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Abstract : Software fault prediction is the practice of creating frameworks that software professionals are able to 

employ in the early stages of the software development life cycle to detect troubling constructs related to modules 

or classes. Several techniques have been suggested in the past for this purpose, the majority of which relied on 

lengthy mathematical models that did not appear to be suited for the current challenge. With technological 

advances, artificial intelligence (AI) modeling, also known as soft computing approaches, unlike conventional 

models, is gaining attention in research as it requires less processing and anticipates results quickly. In this paper, 

the author attempts to review conventional and machine learning techniques used previously for software fault 

prediction. For this review, data has been collected from various reputed library, such as IEEE Xplore. The present 

article has analyzed the various papers published from 2018 onward on the use of various conventional and non-

conventional techniques. The extensive study’s analysis given in this article will be of great interest to 

academicians and professionals working in the field of software fault prediction in determining in which situations 

they need to apply which technique for the best results. 

Keywords : Bespoke Techniques, Conventional Techniques  

1. Introduction  

Despite the fact that a team has meticulously followed development processes, unforeseen flaws and unknown 

problems may be revealed. It is critical to anticipate potential software flaws and improve the way projects are 

organized and managed for testing and maintenance. The increasing level of complexity and reliance on software 

has led to a demand for superior, sustainable software at affordable prices. Software defect prediction is a critical 

activity for improving software quality and reducing operational effort before the system as a whole is deployed 

[1]. Early recognition of faults may result in quick rectification and the release of maintainable software. In the 

literature on the subject, there are numerous software metrics. These software metrics and information about faults 

can be used to build models for anticipating problematic modules or classes at an early stage of the course of the 

software development cycle. 

The goal of software fault prediction is to forecast fault-prone software modules by utilizing some fundamental 

software project attributes. It is normally carried out by training a prediction model for a well-known project, 

utilizing project attributes enhanced with fault details, and then using the prediction model to anticipate faults for 

unfamiliar projects. Software fault prediction is built on the concept that if a project generated in a particular 

environment results in faults, then any part of it developed in the same environment with the same features would 

also result in faults [2]. Early diagnosis of problematic modules can help to streamline efforts in later stages of 

software development by effectively focusing quality assurance efforts on particular modules. 

Figure 1 depicts the software fault prediction approach. The graphic depicts three of the most important parts of 

the software fault prediction (SFP) procedure: the software fault dataset, software fault prediction methodologies, 
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and performance analysis metrics. First, software fault data is gathered from software development project 

repositories that contain data relating to the software project's production cycle, which can include source code 

and change logs, and fault data is then gathered from the appropriate fault repositories. Following that, the values 

of a variety of software metrics are taken into account to serve as independent variables, while the amount of fault 

information required for determining the fault (e.g., the total number of faults, faulty and non-faulty) serves as the 

dependent variable. Finally, the developed fault-predictive system is tested using various performance evaluation 

metrics such as accuracy, precision, recall, and AUC (Area Under the Curve).  

 

Figure 1: Approach to Software fault prediction [3] 

1.2 Conventional technique for SFP 

In SFP, most of the conventional STs employed, such as logistic regression (LR), linear regression (LIR), 

univariate regression (UR), and multivariate regression (MR) [4], are now trustworthy for research in detecting 

flaws, but such techniques are not beneficial for the original study. In response, scientists developed the 

application of artificial intelligence (AI) [5] and associated methodologies [6]. Researchers are also looking into 

other facets of AI to address SFP [7]. The ST is highly effective at identifying known flaws [8] since they make 

their own money [9], while the statistical technique for SFP [10] is less useful because there aren't many false 

positives. The types of ST that have been proposed in the literature are depicted in Figure 2. 

 

Figure 2: Conventional techniques to SFP [11] 

Software quality estimation [12] was proven to be a difficult task in the field of software engineering [13]. 

According to a recent study on MLT-based SFP, it’s essential to conduct studies and in-depth analysis in the SFP 
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to get better outcomes for the SQ. The SFP refers to the direction of characteristics like dependability, tolerance 

for errors, compliance, complexity of time and effort estimate, etc. in this context. Researchers have also claimed 

that it is difficult to predict errors and flaws without using machine learning techniques at different stages of the 

software development life cycle. It is meant to draw attention to the machine learning technique-based SFP 

experiments that were conducted.  

1.3. Machine learning based SFP 

Machine learning techniques enhance the fault prediction and software quality. Rule-based learning (RBL), 

decision trees (DT), Bayesian learners (BL), supervised learning algorithms (SLA), neural networks (NN), support 

vector machines (SVMs), and evolutionary algorithms (EA) with their sub-techniques are all included in machine 

learning. The goal of employing machine learning in SFP is to improve software reliability and reach the goal of 

fault prediction through the use of artificial intelligence [14].  

Initially, for SFP, one must not only anticipate failures but also the frequency with which they will occur in that 

specific program [15]. Previously, many research has employed different machine learning algorithms to predict 

software faults. For example, random forest has been employed for software faucet prediction by [16][17], support 

vector machines utilized for the same by [18] and [19], neural network has been employed by [20], decision tree 

has been tested for the same in [21][22][23].\ 

For the present literature review, a critical analysis of articles published between 2018 and 2023 has been 

conducted to present a systematic literature review that highlights the most recent research trends in the field of 

SDP.  

The articles for this review have both conventional and machine learning techniques under study. The chosen 

library for the selection of the article is IEEE. In total, 213 articles have been studied under this review. In the 

next section, a metadata analysis of the articles studied under this review will be presented. 

2. Metadata  analysis of reviewed articles  

In this section, the metadata analysis of reviewed articles has been presented in terms of study period, type of 

publication (conference or journal), citation score of the article, etc. 

2.1 Distribution of articles per year throughout the study period of literature review 

A literature review, as described by [24], is a methodical, comprehensible, and repeatable design for locating, 

analyzing, and interpreting the existing corpus of recorded materials. Literature reviews can be thought of as an 

evaluation of content from a methodological standpoint, where a variety of qualitative and quantitative features 

are combined to access structural (descriptive) as well as content requirements.  

In this section, the distribution of publications per year across the study period has been presented for review. In 

Table 1, the year-wise count of the publications has been given for the conducted study period. It has been 

observed that the maximum of the article is from 2019 and 2020, whereas for other years the count is negligibly 

unequal. 

Table 1: Year wise count of the publication for the conducted study period 

Year of Publication Count 

2018 31 

2019 42 

2020 40 

2021 36 

2022 43 

2023 20 
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Figure 3: Distribution of publications per year across the study period 

2.2 Type of publication 

The goal of this comprehensive literature review is to represent the most recent advances that have been made on 

detecting defect-prone software modules. A thorough research procedure was used to extract pertinent research 

papers. In the beginning, 213 studies from the well-known online libraries were extracted: IEEE Xplore. The 117 

most relevant research publications were chosen for detailed review of IEEE conferences, 35 IEEE journal articles, 

3 other ( early access etc). The pie form for the type of publication analysis has been shown in figure 4 below.  

 

Figure 4: Pie analysis of type of publication  

2.3 Quality analysis of reviewed articles 

Techniques are not essential or stated unless it is a comprehensive review or meta-analysis. The evaluation of an 

article's quality can be determined by factors such as its timeliness, the depth and clarity of the topic, whether it 

indicates the best routes for further research, and how many researchers have been referring to it. In this section, 

the quality analysis of articles has been presented in terms of their citation scores. The citation scores of the articles 
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have varied from 1 to 89. One is the lowest score of citation, and 89 are the highest score in this regard. In Table 

2, given below, the citation-wise score of revised articles has been given. 

Table 2: Citation score of reviewed articles 

Citation level  Publication Types  Count 

Conference  Journal  

1-20 81 23 104 

20-40 5 5 10 

40-60 0 3 3 

60-80 0 1 1 

>80 1 0 1 

 

 

Figure 5: Pie analysis of citation score 

From Table 2 and Figure 5, it has been observed that the majority of reviewed articles have been cited in the range 

of 1–20, and 81 of these articles have been published in IEEE conferences and 23 in IEEE journals. The count of 

articles among the citation scores in the range of 20–40 is 10, of which 5 have been published at an IEEE 

conference and 5 in an IEEE journal. Only one article has a citation score of more than 80, and it is a conference 

article. 

3. Methodology 

This research is designed to use the systematic literature review (SLR) approach. This method was chosen to 

conduct a review of the works on software faculties prediction, and SLR is a renowned review process that consists 

of locating, analyzing, and comprehending the available research data in order to determine the answers to the set 

research questions. 

3.1 Research questions  

Research questions have been formulated to assist us through the review and evaluation of previous studies.  The 

goal of this study is to present and assess the results of experiments from previous works on the use of machine 
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learning techniques and conventional techniques for faults prediction models. The following are the sorts of issues 

that will be addressed in this SLR. 

RQ1: Which datasets are commonly used for predicting software bugs?  

RQ2 - What machine learning approaches have been chosen for the prediction model? 

RQ3: What metrics are commonly utilized for software faults prediction?  

RQ4 - What performance metrics are utilized to predict software bugs? 

3.2 Keyword Selection  

This stage involves selecting specific keywords/words as well as their synonyms while maintaining the study 

objectives in mind. A search string is formed by combining keywords and their synonyms and IEEE Terms. A list 

of IEEE terms utilized for selecting the article from IEEE database has been give below in table 3. 

Table 3: IEEE terms utilized for article selection 

Keyword or IEEE terms  Name 

General 

Software design ,Software testing, Software quality, 

Software systems, Software algorithms, Software 

metrics, Computer bugs Source coding 

Objective  

Object oriented modeling, Predictive models, Fault 

diagnosis, Fault tolerance, Computational modeling 

Technique  

Feature extraction, classification , Error analysis, 

Correlation, Self-organizing feature maps 

Tool 

Conventional technique, Machine learning, Neural 

Network , Fuzzy logic, Regression, Clustering 

algorithms 

 

3.3 Outlining of the Selection Criteria 

This phase defines the boundaries of the study's objectives by providing the selection criteria that were used for 

the selection of the gathered research papers. The goal of this part of the process is to choose the most suitable 

research papers for review. This phase can be divided into two parts: defining the criteria for selection and defining 

the criteria for exclusion. 

3.3.1 Criteria for selection 

1. Published research articles spanning 2018 to 2023.  

2. Research articles that have been presented or published in journals, conferences, or conference proceedings.  

3. Research publications that used conventional and machine learning algorithms to perform SFP.  

4. Research papers describing actual trials, case studies, comparative research, or a novel method, technique, or 

framework for predicting software defects.  

5. Research publications that provided results from a dataset using a used, proposed, or modified artificial 

intelligence (AI) algorithm, technique, or framework. 

3.3.2 Criteria for exclusion 

1. Prior to 2016, research articles were published.  

2. Research articles that are not written in English.  

3. Research papers that don't use SDP.  

4. Research articles that don't employ the given technique in their SFP method, technique, or framework 

5. Research articles in which the defect prediction method, technique, or framework is not evaluated on any 

dataset. 
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4. Results and Discussion 

In this section, analysis based on the techniques and tools used in the articles reviewed in this paper has been 

presented. 

4.1 Review of techniques and tools for SFP 

Here in this section, the articles have been summarized based on the techniques and tools used. Table 1 

summarizes the references, and tools used in the reviewed articles. 

Table 1: Analysis based on tools used in the reviewed articles 

References   Tool 

[28][30][31][36][37][38][43][45][48] 

[49][50][51][52][53][54][56][58] 

[60][62][63][70][72][74][75][77][78] 

[84][87][88][90][92][93][95][98] 

[103][104][105][109][110][111][113] 

[114][117][118][119][121][128][129] 

[130][131][137][139][140][142][144] 

[145][146][147][148][151][153][154] 

[156][158][159][161][162] 

[164][165][166][171][172][174][175][177] 

[178][182][183][184][186][188][191][192] 

[193][195][200][202][204][205][206] 

[207][211][214][216][219][220] 

[221][227] 

Conventional technique 

[25][26][27][29][32][33][34][39][40] 

[41][46][59][61][68][76][78][79][80][81] 

[82][86][89][91][97][99][100][101][102] 

[106][107][108][112][116][117][122] 

[126][127][132][135][138][141] 

[152][157][163][168][169] 

[170][180][181][184][187][190][201][203] 

[208][210][215][217][225][226] 

Machine learning  

[35] [44][65][66][67][69][85][95][96][102] 

[120][133][134][149][150][137][175] 

[189][197][198][212][218][223][224] 

Deep learning 

[47] [55][66][67][79][83][89][91] 

[123][125][143] 

Neural Network  

[44] [64] [71][76][100][137][179] Fuzzy logic 

[42][209] Regression 

[64][73][159]  Clustering algorithms 

[67][108][115][155][173] 

[194][199][219][222][228] 

Genetic or Heuristic algorithms 

 

The articles reviewed in the paper have been listed for their references and the tools or methods employed for 

effective results. It has been found that conventional techniques have been employed in more articles than machine 

learning and deep learning techniques. The use of fuzzy logic is also very limited. The current trends show that 

the use of genetic or heuristic algorithms is also very common. 

Further analysis based on techniques used in revised articles is presented in Table 2. From Table 2, it has been 

observed that feature extraction and classification have been used most for fault prediction in software systems. 
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The use of correlation has been limited to empirical investigation. The well-organized map is also very limited in 

the research articles. 

Table 2: Analysis based on techniques used in the reviewed articles 

References   Technique  

[27] [29][30][33][39][42][46][51] 

[58][59][61][72][74][79] 

[81][82][91][107][108][115][117][126][152] 

[132][135][137][141][143][150] 

[155][159][163][169][170] 

[173][175][179][180][181] 

[184][187][203][209][210][216][217][222][225] 

Feature extraction  

[25][26][32][34][40][41][55][65][66] 

[67][69][70][71][74][80][81][89][100] 

[101][102][112][120][123][125][127][133][134] 

[138][149][165][167][189][194][197][198][199][201] 

[218][219][220][223] 

classification 

[28][31][35][36][37][38][45][60] 

[63][68][76][111][119][128][139][140] 

[147][154][159][161][168][174][202][206] 

Error or fault analysis 

[43][48][54][62][65][67][80][84][90][177][195][204] Correlation 

[47][73] Self-organizing feature maps 

 

4.2 Evolution criteria 

The evolution criteria used in most of the research articles has been listed below. The following is a quick 

overview of how the performance and efficiency of the reported models were assessed. Knowing how frequently 

the model under examination is erroneous is insufficient in many circumstances. It is more important to 

comprehend how frequently it fails to precisely anticipate a certain outcome. The confusion matrix provides useful 

information about the model's ability to forecast a certain outcome. The confusion matrix consists of four real-

world scenarios.  Based on all such aspects the evolution criteria used previously has been elaborated below. 

1. Accuracy 

2. True-positive rate 

3. False-positive rate 

4. Sensitivity 

5. Specificity 

6. Precision 

7. Recall 

8. F1 Score 

Accuracy is defining as the ratio of correct predicted instances or samples to all instances or  

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑎𝑔𝑎𝑡𝑖𝑣𝑒
                (1) 

Error rate is defining as the ratio of incorrectly predicted instances or samples to all instances.  

True-positive rate or positive predictive value is defining as the ratio of instances predicted correctly as positive 

to all positive instances. 

False-positive rate or negative predictive value is defining as the ratio of instances predicted incorrectly as 

positive to all negative instances. 

Sensitivity is defining as the ratio of instances correctly predicted as positive to all instances predicted as positive. 
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Specificity is defining as the ratio of instances correctly predicted as negative to all instances predicted as 

negative. 

Precision is defining as 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                                          (2) 

 (In binary classification Precision is Specificity) 

Recall is defining as  

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                                               (3) 

(Recall is also known as sensitivity in binary classification). 

F1 score is the final metric. The F1 score is calculated by taking the harmonic mean of precision and recall. 

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆  =
2

𝑅𝑒𝑐𝑎𝑙𝑙 −1+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1         (4) 

Or 

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆  = 2
𝑅𝑒𝑐𝑎𝑙𝑙 𝑋 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                     (5) 

Or 

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆  =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+
1

2
(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 )

                       (6) 

5. Conclusion  

To detect problematic modules when the testing phase is complete, the software defect prediction (SDP) procedure 

can be adapted to serve as a form of quality control activity throughout the entire software development cycle. 

This prognostication can be used to build a high-quality product at a lower cost because only modules identified 

as defective will be examined during the testing stage. Many academics have worked over the past decade to 

improve the quality of SDP. Despite the fact that academics have done reviews and published survey articles in 

this sector, there is still a lack of up-to-date understanding of research trends. This study fills the void by 

conducting a systematic review of research publications published between 2018 and 2023. For this review, data 

has been collected from various reputed libraries, such as IEEE Xplore. Researchers attempted to increase 

prediction accuracy by adopting unique strategies in data preparation and merging several classifiers using meta-

learners. Some academics have developed unique frameworks for multiple processes by combining multiple 

approaches. In addition, many researchers have employed machine learning classifiers across many datasets in 

order to discover the few strategies that performed best across all datasets.  

This strategy may encourage us to focus solely on high-performing classifiers while developing novel SDP models 

and frameworks. Analyzing all such research articles revealed that conventional techniques have been employed 

in more articles than machine learning and deep learning techniques. The use of fuzzy logic is also very limited. 

The current trends show that the use of genetic or heuristic algorithms is also very common nowadays. Further 

the use of machine learning is found to be more effective than conventional techniques  
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