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Abstract: The L-Alanine Diglycine Picrate (LADGP) single crystal was cultivated employing the slow
evaporation solution method under usual atmospheric conditions. The structural confirmation for the LADGP
crystalline material was conducted via single crystal X-ray diffraction (SXRD), revealing a monoclinic structure
having the P2i/n space symmetry. The powder X-ray diffraction (PXRD) was utilized for ascertaining the
crystalline structure of the LADGP crystal. Vibrational assignments and identification of functional moieties of
the LADGP single crystal were achieved through Fourier Transform Infrared spectroscopy. Microhardness
measurements were performed to probe the mechanical robustness of the LADGP crystal, highlighting its
exceptional durability. The optical qualities in the LADGP crystal were evaluated with UV-visible near-infrared
spectroscopy. Electrical properties of LADGP crystal were investigated through conducting dielectric
experiments (constant and loss) as a varying with frequency at three different temperature.The
photoconductivity measurements showed that the LADGP crystal becomes more conductive when exposed to
different types of light. The LADGP crystal exhibited a laser damage threshold (LDT) of 2.6 GW/cm?,
suggesting its aptness for laser-related uses. The nonlinear third-order susceptibility was assessed and analyzed
using Z-scan techniques.

Keywords: Crystal growth, SXRD, PXRD, FTIR, Microhardness, UV-vis-NIR, Dielectric, LDT and Z-scan
analysis.

1. Introduction

In recent times, complex organic crystals encompassing salts and co-crystals have gained significant importance
in optoelectronics, chemical sciences, and biological sciences. This is owing to their swift responsiveness and
the diffusion of electrons at the molecular scale[1]. Organic crystals exhibit built-in flexibility in synthesis,
greater nonlinear coefficients, wide transparency, and favourable dielectric behavior in contrast to inorganic
materials. By selecting versatile component molecules and harnessing intermolecular collisions like classical
and non-classical hydrogen bonding, unique physicochemical properties can be achieved in co-crystals and salts
during their formation [2].

One of the primary benefits of organic materials is their capability to undergo structural alterations to achieve
desired nonlinear optical (NLO) properties. L-Alanine, the simplest amino acid after glycine, is water-soluble
and adept at reacting with acids to create new NLO compounds. Diglycine picrate has been identified in several
research papers as a potential NLO material [3-4].

In this particular study, L-Alanine was combined with Diglycine picrate to synthesize L-Alanine diglycine
picrate. Various analyses, covering SXRD, Powder XRD, FTIR-spectroscopy, Microhardness testing, UV-
visible-near infrared spectroscopy, dielectric analysis, laser damage threshold assessment, and Z-scan
investigation, were conducted and discussed for the first time.
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2.Experimental Details
2.1Growth and synthesis procedure

The synthesis of the LADGP compound involved utilizing the slow evaporation solution method, where L-
Alanine and Diglycine picrate were incorporated at a 1:1 molar ratio. Initially, specific amounts of both
substances were solubilized separately in distilled water, each in its own beaker. Once dissolved, the solutions
were gradually combined and stirred thoroughly for 8 hours at room temperature to ensure complete reaction.
The resulting solution exhibited a yellow hue, indicating successful chemical transformation. Subsequently, the
solution was permitted to evaporate naturally at ambient conditions, resulting in the formation of yellow
crystalline LADGP salt. The well-developed LADGP single crystal, sized at 9 mm x 8 mm x 5 mm was
cultivated over a development duration of 14 days. Figure.1 illustrates the resulting LADGP single crystal.
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Figure.1 A picture of LADGP single crystal
2.2 Characterization techniques:

The LADGP crystal underwent comprehensive analysis using advanced instrumentation across various
disciplines: single crystal XRD employed a BRUKKER AXS (kappa APEXII) diffractometer utilizing graphite
monochromated MoKa radiation (A=0.71071 A).The powder XRD was executed employing a BRUKKER D8
ADVANCE instrument. The vibrational assignments in the 400-4000 cm™ range were ascertained via a
BRUKER AXS FTIR Spectrometer. Vickers microhardness testing utilized a SHIMADZU-HMV-G21model
tester featuring a diamond-tipped indenter. UV-visible analysis employed a JASCO-V-730 Spectrometer.
Dielectric analysis was performed using an Agilent E 4980A LCR Z meter spanning a frequency spectrum of 50
Hz to 2 MHz. The investigation into photoconductivity utilized a Keithley picoammeter instrument (MODEL
M6487). Laser damage threshold investigations utilized a Q switched Neodymium-Yttrium Aluminum Garnet
laser at 1064 nanometres of the Quanta Ray type. The nonlinear susceptibility value was derived via Z-scan
analysis, employing a steady laser beam (21 mW) at 632.8 nanometers.

3.Results and Discussion
3.1 X-ray Diffraction for Structural Elucidation

Single crystal X-ray diffraction investigation involves directing X-rays at a crystal to precisely determine its
atomic structure, offering valuable insights into its composition and arrangement at the atomic level. This
technique is indispensable for acquiring an in-depth comprehension of the fundamental properties and behaviors
of materials [5]. The lattice parameters for LADGP are as specified: a=5.10A, b= 11.954, c=5.45 A
,@=90%B=111.67%y=90° with a V=309(A)%.These values imply that the LADGP crystal classified under the
monoclinic structure, specifically in the centrosymmetric space symmetry P2:/n. Table 1 presents the single
crystal XRD (SXRD) data pertaining to the DGP and LADGP crystals. Various diffraction planes and phase
purity are detected through powder XRD analysis. The measurements are conducted across a 26 degree span
from 10°-50° at ambient temperature. From the resulting graph, the maximum intensity was observed at an angle
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of 29.886°. The existence of high sharp peaks points to the quality of the crystalline structure of the LADGP
crystal. The PXRD spectra of LADGP are illustrated in figures 2(a) and 2(b). Additionally, the powder XRD

data of LADGP are provided in table 2.
Table 1. SXRD data for DGP and LADGP crystal

Crystal Name | Lattice Volume (A} | Z
parameters
a=15.142A
Diglycine b=6.654 A
Picrate c=15.367 A 1541.47 2
(DGP) a=90°; $=93°
v=90°
L-Alanine a= 5.10A
Diglycine b=11.95A
Picrate c= 545A 309 4
(LADGP) a=90°; B=111.67°
v=90°
Table 2.PXRD details about LADGP crystal
Pos.[°2Th.] | Height[cts] d Rel.int.[%] | hkI
) ’ g spacing[A] AR
11
15.682 4096.71 6.02849 0.5 0
25.348 3.5109 3.5109 2.6 '220
04
29.886 2.98726 2.98726 100 0

Figure.2a).XRD pattern of LADGP with hkl indices
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Figure2b) XRD spectra of LADGP single crystal
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3.2 Fourier Transform Infrared Spectroscopy

FTIR spectroscopy in crystals enables precise analysis of their molecular structure, aiding in identifying
chemical bonds, lattice vibrations, and defects. It's instrumental in characterizing crystal quality, understanding
crystal growth mechanisms, and optimizing material properties for diverse applications like electronics and
photonics [6-7]. FTIR spectroscopy serves as a crucial method for identifying assorted functional groups and
molecular interactions present in samples. The FTIR spectrum of LADGP, obtained within the 1000-4000 cm'*
range utilizing the KBr pellet method, is depicted in figure 3. The broad-spectrum span was identified in the
range of 1600-3200cm™ as seen in figure.3. The absorption bands in the spectrum are assigned based on IR
spectral data, with the corresponding assignments of vibrational modes are detailed in table 3.

Figure3. FTIR spectrum for LADGP
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Table 3: FTIR Spectral Profiles of LADGP

Wave Number (cm-

D) Assignment modes Compound
3091.64 | C-H stretching Alkene
2869.46 | N-H stretching Amine salt
2595.44 | O-H stretching Carboxylic acid
1573.16 | C-H bending Aromatic compound
1488.23 | N-O stretching Nitro group

1437.9 | N-O stretching Nitro group

1388.55 | C-H bending Aldehyde
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1326.49 | N-O stretching Nitro group

1123.85 | C-O stretching Secondary alcohol

1041.33 | C-O-CO stretching Stretching anhydride
924.18 | C-H bending 1,2,4tri substituitional
887.09 | C=C bending alkene

3.3 Microhardness Analysis

Desirable hardness behavior in crystals denotes their capacity to withstand deformation and penetration,
highlighting their strong structural integrity and long-lasting durability. Crystals exhibiting such behavior are
suitable for applications requiring high mechanical strength and resistance to abrasion [8]. The microhardness
value is subsequently determined through the following formula,

H,=1.8544 P/d? kg/mm?

Here ‘H,’ denotes the hardness value, ‘P’represents the applied load in kilograms, and ‘d’ is the average
diagonal measurement of the indentation in millimeters. Figure 4(a) presents a plot showing the relationship of
the logarithms of ‘P’ and‘d’. The measured value of n (B=0.26354) on the graph confirms that the LADGP
crystal falls within the hard category [9]. In figure 4(b), a graphical representation demonstrates the correlation
of the hardness number ‘Hv’ and the applied load ‘P. Examining the plot reveals that the weight increases from
25¢ to 50g, the hardness value (Hv) exhibits a linear increase with the load, whereas beyond 50g, Hv rises
steadily. The hardness value obtained from the grown LADGP crystal indicates a need for higher stress to
induce micro damages, affirming its superior crystalline perfection [10]. This quality makes the crystal highly
suitable for device fabrication purposes.

Fig.4a) variation of log P against log d Fig.4b) variation of Hv against load P

110 4

100

90

logd
H
1
Hv(kg/mm?’)

1.50 80

70 4

1.44 60 4

log P load P

3.4 UV-vis NIR Evaluation

UV spectroscopy is crucial for crystal analysis, as it explores the electronic transitions within the material. By
interacting with crystals, UV light reveals valuable insights into their electronic structure, optical characteristics,
and potential uses in diverse fields like materials science, semiconductor technology, and photovoltaics [11].
The optical transmittance graph for the LADGP single crystal is manifested in figure 5(a). The LADGP crystal
boasts an 85% transmittance rate, with a broad window extending from 410 to 1100 nm, offering considerable
advantages for a multitude of optical applications. Throughout the UV-visible NIR spectrum, LADGP crystal
exhibits commendable transmission and minimal absorption. Figure 5(b) reveals the (ahv) vs (hv) plot, serving
to elucidate the forbidden energy gap spectrum. By extrapolating from the linear segment of the curve, an
optical band gap value of 4.8 eV is discerned for LADGP crystal. Additionally, Figure 5(c) exhibits the
absorption curve of LADGP single crystal, revealing lower cut-off wavelengths observed at 210 and 380 nm.
These absorption features are attributed to specific transitions, namely the n-o* and c-6* transitions within the
LADGP single crystal [12]. The optical response of the LADGP crystal demonstrates a distinct trend of
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increasing optical conductivity at a specific wavelength of 350 nm, as illustrated in Figure5(d). Figure 5(e)
displays the variation of refractive index with wavelength, revealing a lower refractive index of 0.025 in the
perceptible region for the LADGP crystal. As the wavelength of light increases, there is a corresponding
reduction in the refractive index of LADGP crystal. The LADGP crystal's extinction coefficient alters with
different wavelengths, as seen in figure 5(f). The extinction coefficient directly corresponds to the absorption
coefficient for the LADGP single crystal. At wavelengths of 280 nanometers in the UV region and 550
nanometers in the visible region, the extinction coefficient reaches its minimum value, which causes a decrease
in light absorption at these specific wavelengths. Thus, the LADGP crystal wider band gap, lower refractive
index, and consistent transmission throughout the spectrum make it well-suited for advanced optoelectronic
applications.

5a) Transmittance versus wavelength 5b) Tauc plot of LADGP
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3.5 Dielectric study

A dielectric study on crystals involves examining the behavior of crystals in response to an applied electric field.
This study aims to understand how crystals interact with electric fields and how their dielectric properties, such
as permittivity and conductivity, are influenced by numerous factors like crystal structure, defects, temperature,
and the applied field frequency. Dielectric loss points to the dissipation of energy as heat within a dielectric
material when exposed to a varying electric field. Dielectric constant, quantifies a material's capacity to store
electrical energy when affected by an electric field, reflecting its permittivity relative to a vacuum [13].

Dielectric analysis was conducted on LADGP single crystal to assess its dielectric properties (permittivity &
loss) over frequencies that varied from 1 Hz to 1 MHz, encompassing temperatures of 30°C, 50°C, 70°C. Figures
6(a) and 6(b) portray the correlation between the dielectric constant and loss in the LADGP crystal. Figure 6(a)
demonstrates a significant dielectric constant value across a diminished range of frequencies at all temperatures,
possibly stemming from occurrence of diverse polarizations—ionic, electronic, space charge, and orientation
[14].

The reduction in dielectric constants at elevated frequencies is attributable to the deficiency of space charge
polarization around the interfacial region between grains. In figure 6(b), the minimal dielectric loss (tan 8)
observed for all temperatures in the LADGP single crystal highlights its superior optical quality, characterized
by few defects, making it highly suitable for applications in nonlinear optics (NLO). In figure 6(c), it is clearly
depicted that with rising frequency, the AC conductivity also escalates in the LADGP single crystal. Materials
with AC conductivity that increases with frequency can significantly enhance the performance and efficiency of
nonlinear optical devices and applications. Table 4.presents the activation energy values for LADGP.

Fig.6a) dielectric constant in LADGP Fig.6b) dielectric loss in LADGP
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Table 4.Activation energy in LADGP

Frequency(Hz) Ea/K ineV
100 31.8256 | 0.0027424
1099 12.2159 | 0.0010526
10095 3.956 | 0.0003409
50075 3.556 | 0.0003064
100050 2.75 0.000237
200000 2.55 | 0.0002197

3.6 Photoconductivity study

Photoconductivity studies on crystals provide essential insights into their electronic and optical behaviors. These
investigations explore how crystals produce and transfer charge carriers under light exposure, crucial for
optimizing the efficiency of electronic devices. Advanced material characterization methods, including
spectroscopy and microscopy, are employed to unravel the impact of crystal structure and composition on
photoconductivity. This understanding is pivotal for optimizing device performance and exploring new
applications in electronic and photonic technologies [15-17]. At ambient temperature, the photoconductivity of
the LADGP crystal was examined. Dark current measurements were taken incrementally from 0 to 50 Volts
without exposure to radiation, while photocurrent was measured under halogen lamp illumination at 100 Watts.
Figure.7 illustrates the relationship between I, and I4 across varying applied voltages. The LADGP crystal
demonstrates positive photoconductivity, indicated by I, surpassing lg, likely attributable to photon absorption
generating mobile charge carriers. The LADGP crystal's photosensitivity was assessed using a specific equation
[18],

e . _ Ip-1
Photo sensitivity, S= 24

Here, ‘Ip> is the photocurrent, ‘P’ is the incident optical power, ‘Ig’ is the dark current. The positive
photoconductivity of LADGP crystal drives high-performance displays and sensors with rapid response and low
noise, advancing light-induced conductivity technologies [19].

304 29.4

—@&— Photocurrent
—@— Dark current

Current (uA)

Applied Voltage (V)

Fig.7 Photoconductivity for LADGP crystal

3.7 Laser Damaged Threshold (LDT) study

A laser damage threshold study on crystals involves investigating the point at which a crystal material begins to
deteriorate or sustain irreversible damage when exposed to intense laser radiation. This research aims to
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understand the limits of a crystal's resilience to high-energy photon interactions, crucial for various applications
such as laser technology, optics, and materials science [20-21]. The investigation into the Laser damage
threshold involved subjecting the LADGP crystal to a high-energy Neodymium-doped Yttrium Aluminum
Garnet laser functioning at 1064 nanometer wavelength in a Q-switched configuration. A pulse duration of 6
nanoseconds was employed, and the laser irradiation, set at 1064 nm, was directed towards the LADGP sample
at a frequency of 10 Hz. The incident laser light was focused with a 10 cm focal length. The laser light’s pulse
energy was guaged with a power meter, and the energy density was computed utilizing the specified expression
[22], Power density, Pq =E/tnr?

In this equation, 'E' stands for the energy density input measured in millijoule (mJ), 't' signifies the pulse width
expressed in nanosecond (ns), and 'r' indicates the spot’s radius in millimeter (mm). Notably, the LADGP crystal
shows an impressive laser damage threshold of 2.6 GW/cm?, surpassing that of KDP (0.20 GW/cm?2) and Urea
(1.50 GW/cm?). This characteristic highlights the LADGP crystal's exceptional optical damage tolerance [23],
making it a promising prospect for integration into high-energy laser devices.

3.8 Z-Scan Investigation

The investigation into the third order nonlinear optical (NLO) characteristics of LADGP single crystal was
conducted utilizing the Z-scan approach. A polarized Gaussian laser light with TEMO0O mode was passed into a
convex lens having a focal length of 200 millimeters, producing a beam diameter (wo) of 16.1um for LADGP.
The sample's thickness (L) measured 1 mm, with a calculated Rayleigh length (ZR) of 1.3 mm. It was observed
that when (L<ZR), with the negative (-Z) to positive (Z) axis aligned along the path of the laser light, the
condition was satisfied [24-26]. The computer-controlled translation of the sample holder was monitored, and
the electronic power meter recorded the transmitted intensity accordingly at each instance. Using a closed
aperture, the signal intensity varied depending upon the aperture size (2 millimeters in diameter). Conversely,
with an open aperture, the intensity was compiled by the sensor to ascertain the nonlinear absorption coefficient
(B). The laser light's strength was found to be significantly affected by both the refractive index of samples and
the absorption properties of those materials. In closed-aperture configuration, the non-linear third order
refractive index 'n,' value was measured at 2.92503x1022 m?/W for LADGP single crystal. Figure 7(a) illustrates
reverse saturable absorption, as evidenced by the peak intensity at the focal point (Z=0) in the open aperture
configuration. Conversely, Figure 7(b) demonstrates a transition from valley to peak in the closed aperture
configuration, indicating a self-focusing effect induced by the sample [27-29]. Under the open aperture
configuration, the absorption coefficient 'B' scrutinized as 9.2217x10° m/W for LADGP single crystal. The
magnitude of the third order susceptibility 'y®" recorded at 3.8189x10® esu for LADGP. The presence of a
positive nonlinear refractive index (ny) signifies that the material exhibits self-focusing characteristics [30]. The
self-focusing nature of LADGP single crystal, opens up a wide range of opportunities for applications in optics,
photonics, and materials science, with potential implications in areas such as telecommunications, laser
technology and biomedical imaging.
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4.Conclusion

A high-quality monolithic crystal of LADGP was cultivated employing the slow evaporation solution method,
yielding in a transparent yellow crystal measuring 9 x 8 x 5 mm? in dimensions. The lattice arrangement of
LADGP, ascertained via single crystal XRD, falls under the monoclinic structure, specifically within the
centrosymmetric space symmetry P2:/n. The purity in the LADGP crystal was validated through Powder XRD
investigation. Functional groups and their vibrations underwent examination using FTIR evaluation. The
hardness characteristics in the LADGP crystal were assessed via Vicker microhardness test. UV-Vis-NIR
spectroscopy revealed a favorable optical transparency of 85% in the LADGP crystal, with cut-off wavelengths
at 210 and 353 nm, exhibiting its suitability for Nonlinear Optical (NLO) device utilizations. The LADGP
crystal showcased excellent optical quality, with a low dielectric loss at high frequencies, as evidenced by its
dielectric response. The photoconductivity measurements indicate that LADGP exhibits a positive response to
light-induced conductivity. The laser damage threshold for the LADGP crystal, estimated at 2.6 GW/cm?,
indicates its strong suitability for laser applications. Furthermore, the susceptibility (x®) value for the LADGP
crystal was determined as 3.8189x10° esu, affirming its suitability for practical devices such as remote sensing
and lighting control.
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