obtained. 

Table (2) Effects of Poisson’s ratio on equivalent length and thickness of transition condition from shell to beam 

modes. 

ν 0.18 0.22 0.26 0.3 0.35 0.4 

he 0.3162 0.3162 0.3162 0.3162 0.3162 0.3162 

Le 14 14 14 13 13 13 

Table 2 shows the values of equivalent length and equivalent thickness for different values of Poisson’s ratio. It can 

be concluded that 
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𝐿𝑒ℎ𝑒 ∝ √(1 − 𝜈)2
4

                                                                        (24) 

4.Shell-to-beam transition condition 

The FE analysis was performed for a wide range of cylindrical shells with 0.001<R<1 m and 0.001<h/R<0.1. In 

each specific R and h, the values of the shell length are changed and the minimum value at which the beam-like 

mode is occurred is obtained. The results of FE analysis for all the geometries, along with Donnel-Mushtari and 

Flugge results (Eq. 22) are plotted in the Le-he space, as shown in Fig. 3. It can be seen that, due to the 

simplifications in Donnel- Mushtari and Flugge theories, the results of these theories are a bit different with FE 

results. In other words, the shell-to-beam transition condition is a more than the present results. 

To find the best values for transition condition, the best curve fitted to the FE results is obtained. The curve like the Eq. 

(23) is applied and the Ccr is obtained as 

Ccr =4.49                                                                    (25) 

Equation (25) denotes the transition condition from shell-like modes to beam-like modes obtained from FE 

analysis. In other words, if the geometrical and material properties of theshell are in the way that the value   

√(1 − 𝝂𝟐)
4

   is more than Ccr, the shell can be assumed as a beam. 

 

Fig. 3: transition condition from shell to beam modes, obtained from Donnel-Mushtari, Flugge and FEM. 

5.Effect of boundary conditions 

In this section, the effects of different boundary conditions on the transition conditions of cylindrical shell is 

studied. Three boundary conditions, including free-free (F-F), simply supported-simply supported (SS), and 

clamped-clamped (CC) are considered and the results are shown in Fig. 4. As can be seen, the results of different 

boundary conditions are very close to each other. As a result, the effects of boundary conditions on the transition 

condition from shell-like modes to beam-like modes are negligible. It was not unexpected, because the beam 

mode usually occurs for relatively long cylinders and the effects of boundary conditions on the dynamic behavior of 

the shells decrease with increase in the shell length. 
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Fig. 4. Effects of boundary conditions on shell-to-beam transition condition. 

6.Conclusion 

This study presents a transition condition from shell-like modes (axisymmetric and self-balancing modes) to beam-

like modes. If the cylindrical shell's geometrical and material qualities match this criteria, it acts like a beam and 

may be described using beam governing equations. This is a significant development since the dynamic behavior of 

the beam may be easily examined using simplified governing equations. The governing equations are derived using 

the Donnell-Mushtari and Flugge shell theories, and the transition condition is attained by equating the natural 

frequencies obtained from the shell and beam theories. The simple shell-to-beam transition conditions are then 

established, and the more correct connection is recovered using finite element analysis, taking into consideration the 

effects of shear distortion and rotatory inertias. n addition, the impact of boundary conditions on transition 

parameters is investigated. The obtained transition relation merely describes the circumstance under which the shell 

can be regarded to act as a beam. 
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