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Abstract:- This research investigates the forecast of short-term electricity consumption. The impact of various 

factors on prediction accuracy is investigated using past data. It is observed that certain factors exhibit higher 

importance in forecasting accuracy, with their significance diminishing over time. Two models were employed 

for prediction: one utilizing 24-hour past data and the other 72-hour past data for forecasting the subsequent 24-

hour demand. It was unexpected to discover that the model that only used historical demand data performed better 

than predicted. This research contributes to a better understanding of short-term electricity demand forecasting, 

which is crucial for efficient energy planning. 
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1. Introduction 

Global energy consumption has risen sharply since the turn of the twenty-first century, revealing challenges such 

as depleting fossil fuel reserves and inefficiencies in renewable energy usage [1]. A new power system that 

emphasizes carbon peaking and neutrality emerges as the country moves closer to its double carbon target as part 

of its energy revolution. Precise estimation of power load is essential to maximize efficiency and minimize 

emissions [2]. Short-term load forecasting (STLF) is vital for daily power system operation, including electricity 

market clearing, and has drawn significant interest from industry and academia [3]. 

The ability of fossil fuel-based generators to balance energy supply and demand is essential to grid frequency 

stability, but the rise of renewable may reduce this reserve capacity  [4]. STLF ensures economically viable 

electricity generation and system security. It provides advance load predictions, crucial for reducing operating 

costs and impacting electricity market prices. This makes it vital for regional transmission agencies, utilities, 

financial institutions, and energy suppliers [5]. Local load profiles combine to form the bulk load, each influenced 

by the regional climate. Recent load forecasting models integrate local climate, load patterns, and other factors 

[6]. Due to industrialization and urbanization, there has been a notable increase in electricity demand over the past 

decade, leading to fluctuating consumption patterns. Accurate energy forecasting is essential to tackle issues such 

as unnecessary generator usage and excessive fuel consumption. It provides crucial data for efficient capacity 

planning and optimized scheduling based on historical data and weather conditions [7]. In smart grid development, 

short-term load forecasting is vital for scheduling generation and managing controllable loads. Additionally, 

medium and long-term forecasting support maintenance, outage scheduling, and new plant installation. 

With the integration of renewable and micro grids, managing multiple distributed energy generations complicates 

generation control, necessitating demand-side management. Dynamic pricing introduces complexity into short-

term load forecasting, as changes in tariffs result in continuously shifting load demands, emphasizing the need for 

forecasting in dynamic price environments. 

2. Materials and methods 

In order to provide stability and reliability by balancing generation and demand, load forecasting is essential for 

power system development, maintenance, and planning. Momentarily switching generation to meet demand 

fluctuations can be costly, making load forecasting essential to avoid such issues. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024)  

__________________________________________________________________________________________ 

2928 

2.1 Data gathering 

In this research, Australia's load demand data is being considered, as it is openly available and consists of data for 

every half hour, including aggregated demand from specific regions and the price of power. 

Consider load demand at time t is (𝑡) and price/MWh is 𝑝(𝑡), then, both of these variables can be correlated using 

cross-correlation, as follows. 

𝑟𝑙𝑝𝑟 = lim
𝑀→𝑖𝑛𝑓

1

2𝑀+1
∑ 𝑙(𝑡) ∗ 𝑝𝑟(𝑡)𝑀

𝑡=−𝑀          (1) 

If the value of 𝑟𝑙𝑝𝑟  more than loads, demand, and price are highly dependent on each other.  

Weather data, including solar irradiation, wind speed, and ambient temperature, is obtained from the NREL website. 

These data are not direct sensor readings but are pre-processed for use in any given year, which may hinder the 

accurate inference of relationships in the results. 

2.2 Time Features 

The time features are extracted from the load demand data by classifying based on time in three different cases. 

Morning: Load Demand between 6 a.m to 12 p.m 

𝑓(𝑥) = {
1, 𝑖𝑓 𝑡 ∈ [6 𝑎𝑚, 12 𝑝𝑚]

0, 𝑜𝑡ℎ𝑟𝑤𝑖𝑠𝑒
         (2) 

Afternoon: Load Demand between 12 p.m to 5 p.m 

𝑓(𝑥) = {
1, 𝑖𝑓 𝑡 ∈ [12 𝑝𝑚, 5 𝑝𝑚]

0, 𝑜𝑡ℎ𝑟𝑤𝑖𝑠𝑒
         (3) 

Evening: Load Demand Between 5 p.m. to 8 p.m. 

𝑓(𝑥) = {
1, 𝑖𝑓 𝑡 ∈ [5 𝑝𝑚, 8 𝑝𝑚]

0, 𝑜𝑡ℎ𝑟𝑤𝑖𝑠𝑒
         (4) 

Night: Load Demand between 8 p.m to 6 a.m 

𝑓(𝑥) = {
1, 𝑖𝑓 𝑡 ∈ [8 𝑝𝑚, 6 𝑎𝑚]

0, 𝑜𝑡ℎ𝑟𝑤𝑖𝑠𝑒
         (5) 

Week Day: Monday to Friday 

𝑓(𝑥) = {
1, 𝑖𝑓 𝑡 ∈ 𝑤𝑒𝑒𝑘 𝑑𝑎𝑦𝑠
0, 𝑜𝑡ℎ𝑟𝑤𝑖𝑠𝑒

         (6) 

Weekend: Saturday and Sunday 

𝑓(𝑥) = {
1, 𝑖𝑓 𝑡 ∈ 𝑤𝑒𝑒𝑘𝑒𝑛𝑑
0, 𝑜𝑡ℎ𝑟𝑤𝑖𝑠𝑒

         (7) 

2.3 Correlation between features 

The correlation between 2 periodic signals x(t) and y(t) can be given by following equation. 

𝑟𝑥𝑦 = lim
𝑀→𝑖𝑛𝑓

1

2𝑀+1
∑  𝑥(𝑡) ∗ 𝑦(𝑡 − 𝑙)𝑀

𝑡=−𝑀         (8) 

Equation(8) represents 𝑟𝑥𝑦 (𝑙) = correlation between x(n) and y(n) at given lag l, 𝑙= lag or time shift, 𝑀 = Length 

of signal. The two signals in the above equation must have the same magnitude. So, if there are two signals of 

different magnitude then signals need to be scaled between 0 to 1 or any desired range. To scale signals X between 

0 to 1 use following equation[6]. 

𝑥𝑛 =  
𝑥𝑛−𝑚𝑖𝑛(𝑋)

𝑚𝑎𝑥(𝑋)−𝑚𝑖𝑛(𝑋)
          (9) 
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Where, (𝑛) = Signal which is to be scaled, 𝑚𝑖(𝑋) = min value of entire signal 𝑋(𝑛),  𝑚𝑎𝑥(𝑋) = max value of entire 

signal 𝑋(𝑛) and 𝑥(𝑛) = scaled signal. 

𝑥̂(𝑛) =
𝑥(𝑛)−𝑥̅

𝜎𝑥
           (10) 

Equation (10) indicates (𝑛) = Signal or series which is to be scaled, 𝑥̅ = Mean of (𝑛), 𝜎𝑥= Standard deviation of 

𝑥(𝑛) and 𝑥̂(𝑛) = scaled series. Cross correlation can be normalized in terms of (𝑡) and (𝑡), 

𝑟𝑥𝑦 =
∑ (𝑥(𝑛)−𝑥̅)∗(𝑦(𝑛−𝑙)−𝑦̅)𝑁

𝑛=1

𝑁∗𝜎𝑥∗𝜎𝑦
         (11) 

Equation (11) depicts that (𝑛) = 𝑓𝑖𝑟𝑠𝑡 𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑖𝑔𝑛𝑎𝑙 𝑥, 𝑥̅ = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑥, (𝑛) = 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 𝑦, 𝑦̅  = 

𝑚𝑒𝑎𝑛 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑦, 𝜎𝑥 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥, 𝜎𝑦 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑦 and 𝑁 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑥, 𝑦. 

2.4 Long Short-Term Memory Neural Network 

To facilitate the network's ability to identify relationships between distant time points, the LSTM conceals the 

state variables, ht and Ct. These variables store short-term and long-term memory information, respectively. Each 

LSTM unit comprises three gates: the forgetting gate, input gate, and output gate. The forgetting gate discards 

irrelevant data and acknowledges when the current content of Ct has been erased. The input gate regulates the 

input of candidate memory cells into Ct and filters these cells accordingly. Meanwhile, the output gate manages 

the output data from Ct at the current time step. Through parameter exchange, each LSTM unit continuously learns 

and adjusts its corresponding parameters [10]. 

An artificial recurrent neural network (RNN) with long short-term memory (LSTM) processes sequential data. 

RNNs are helpful for tasks like time series forecasting and speech recognition because they leverage previous 

outputs to inform the creation of new ones. They have trouble with the vanishing gradient problem, though, which 

is a condition where long-term dependencies make the network forget crucial data. In order to address this, LSTM 

was developed with a unique structure that aids in memory retention and updating over longer sequences while 

preserving important context [10], [11], [12][13], [14]. 

 

Figure 1 LSTM Cell 

As shown in Figure 1, 𝑥𝑡 is 3d input vector of size 𝑙 𝑥 𝑚 𝑥 𝑛, 𝑙 indicates total training data points, m shows 

Dimension of data and n is past data points. 

2.5 Utilizing LSTM for Load forecasting 

There are two basic models for forecasting: one predicts the load for the next 24 hours by utilizing data from the 

previous 24 hours. Data that is gathered every 30 minutes is used to train this model. For LSTM takes past 48 
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inputs 𝑥(𝑡 −  47), 𝑥(𝑡 −  46), 𝑥(𝑡 −  45), … , 𝑥(𝑡) and outputs load for next 24 hours or next 48 time -steps 

𝑙(𝑡 +  1), 𝑙(𝑡 +  2), 𝑙(𝑡 + 3), … , 𝑙(𝑡 +  48). 

Structure of LSTM NN is shown in Table 1. 

Table 1 Structure of LSTM NN 

 
Input 

Layer 

Hidden 

Layer 

Output 

Layer 

No of 

Unit/neuron 

22 44 48 

Activation 

Function 

Tanh Tanh Relu 

 

3. Results and Discussion 

To train the model, data from the first 20 months of two consecutive years, 2018-2019, is utilized, while the last 

4 months are reserved for testing. Python is employed as the scripting language, and TensorFlow library is utilized 

to construct the LSTM neural network. Data is pre-processed to suit the TensorFlow library, and individual models 

are created for each input-output combination as indicated in the earlier combinations. To expedite training and 

accommodate limited computational resources, epochs are set to 100 and batch size is set to 12. Evaluation of 

results will be conducted using the root mean square error (RMSE) as shown in Equation (12). 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖−𝑦̂)2

𝑁

𝑁
𝑖=1                     (12) 

Various models are employed for load demand forecasting, each leveraging different input combinations. Model 

1 integrates past load demand, wind speed, solar irradiance, ambient temperature, and time features. Model 2 

relies solely on past load demand data. Model 3 combines past load demand with time features, while Model 4 

incorporates past load demand with wind speed. Similarly, Models 5 and 6 incorporate past load demand with 

solar irradiance and ambient temperature, respectively. Lastly, Model 7 combines past load demand with all 

environmental variables, including wind speed, solar irradiance, and ambient temperature. 

As shown in Figure 2, Model 2 exhibits superior performance among the considered models for load demand 

forecasting, with the lowest RMSE of 209.2656 and a high correlation coefficient of 0.9845. By solely utilizing 

past load demand data, this model demonstrates remarkable effectiveness in capturing essential patterns and trends 

within the dataset. 

 

Figure 2 RMSE and Cross Correlation 
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Figure 3 indicates a one-day forecast, specifically predicting the next 24 hours. 

 

Figure 3Forecasted load demand 

The Result shown in figure 4 indicates correlation coefficients and root mean square error (RMSE) values for the 

various features used in forecasting are as follows: Load Demand demonstrates the highest correlation coefficient 

of 0.83764 and the lowest RMSE of 209.2656, indicating its strong predictive power. In contrast, Wind Speed, 

Temperature, and Solar Irradiation exhibit lower correlation coefficients and higher RMSE values, suggesting 

their comparatively weaker predictive performance. These findings underscore the importance of Load Demand 

as a key feature in accurate forecasting models. 

 

Figure 4 RMSE and Cross Correlation with Weather features 

In second Model type Past 72-hour data is taken as input to forecast next 24-hour load        demand. Network Structure 

is kept same as in previous model type. The models for load demand forecasting vary in their input combinations. 

Model 8 includes past load demand, environmental factors, and time features, while Model 9 uses only past load 

demand data. Models 10 to 13 combine past load demand with specific environmental variables. Model 14 

integrates past load demand with all environmental factors. These models highlight the importance of leveraging 

different input features to improve forecasting accuracy. 

The performance of various models in load demand forecasting is displayed in Figure 5. Model 9 stands out with 

the lowest RMSE of 197.643 and a high correlation of 0.978654, indicating its superior predictive accuracy. Model 

8, on the other hand, exhibits the highest RMSE of 313.9156 and a correlation of 0.947654, suggesting 

comparatively weaker predictive performance. Models 10, 11, 12, 13, and 14 show intermediate results in terms 

of both RMSE and correlation coefficients. These findings provide valuable insights into the effectiveness of 

different modelling approaches in load demand forecasting. 
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Figure 5 Forecasted load using past 3 days input 

Figure 6 depicts that a model that uses load demand from the last 72 hours as input should be able to produce 

better forecasts than models that use other parameters. When comparing models that produce better results with 

less input, the model that uses the load demand from the previous 24 hours comes out on top. The results indicate 

that by focusing on the load demand data from the previous 24 hours, it is possible to achieve accurate load 

demand forecasting for the upcoming 24 hours.  

 

Figure 6 Forecasted load using past 3 days input  

4. Conclusion 

In summary, our forecasting process involved training models using data from the first 20 months of 2018-2019, 

reserving the last 4 months for testing. Python, along with the TensorFlow library, facilitated the construction of 

LSTM neural networks, with preprocessing tailored to suit TensorFlow's requirements. Employing a batch size of 

12 and 100 epochs expedited training while accommodating computational constraints. Various models were 

explored, each utilizing different input combinations to forecast load demand. Model 2 emerged as the most 

effective, relying solely on past load demand data. Additionally, considering load demand from the previous 24 

hours proved pivotal for accurate forecasting, as highlighted by superior results compared to models incorporating 

other parameters. These findings emphasize the significance of load demand data in achieving precise load 

demand forecasts. 
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