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Abstract:- Global energy trends are undergoing significant changes, and the future of transportation will promote 

sustainable development by managing energy production and consumption while reducing vehicle emissions. 

Electric Vehicles (EVs) have the potential to reshape energy consumption patterns by mitigating environmental 

risks. In the upcoming years, Artificial Intelligence (AI)-based systems will be pivotal in the comprehensive 

energy management of EVs. Advanced EV technology and intelligent components will drive innovation in 

automotive power train design. However, several challenges like regional government support, user acceptance, 

vehicle range, battery technology, and charging infrastructure hinder widespread EV adoption. Therefore, 

understanding current conditions and emerging trends is crucial to expand EV penetration. This study explores 

existing charging technologies and standardization efforts to enhance EV adaptability, along with AI applications 

in advancing EV intelligence. Range and battery level estimation are critical for the safe and efficient operation 

of electric vehicles (EVs). This work proposes a Neural Network (NN)-based approach for battery level estimation 

in EVs. The findings indicate that the suggested neural network-based method can attain greater accuracy and 

quicker convergence compared to current techniques. This can lead to more efficient electric vehicle operation 

and enhanced battery lifespan. 

Keywords: Electric Vehicle, Artificial Intelligence based approach, Neural Network, Range and battery 

temperature estimation 

1. Introduction 

The use of rechargeable batteries is recommended for storing renewable and other types of energy. Lithium-ion 

(Li-Ion) batteries, known for their high energy density, reliable safety features, and environmentally friendly 

nature, lead the global battery market, especially in Electric Vehicles (EVs) and power banks [1-4]. The key 

parameter for lithium-ion batteries in information-based applications is the state of charge (Battery temperature). 

Battery temperature is influenced by various short-term and long-term factors and represents the ratio of the 

remaining capacity to the current rated capacity. Ensuring that the battery operates within a safe range benefits 

the battery management system (BMS). Therefore, accurately estimating the Battery temperature is crucial for 

determining the distance under load and the battery's intrinsic state of charge under mechanical load. Lithium-ion 

batteries perform optimally when their battery temperature is precisely measured.  

Battery temperature contributes to optimal battery management, improved energy efficiency, and real-time battery 

monitoring, taking into account both long-term and short-term operating conditions [5,6]. This data can also be 

utilized by the vehicle's control system to optimize energy consumption and extend the vehicle's range. In 

renewable energy systems like solar or wind power, precise Battery temperature estimation is crucial for 

optimizing the use of stored energy and ensuring that there is enough energy available to meet demand. 

The use of EVs is growing in popularity due to their potential for reducing greenhouse gas emissions and 

dependence on fossil fuels [7-13]. Accurate estimation Battery temperature of the battery is essential for the proper 

operation of an EV, as it indicates the amount of energy remaining in the battery and can affect the performance 

and range of the vehicle. Traditionally, Battery temperature estimation has been performed using mathematical 
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models based on the electrochemical characteristics of the battery [14-20]. However, these models can be complex 

and may not accurately reflect the real-world behavior of the battery, especially in cases where the battery has 

aged or experienced other factors that can affect its performance. 

1.1 Literature review 

Battery temperature must be implicitly calculated based on observable battery characteristics and factors since it 

cannot be directly defined. Due to its relevance in predicting EV range, Battery temperature estimation is crucial 

[21-26]. Over the years, various Battery temperature estimation techniques have been developed and can be 

broadly categorized into four groups: lookup table approach, ampere-hour integral method, model-based 

estimation method, and model-free parameter estimation. The lookup table methods have known limitations and 

have gradually been replaced by more advanced techniques like the model-based estimation method. Researchers 

have combined these with nonlinear state estimation algorithms to enhance the estimation capabilities of Lookup 

Table (LUT), Coulomb-Counting, and model-based techniques [27-30]. Common algorithms in the literature 

include the Kalman filter, Luenberger observer, proportional integral viewer, and sliding mode viewer. 

The traditional Kalman filter is sensitive to nonlinear processes, temperature, and battery charging/discharging as 

it is suitable only for linear systems. To address this, the Extended Kalman Filter (EKF) and Unscented Kalman 

Filter (UKF) have been effectively used to estimate Battery temperature [31-36]. Fuzzy logic, a popular AI 

approach, uses multi-valued logic to compute Battery temperature while considering various factors like age, 

temperature, and noise [37-40]. However, it requires extensive training data and long-term data collection 

experience to develop reliable rules. Support Vector Machines (SVM) and Gaussian Process Regression (GPR) 

perform well, especially in nonlinear battery modeling. Recent research has modified and improved these methods 

to handle multiple input parameters effectively. The Greenwald-Khanna method, which uses entropy weight and 

Kernel functions with genetic evolution, is recommended for clustering and battery state prediction, providing 

more accurate capacity, battery cell package clustering, and energy estimates [41-46]. However, complex 

computing remains a significant issue, hindering implementation in battery management systems (BMS). 

Coulomb counting, a simple Battery temperature calculation technique, accumulates the net charge over time in 

ampere-hours (Ah). Its effectiveness depends on the accuracy of current sensors and the initial Battery temperature 

calculation [47-50]. As an open-loop estimator, it does not completely prevent the accumulation of measurement 

errors and ambiguities, nor can it account for initial Battery temperature variations due to self-discharging or 

identify the initial Battery temperature, leading to increasing estimation errors over time. Data-driven estimation 

approaches have also been employed to estimate Battery temperature. Techniques like Support Vector Machines, 

fuzzy control, and Artificial Neural Networks (ANN) are commonly used in classical machine learning 

applications, typically involving no more than two layers of processing [51,52]. ANN has gained attention for 

state estimations under various battery dynamics, fluctuating loads, and changing temperatures. The main 

advantage is that information fusion-based models accurately represent the nonlinear behavior of the battery 

discharging and charging process due to the training process. However, selecting the activation function for hidden 

nodes, determining the number of neurons in the hidden layer, and adjusting the learning rate pose challenges [53-

58]. Traditional neural networks often involve complex computations and may be inaccurate when training data 

is scarce or get stuck in local minima with large training datasets. 

Recent advancements have made traditional ANN more effective. Adding more computational layers, thanks to 

improvements in software and hardware, has significantly enhanced conventional ANN capabilities [59]. The 

deep neural network (DNN), an ANN with additional computational layers, excels in fields such as computer 

vision, speech recognition, and natural language processing with smarter training methods and adjustments [60-

64]. Despite these advancements, accurate Battery temperature estimation remains essential to accommodate 

various conditions and the electrochemical properties of materials used in classical empirical techniques. Robust 

algorithms are crucial for collecting and analyzing data to improve Battery temperature estimation under diverse 

operating scenarios. Most existing models do not account for aging health factors and the cross-correlations of 

Battery temperature with interdependent nonlinearities in collected data [65-70]. Modern Battery temperature 

estimation is vital to equip EVs with accurate and reliable systems for monitoring and managing their batteries. 
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This paper is organized into five sections. Section 1 provides an introduction. Section 2 details the proposed 

technique designed to enhance the efficiency of Battery temperature estimation. Section 3 explains the drive cycle 

datasets used in this study, including their sources and characteristics. Section 4 presents the results obtained from 

the proposed technique and offers a comprehensive discussion of the findings. Finally, Section 5 concludes the 

study and summarizes the main findings.  

2. Proposed Methodology 

This paper presents a comprehensive study aimed at accurately predicting the battery temperature of Lithium-ion 

batteries in Electric Vehicles (EVs) across a range of low and high temperatures. The graphical abstract illustrating 

the proposed model can be found in Figure 1. 

 

Figure 1: Proposed model for training and testing the data set 

2.1. Aritificial Neural Network 

Artificial Neural Network (ANN) is a type of deep neural network widely used in image and video recognition. It 

consists of multiple layers, each applying a set of filters to the input data to extract features. The input to a ANN 

is typically a multidimensional array, such as an image represented as a matrix of pixel values. The filters, or 

kernels/weights, used by each layer are also multidimensional arrays that are learned during training. The general 

structure of a ANN is depicted in Figure 2.  

 

Figure 2: Architecture of Artificial Neural Network 

A 1D ANN is a variant of Convolutional Neural Network (CNN) designed to process one-dimensional data, such 

as time series signals. It performs a convolution operation on the input data along one dimension, using a sliding 

window of fixed size to extract features from the signal. The input to a 1D ANN is typically a sequence of real 

values, represented as a one-dimensional array. The filters used by each layer are also one-dimensional arrays, 

known as kernels or weights, learned during training. The output of a convolutional layer in a 1D ANN is produced 

by applying a convolution operation between the input and the kernel along the time dimension. 

3. Drive cycles of EV 
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Drive cycles are standardized driving patterns used to assess electric vehicle battery performance, particularly for 

State of Charge (Battery temperature) estimation. Common drive cycles include HPPC (Hybrid Pulse Power 

Characterization), HWFET (Highway Fuel Economy Test), UDDS (Urban Dynamometer Driving Schedule), and 

US06 (Supplemental Federal Test Procedure). HPPC applies pulse power loads to the battery, while HWFET and 

UDDS simulate highway and urban driving conditions, respectively. US06 is a more aggressive cycle with high-

speed driving and frequent stops. These cycles play a crucial role in Battery temperature estimation by providing 

a uniform method to evaluate battery performance under various driving conditions. This standardization enables 

manufacturers to conduct accurate comparisons and tests, enhancing Battery temperature estimation algorithms 

and ultimately improving battery longevity and performance. 

3.1 Battery temperature dataset 

In this study, datasets from HPPC, HWFET, UDDS, and US06 drive cycles at temperatures ranging from -20°C 

to 25°C were used to train and test the proposed model. Data sourced from the CALCE Research Group included 

tests on a cylindrical LG 18650HG2 Li-ion battery cell, following standard charging and discharging protocols 

with constant current/constant voltage procedures.  

3.2 Dataset Diversity 

Dataset diversity was analyzed through correlation analysis, an essential step to understand how different features 

impact Battery temperature estimation using deep learning models. The correlation matrix revealed significant 

relationships among voltage, current, temperature, and Battery temperature at -20°C for various drive cycles. 

Identification of highly correlated features helped mitigate multicollinearity and instability in the model. By 

selecting and optimizing input variables based on these correlations, the study aimed to develop a more precise 

and reliable deep learning model for Battery temperature estimation. Use the state of charge and temperature to 

determine the battery's condition. To forecast the future temperature profile of the battery, analyze the load applied 

to the battery pack and have some data on its current temperature state. To gather this information, use the product 

of the battery's instantaneous current and voltage as the load. You can predict future temperatures with knowledge 

of just a few initial battery temperature states. NARX models are well-suited for these applications. This example 

demonstrates how to define a NARX model with a temperature delay over multiple timesteps during training. 

3.3 Battery Research and Development 

Continuous research and development in electric vehicle (EV) batteries are crucial due to their high cost and 

significant impact on vehicle performance. AI and machine learning (ML) methods are increasingly being studied 

to enhance battery performance and efficiency while reducing costs. Research has particularly focused on lithium-

ion batteries, solid-state batteries, and metal-air batteries as promising technologies. Cutting-edge advancements 

are improving battery performance, energy management, and battery pack management. A review of AI applied 

to battery research highlights neural networks, decision trees, support vector machines, and k-nearest neighbors 

as the most commonly used AI and ML methods in battery R&D (Lombardo et al., 2021). 

These methods reduce computational demands for material selection, formulation, and operational conditions. 

The scientific literature has explored AI applications for estimating battery State of Health (SOH), State of Charge 

(BATTERY TEMPERATURE), Remaining Useful Life (RUL), and similar parameters (Li et al., 2019; Semeraro 

et al., 2022). However, there are limited academic studies on new data-driven approaches in battery research and 

development. 

4. Results and Discussion 

In this section, we first evaluate various layer structures of Deep Neural Networks (DNN) using the drive cycle 

dataset. Based on comparative analysis, we select the 3-layer DNN structure for State of Charge (SoC) estimation, 

which is then tested across all drive cycle scenarios. Finally, we present a comparative analysis with competing 

techniques, demonstrating that our proposed Hybrid model excels in SoC estimation. 

4.1 Range Estimation: 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024)  

__________________________________________________________________________________ 

2899 

The range of the vehicle still depends on real world driving conditions. The range also depends on the driver 

profile, including when the driving pattern is agressive (demanding lots of instantaneous power) or relaxed (stable 

speeds, gradual acceleration). In this example, you use typical worst case driving profile scenarios to evaluate the 

range provided by a 400V battery pack. 

Automotive manufacturers conduct standardized drive cycles to determine the range rating of battery electric 

vehicles (BEVs). The industry commonly employs three main cycles: NEDC (New European Driving Cycle), 

WLTC (Worldwide Harmonised Light Vehicle Test Cycle), and EPA (Environmental Protection Agency) cycle. 

These cycles are conducted in controlled laboratory conditions. The NEDC cycle typically consists of two phases 

simulating urban and non-urban driving scenarios, lasting 20 minutes with a maximum speed of 120 km/hr and it 

is depicted in Figure 3. 

 

Figure 3: New European Driving Cycle 

The typical WLTP (Worldwide Harmonised Light Vehicle Test Procedure) cycle comprises four dynamic phases: 

low, middle, high, and extra high speeds. It spans a duration of 30 minutes with a maximum speed reaching up to 

131 km/hr as shown in Figure 4. 

 

Figure 4: Worldwide Harmonised Light Vehicle Test Procedure 

The EPA driving procedure involves subjecting the vehicle to multiple drive cycles. The two primary cycles 

utilized are UDDS (Urban Dynamometer Driving Schedule), designed for assessing urban fuel economy is shown 

in Figure 5, and HWFET (Highway Fuel Economy Driving Schedule), used to evaluate highway fuel economy as 

clearly explained in Figure 6. 

 

Figure 5: Urban Dynamometer Driving Schedule 
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Figure 6: Highway Fuel Economy Driving Schedule 

4.2 Battery Temperature Estimation 

In automotive battery packs, sensors for pack voltage, current, and temperature relay measurement signals to the 

battery management system (BMS). These signals are crucial for battery control and logic implementation. Given 

the challenges of cost and installation complexity, especially in large battery packs, there's a need for alternative 

methods to estimate battery temperature numerically. This approach can either substitute or supplement sensors 

in the event of failure or malfunction, offering cost savings by eliminating the requirement for a thermocouple. 

The onboard numerical estimation of battery temperature relies on measurements from voltage and current 

sensors. For different gear ratio, the temperature of the winding and magnet is shown in Figure 7. 

 

Figure 7: Winding temperature and magnet temperature for different gear ratio 

The use of AI- and ML-based decision support systems for electric vehicle (EV) power requirements presents 

important managerial considerations. The temperature prediction in battery using the predicted and actual values 

is depicted in Figure 8.  

Figure 8: Temperature prediction and profile check 
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Integrating advanced forecasting technology offers significant advantages across various sectors. These 

sophisticated systems accurately predict EV electricity consumption patterns over different timeframes, from days 

to years. This foresight allows utilities to plan and schedule electricity generation and distribution more 

effectively, ensuring optimal resource allocation. Additionally, it helps utilities identify peak demand periods, 

enabling proactive management of electricity supply to meet the growing needs of EV users during these times. 

Furthermore, this technology facilitates the optimization of the placement and capacity of EV charging stations 

by analyzing data to identify regions with substantial EV demand. 

Adopting this framework leads to tangible cost savings by optimizing EV charging schedules to align with periods 

of lower electricity rates. Organizations can reduce grid maintenance and operational expenses by utilizing off-

peak charging hours, enhancing financial efficiency. Beyond economic benefits, this method strengthens the 

reliability of electrical power grids by proactively identifying and addressing potential issues before they escalate 

into disruptive outages, thereby enhancing the resilience of critical infrastructure and ensuring uninterrupted 

access to electricity for consumers. Additionally, this method aims to enhance the electrical grid’s sustainability 

by minimizing fossil fuel usage. It promotes the efficient use of clean energy by coordinating EV charging with 

renewable energy sources.  

For instance, EVs can be charged using wind power at night and solar power during the day, contributing to grid 

stability and the growth of renewable energy. Implementing AI and ML in decision support systems for predicting 

EV power requirements can significantly benefit electric car fleets by optimizing planning, scheduling, and 

charging infrastructure to reduce costs, increase reliability, and promote sustainability. Technologically, this 

method requires a system capable of processing, storing, and analyzing vast amounts of data in real-time. The 

system must also adapt to environmental changes, such as an increase in EV availability and the integration of 

renewable energy sources. Despite these challenges, AI- and ML-based decision support systems for determining 

EV power requirements show great potential for enhancing the efficiency and sustainability of electrical grids. 

5. Conclusion and Future Research Directions 

This study has developed a robust framework to identify the key characteristics of EV charging demand. By 

integrating artificial intelligence (AI) and machine learning (ML), the model uncovers latent features crucial for 

accurately calculating EV charging demand. The Demand Forecasting module effectively predicts power 

consumption across various locations and loads, spanning multiple timeframes. Implementing this model’s 

strategies in managerial contexts enables the creation of feasible charging demand and load zone designs. For 

example, in areas with high charging demand, the model provides insights for optimizing power distribution 

through strategies like power swapping or augmentation. Its adaptable design is suitable for various scales, from 

smaller neighborhoods to entire countries, with only minor adjustments needed for different scenarios. 

However, the effectiveness of the proposed model depends on several factors, such as localized weather conditions 

and the influence of marketing strategies on charging demand. A significant limitation of AI- and ML-based 

decision support systems is their dependence on data availability and quality. The reliability of these models is 

closely tied to the breadth and accuracy of the datasets they are trained on, necessitating careful attention to real-

world representativeness. The complexity of AI and ML models also poses challenges in terms of interpretability 

and transparency, which are crucial for ensuring the validity and reliability of their conclusions. Additionally, AI 

and ML models are susceptible to biases, which can lead to skewed decision-making processes. Addressing these 

biases requires meticulous mitigation strategies. Security and privacy vulnerabilities are significant risks as battery 

temperature with AI and ML systems, highlighting the need for robust security measures and proactive risk 

mitigation strategies. 

Future research should focus on improving data gathering and preparation methodologies, including techniques 

for data cleaning, anonymization, and handling missing data. This will ensure the integrity and utility of datasets. 

Developing accurate, robust, and interpretable AI and ML models requires exploring new methodological 

approaches and gaining a deeper understanding of their operational mechanisms. Transparent and interpretable 

models are essential for fostering trust and confidence in their outputs. Advancing model evaluation and validation 

techniques is critical for ensuring the reliability and applicability of AI and ML solutions. Comprehensive 
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evaluation metrics and strategies for assessing accuracy and robustness are necessary for effectively gauging 

model performance. Addressing security and privacy concerns requires a multi-faceted approach, including the 

development of stringent security protocols, proactive threat detection mechanisms, and user education initiatives. 

Safeguarding AI and ML systems against potential vulnerabilities is paramount for upholding data integrity and 

user privacy. 
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