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Abstract
The object of this paper is to give three specific theorems which implies authors [1]

and [14] theorems on Norlund summability of conjugate derived Fourier series and a
generalization of a theorem of lyengar on the harmonic summability of Fourier series
respectively and deduce several known and new results from the theorems.

Introduction:
Let {(z) be a 2xt-periodic and Lebesgue integral function of z in the interval (—m, 7). The

o

Fourier series of the function {(z) ~ a? + %2 1( agcos az +b, sin az) (1)
The conjugate series of the Fourier series (1) is given by

i(ba cosaz—a,sinoz).
a=1
(2)

We shall use the following notations:-
&(z)=C(y+z)+C(y—2)-2(y),
x(2)=C(y+2)-¢(y-2),

1 . 1
T=|—1,7 is integral part of —.
z z

Let {U, } denote the sequence of | partial sum of the infinite series > v, .
Let {pI } be sequence of constants, real or complex and P, =p, +p, +p, +...+p, .
Definition 1 “(see [2])”:
A bounded sequence {U, } is said to be almost convergent to a finite limit U if
||m—z'”u =U

©)

uniformly with respect to r.
Definition 2 “(see [3])”:

uniformly with respect to r.
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Definition 2 “(see [3])”:
Let (A)=(v,4) (¢=012...,9=012...y,,=1) @)

be infinite triangular matrix of real or complex numbers. We define sequence to sequence
transformation

L= z::oy’ag U,

= Z::oAyf’,rUr ,

where Ay, =Y, =Y, -

It t, > Uas ¢ — oo, then the infinite series 2. v, is summable by triangular means to the value U.
Definition 3 “(see [2])”:

An infinite series > v, with the sequence of partial sums {U,} is said to be almost Riesz summable
to U, provided

1
t,= EZ::O p,U,, = U, as £ — oouniformly with respect to r, (5)
12

g+r

where U, = > = U, (6)

and {pl} is a sequence of constants such that P, >0 and P, =p,+p, +p, +...+p,.

Definition 4 “(see [3] and [6])”:

An infinite series XV, with the sequence of partial sums {U, } is said to be almost summable to U,
if

To=2 oA, Uy, > U 7)

as ¢ — oo uniformly with respect to r, where {Ug’r} is defined (6) and matrix summability mean t,
is regular.

The regularity conditions for A summability method are easily mean to be (see [4], [6])

(i) limy, =0 for every fixed value of g,

{—>0
. 1
(i) Zgzo
(iii) !i_)rgzgzoy,,yg =1.

We use the following notations:

Y,4| <M independent of / and
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sing—ﬂz
2

0 . g+1
N, (2)=2 0| Ve sm(r+ 5 jz

1)sin? £
(g+1)sin 5

and

sing—ﬂz
2

' g+1
N/,r(Z):zgzoy,‘g cos(r+ ; jz

1)sin? 2
(g+1)sin 5

2. Known theorems:

Minute study on Norlund summability of Fourier series and its conjugate series was made by author in
1980 as mentioned in the research work (see [1]) and they proved the following theorems:

Theorem A:

Let y(z) and p(z) are two functions.

(1)
If J.OZ‘&(U)‘dU =0 ﬁ , as z—0.

and y(()P, :O[p(p,,)], as {—0, then the Fourier series (1) of {(z) at z=y is summable

(N, p,) to Q(Z) where {p,} is a real non-negative and non-increasing sequence such that P, — oo,
as / — .

Theorem B:
Let the sequence {pn} and the functions y(z) be the same in theorem A.

Then if,

e
Io‘x(u)‘du:o —27 | asz—+0,

u(P.)

— 1 (n z
then the series (2) of (1) is summable (N, pr) to 2—'[0 X(u)cotzdz of every point when this integral
T
exists.

Author [17] has proved the following theorem on a generalization of a theorem of lyengar on the
harmonic summability of Fourier series by using positive decreasing sequence of constants.

Theorem C: If (N, I:’,) be a regular Norlund method defined by a real, non-negative monotonic, non-

increasing sequence of coefficients {P, } such that
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P=p,+p+p,+..+p, >0,as £ —>ooand log/=0(P,),as £ — oo,

then if £(2)=[|¢(u)|du

:{i},as z—>+0
P:

then the series (1) is summable (N, P,) to £ (z) atapoint z=y.

3. Main theorems:

Recently published research works contend the view point more or less identical to the concept
regarding absolute summability factors of infinite series and Fourier series “(see [5, 7, 8, 9-11])”.
Several phenomenological research works are sought to have very identical reflection on the concept
of the matrix summability of Fourier series (see [12, 13, 15-22]). The motivating factor in such
marvelous studies led me to the point that the degree of approximation of a function in more generalized
as particular cases is necessary to be studied closely (see[22-35]). Our utmost effort goes on extending
Tripathi and Singh theorems “(see [1])” by using following theorems:

Theorem 1:

Let {p(} is positively monotonic decreasing sequence of constant such that non-vanishing ¢" partial

2v(2)
n(z)

sum P, > as /—oo. Let v(z),u(z) and increase monotonically with z, if for

0<o<«1,
Y(€+r)'P/+r :O[M(P«#r)s}’ as { — o (8)

uniformly with respect to r,

5. .
Ioz‘é(u)‘du:o %

,as z—+0

and

I({”) @du=0(l),as {— o ©)

041
for 0< v <1 uniformly w.r.to r, then the Fourier series (1) of the function (z) is summable (A) to

the sum £(z) atapoint z =y in the given interval.
Theorem 2:

Let {p,,} is positively monotonic decreasing sequence of constants such that its non-vanishing ¢"
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Partial sumP, — o0, as/ —oo. Let y(z),n(z) and

increase monotonically with z and
satisfying the following conditions:

y(£+r1)P

/41

= O[{;L(P@+r )}8} ,0<8<1,as ¢ — oo uniformly with respect to r and if

).
u(

[

7(u)|du=0

s |asz—>+0 (10)

T

and

1

.[(fH)V (uu )‘du — O(l) 1 (11)

o4r

as / — o, 0<v <1 uniformly w.r.tor, then the series (2) of (1) of the given function (;(Z) is almost

summable (A) to the sum
— nx(u)cotzdz (12)
2170 2

at every point z =y, whenever the integral exists.

The objects of this chapter is to generalize the Patti’s [4] results in two ways for almost Norlund
summability of Fourier series in the following way from:

Theorem 3:

Let us suppose that {pﬁ} is real monotonic non-decreasing and{ﬂ(,]g} be positive non-decreasing

A
function of z such that { e’gl} is non-increasing sequence of constants such that P, > 0 as / — oo
g+

and

A(C+r)log(¢+r)=0(P,,),

[]¢ (v)av= 0(%} (13)

T

‘ ! a‘g(V)‘
and I(”‘f”l) V—zdv:O(ﬁ), as { — oo (14)

l+r+l
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Uniformly with respect to r then the Fourier series (1) of the function ¢ (z) is summable (N, p, ) at
apoint z =y in the given interval.

To prove theorems, we follow series a of lemmas:

Lemma 2.1 “(see [2])”:

If 0<z<ﬁ,then N, (z)=0(l+r).

Lemma 2.2 “(see [2])”:

fi<z<€<n then N, ( ):O(l)
£+r y4

Lemma 2.3 “(see [2])”:

1 _
If _<Z<Tc,then Nt;‘,r(z) :O(lj
{+r V4

Lemma 2.4 “(see [2])”:

1
For —<z<r,
{+r

1

N, (2)=0| —
(0-0( ]
Proof of Lemma 1:

1
For0<z<——,
l+r

r+g+1jz sing—ﬂz
2 2

1) sin?
(g+1)sin 5 ‘

. sin(
N (2] =2, 729

(2r+g+1) sin; (9+1) sin;‘

M-

Vig

«
Il
o

1) sin’ 2
(g+1)sin 5

M\

2r+g+1

]
o

=(2r +£+1)27Ag
g=0

=(2r+2/)1
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=0(l+T)
Proof of Lemma 2:

1
For —<z</<r,
l+r

r+g+ljz.sing+lz
2 2

1) sin® 2
(g+1)sin 5 ‘

sin(r +g+1jz
2

I 1 in2 2
(g+1)sin 5

, sin(
‘N“(Z)‘: %yhg

7
1)sin <
(g9+ )sm2

~

g+1)\z

9=0 sin—
2

_ o(lj |
Z
Proof of the lemma 3:

1
For —<z<r,
l+r

, cos{r+g+1}zsing;12

‘Nl,r (Z)‘ = Z]/[’g
9=0

1)sin? £
(g+1)sin 5 ‘

COS‘:I’+ g +1}z (9 +1)sinE
4 2 2
=Z7/ﬂg

=0 ' 1 H 25
g (g+1)sin 5

. . Z
<D Vg Lz (expanding Sm(T]E in powers of SIn E)
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Nﬁ'r(z)zo(f%J

Proof of lemma 4:

1
For —z <,
L+

r+g+1jz sing—ﬂz
2 2

1) sin?
(g+1)sin 5 ‘

. sin(
‘Nﬂ,r(z)‘z ;7/6,9

YA
2
7o 1 ,
= Z'7 (by Jordon’s lemma)

)

2)

Proof of the theorem 1:
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The ¢™ partial sum U, (y) of Fourier series (1) of the function (z) ata point z =y in the interval

(—m, ) is given by

. 1
1 S|n(€+zjz
= —| g(z)——="dz. (15)

Therefore, following (9), we have almost matrix transformation t, = of {U{, (y)} of partial sum of (1)

given by

= Z;oyﬂg {Ug,r —C(Y)}
= | = 2T (y)

g+1

, 1 1
:Z;:oyhg P ?:1 U, -¢(y)

1 g+1

sm

g+r 1
_Z 0 71g g+1 Zr:l % a( s|nf

“Xootis 2n<3+1>£§%){ }

g1 sm g+1j
go '92 J‘a [Sm[r j J(g+1 SIHZE
i | sm(g+1j
0| ["e(2){> Ov.,g(sm(w j ](g+1)sm22

o, —L(y)= o[ [e(2) N“(z)dz} (16)
Now, we have to show that
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.[0“&(2) N, (z)dz=0(1) as ¢/ >

uniformly with respect to r.

For O0<v<l,

I:J.Oné’;(z).N“(z)dz

[J.O’/L+J.({”)V+rl }j(z).N“z =(z)dz

l+r (e+r)’

=1, +1,+1; (say).

For I,

1
||1| — O{jour

:O(£+r)j”l+r

0

_0(rao| YEAT) P
o L{m)}sJ

=0(1), as £ — oo (using (8))

<IN, 2}z

&(z)‘dz , (using lemma 2.1)

uniformly with respect to r.
Also, for 1,,

1

<[5

41

E@)N,, (2)cz

=0(1), as ¢ —> oo (using (11))
uniformly with respect to r.

Lastly, for 15,

I, = jn . &(2)N,,(z)dz

(£+r)"

(17)

(18)

(19)

(20)
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(T - 1
sm(g +jz
= &(2) Z;zoyllg sin(r+g;lJz 2) 4,
(

1)sin® £
] g+1)sin 5
(e+r)
rn
COS Iz —Cos r+g+1
| @, otz g,
] . 2(g+1)sin’ E
(e+r)"
cosrz cos r+g+1
o I TC31D AN PR N TPA1) S i e R %
. 2(g+1).sin 5 . 2(g+1)sin’ B
(e+1)" (+r)
= |3,1 - |3,2- (21)
Again, for 1, .
' 1 B
‘|3,1‘:O|izg:0%,gi|—vj. . &(z)cosrzdz
(1 ;
2sin () (1)
I+r
=0(1),as £ >0 22)
uniformly with respect to r.
For <B<n<m,
(lery PEN<T
/ 1
‘I3,2‘=O(Zgzoy,yg)—v J'Bl &(z) cos(r+g+1)zdz
(1 -
2sin (j (t+1)
I+r
/ 1 n
:O(Z;:Oy,lg) J. . &(z)dz
25in2 1 (1+r)"
(1+r)’
=0(1),as £ >0 (23)

uniformly with respect to r.

Hence, from (22) and (23), we have
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I;/=0(1) as £/ >0 (24)

uniformly with respectto r
Now, combining (18), (19), (20), (21), (22), (23) and (24), we get the required results (17).

Proof of the theorem 2:

Let U, (y) denote ¢ partial sum of (2) or (1) at z =y in (-7, 7).

Then
— 1 ¢n Y4 1
Ur(y)==—| x( )[cos——cos(“ j }—dz
27[ 2 Sin*
=N U/(y)—i “x(z)cot=dz
2170
' cos(€+ J
S E dz
2n sinZ
0
1 r 1
=g_+1 g ()—E x(z)cos=dz

-1 X Z) g+r 1
=—| =2~~2 cos| r+= |zdz
2TC ZZr:l ( 2)

J O

N—"

x(z cos(r+g+1jz
2 : (g+1]
sin| == |z.

1)sin® £
(g+1)sin 5

_1
27

J0

Therefore, the following (7), the almost matrix transformation t

or

of the sequence {Uﬁ (y)} of the
partial sum of the series (2) will be given by

¢ — 1 (= z
t/,——j z)cot = dz Zgzoyg,rUQ'f_z_nJ‘oX(Z)COSEdZ

/ — 1 Z
= Zg=0y|’g ‘:Ug,r _2_7-[ COt 2 dz:l

1 COS( jzsm(gzj
=75 X( )Zr olg

2m 70 ’ (g+1)sin’ 22
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:o[ [F2(2)N., (z)dz}
Now, we have to show that
J= j Z)Ni (2
=0(1) asto o

uniformly with respect to r.

For 0<d<1,

J= j Z)Ni. (z

e

=J,+J,+J;.

J )N(,r(Z)dZ

)’

For J,,

ME O[L’% 7(2)[[Nes (z)‘ dz}

1
= O(E-Fr) J'/f+r X(Z
0

_O(/€+r)o|: Y€,rpk‘+r ]

)‘ dz, (using lemma 2.3)

[u(P)]
=0(1),as £ >
uniformly with respect to r.

For J,,

N (Z)‘] dz

@, |
- {l‘({”)v N, , (using lemma 2.1)

=0(1),as £ >0

uniformly with respect to r.

(25)

(26)

(27)

(28)

(29)
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Again, for J,

T

g+1 . (g+1
) CcoS r+T z-sin ry z
‘]3: Zézoyﬂg

1)sin® £
(g+1)sin 5

z

sin(r+92jz ' sinrz

b4 ¥4

X(Z) Zgzoy(,g Z dZ_J’ X(Z)ZQ:O’YW dZ
1

1)sin® £ 2(g+1)sin® 2
1 (g+1)sin 5 L (g+1)sin 5

(e+r)"
= J3,1 _‘]3,2 ' (30)

Applying second mean value theorem for J, ,, we have

3a2]= O(Z;ZOY(,Q )%jﬁlk(zﬂsin rzdz
2sin’

(e+r)"

(+r)
=0(1),as £ >0 (31)

uniformly with respect to r, where

<B<n<m.

A%

(L+r1)

Again, for J,,,

954 = O(ZS_OYa,g);ljz|§(z)sin (r+g+1)zdz|
2sin® (t+1)"

1

¢
=0 Zg=0y”79
2sin? .
(£+7)
=0(1),as £ > (32)

uniformly with respect to r

From (30), (31) and (32), we obtain

J5|=0(1),as ¢t >0 (33)
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uniformly with respect to r.

Now, combining (27), (28), (29) and (33), we get (26)
e J=[7(Z)Nus
=0(1), as £ — oo uniformly with respect tor.

Proof of the theorem 3: The /™ partial sum U, () of Fourier series (1) of the function ¢ (z) ata point

z =y inthe interval (-7, 7) is given by

1 ’ S|n(£+2j
vi(y)-¢(y)==—| é(2)——=—dz (34)
27 g sinZ
0 2
Now,

i : 1
. gur £(z) sm(r +jz
1 1 2
—_ Z il

_g=0 h g+1 r=1 27

dz

. Z
sin—
0 2

=S, (1 ; Zz){gism[w ] } dz

r

:O_J‘ﬁg(z)N(’r(z)dz} (35)

we have to show that J‘:f(z)N,{'r (z)dz=0(1) as / > o (36)

uniformly with respect to r.

For 0 <o <1, we have
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Ioﬂg(z) N,,(z)dz
I

(1)’

]g(z)N“(z)dz

=K, +K, +K, say

For K,
*
|Kl| — OD‘OH"
1

=O(€+r)DO‘”

oo

£(z) dz‘ (using lemma 2.1)

:O(€+r).O[N(M) i
l+r

=0(1) as £ >0

For K,,

1

|K2|=o{1‘1‘“f

l+r

«f(z>HNu(z)\dz}

1

< J(“r)d

1

£(2)N,, (2)|ez

l+r

YA

=0 {[({”)5@ dz} (using lemma 2.4)
=0(1) as £ —> oo (using (34))

Lastly, we have

K, =I:1§§(Z)Nf,r (2)dz

0+1)

z

@37)

(38)

(39)
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x a cosrz—cos(r+g+1)z
[ e(0)|3A, rr9+1)2
(t+r) 9=0 2(g+1)sin’ B
” - cosr £
[ @ DA, — e[ s YA,
(r+1)° =0 z(g+1)sin® 5 (¢+1) g=0
|31 |3,2
again for 1,

. Iﬁl &(z)cosrzdz

(csr)

- {ZlL(—lj

l+r

=0(1), as £ —> oo uniformly with respectively r .

Forﬁ<ﬁsn<7r,

(e4r)’

=0(1),as £ >0

uniformly w.r. to r.

Combining (37), (38), (39), (40), (41) and (42), we get (36)
Particular cases:

1

i C1l hen 4, , =——
(i) (C.1) means when 4, i1

(i) Harmonic means when

1
2, =
"9 (¢-g+1)log s

Iﬂl &(z)cos(r+g+1)zdz

COS r+

2(g+1)

g +1)
, Z

sin® =
2

dz

(40)

(41)

(42)
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(i) (C,p) meanswhen

[f—g+ﬂ+lj
A f-1 ,(0<p<1)

B

(iv)  (H,p) means, when

Hlog g+1)

(V) Norlund means, when

g

log®™ g+1

4,

/ . - - .
g = —%  where { p,,} is non-negative monotonic decreasing sequence such that

Y

,
p/:Z:pg — 0, as [ —>o0.

g=0

(vi) Riesz means (N, p,j), when

4

g = —2 where { p,‘} is a non-negative, increasing sequence such that

9

/
P,:Zpg —00,as £ — o0,
g=0

(vii)  Generalized Norlund means (N, p,q), when

ﬂ, _ p/{—g qg

g = where {p,} is a positive monotonic decreasing sequence and {qg} is positive

/

/
monotonic increasing sequence such that R, = Z P, ¢, >©,as £ —> 0.
g=0

An application:
Let {(Z) be a 27 — periodic and Lebesgue integrable function of z in the interval (—7[7[) . Then the

trigonometric Fourier series of the function {(Z) is given by

{(z) ~ % +Y% ,( a, cosaz +b, sinaz)

where a, :lr ¢(z)dz,
7Z' /2
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1 ¢
—= dz.
a, ”L{g’(z)comz i

=—j smazdz
and
6E(Z)ZJ(VH);C(V—Z), @)
and
éa(Z)=%IOZ(Z—a)“‘1§(V)dv, (>0) (44)
If o =1 then
=["¢(v)av (45)

Itis clear that if £(z) e BV (0,7) then z, (y)=0(1) where z,(y) is (C,1) mean of the sequence

<aMa (z)> (see [23]). By using this fact, we obtain the specific results of Ozarslan [3], Yildiz [7] and
Bor [24].

Conclusion

If {p,} is positively monotonic decreasing sequence such that P, >0,/ —o and

Zy(Z
y(Z) , M(Z), Y( ) increase with z satisfying the Theorem ‘A’ and ‘B’, along with the lemmas (2.1)

to (2.4) are satisfied, then the series (1) and (2) of (1) are respectively summable (/\) to the sum Z;(Z)

and —j Cot dz under the conditions (8), (9) and (10). Thus our results generalizes the
results of [1].

Similarly, if {p,} is real monotonic non-decreasing and {i,,’g} be positive non-decreasing of z such

A
that {L"l} is non-increasing satisfying the theorem (c) along with the lemmas (2.1) to (2.4) are
g+

satisfied, then the series (1) is summable to the sum under the conditions (13) and (14).
Thus, our result generalizes the result of Patti [14].
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