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Introduction: 

Let ( )z  be a 2-periodic and Lebesgue integral function of z in the interval ( ),−  . The 

Fourier series of the function 𝜁(𝑧)  ~ 
𝑎𝑜

2
  + ∑ (  𝑎𝛼 

∞
𝛼=1 cos 𝛼𝑧 +𝑏𝛼 sin 𝛼𝑧 )              (1)                

The conjugate series of the Fourier  series (1) is given by 

( )
1

b cos z a sin z


 

=

 −  .        

                                                                                                                                    (2) 
We shall use the following notations:- 

( ) ( ) ( ) ( )z y z y z 2 y =  + + − −  , 

( ) ( ) ( )z y z y z =  + − − , 

1
,

z

 
 =  

 
 is integral part of 

1

z
. 

Let  Ul  denote the sequence of 
thl  partial sum of the infinite series l . 

Let  pl  be sequence of constants, real or complex and 0 1 2P p p p ... p= + + + +l l . 

Definition 1 “(see [2])”: 

A bounded sequence  Ul  is said to be almost convergent to a finite limit U if  

r

gg r

1
lim U U

1

+

=→
=

+


l

l l
         

                                                                                                                                  (3) 
uniformly with respect to r. 
Definition 2 “(see [3])”: 

               uniformly with respect to  r.

 
 

 

 

Generalized Almost Matrix Summability of 
Fourier Series and Its Conjugate Series 

Suresh Kumar Sahani1,, and Gyan Das2* 

 
1*Department of Mathematics, MIT Campus, (T.U.), Janakpurdham, Nepal 

2Department of Mathematics, Research Scholar, Dr. C.V. Raman University, Bilaspur 
(C.G.) Email: sureshkumarsahani35@gmail.com1 and gyangendle@gmail.com2 * 

 

Abstract 
The object of this paper is to give three specific theorems which implies authors [1] 
and [14] theorems on Nörlund summability of conjugate derived Fourier series and a 
generalization of a theorem of Iyengar on the harmonic summability of Fourier series 
respectively and deduce several known and new results from the theorems.  

 
Keywords: Conjugate series, Fourier series, Matrix summability. 
MSC: 40C05, 42A16, 42A50 

mailto:sureshkumarsahani35@gmail.com1
mailto:gyangendle@gmail.com2


Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055  
Vol. 44 No. 3 (2023)  
____________________________________________________________________________________________ 

 

2636 
 

Definition 2 “(see [3])”: 

Let ( ) ( ) ( ),g ,o0,1,2,..., g 0,1,2,..., 1   = =  =       (4) 

be infinite triangular matrix of real or complex numbers. We define sequence to sequence 

transformation 

1 ,g gr 0
t U

=
=   

,r rr 0
U

=
=  , 

where ,r ,r ,r 1+ =  −  . 

It t U→ as → , then the infinite series   is summable by triangular means to the value U. 

Definition 3 “(see [2])”: 

An infinite series   with the sequence of partial sums  U  is said to be almost Riesz summable 

to U, provided 

,g g g,rg 0

1
t p U U,

P =
= →  as →  uniformly with respect to r ,    (5) 

where 
g r

g,r r
U U

+

=
=           (6) 

and  1p  is a sequence of constants such that P 0  and 0 1 2P p p p ... p= + + + + . 

Definition 4 “(see [3] and [6])”: 

An infinite series V  with the sequence of partial sums  U  is said to be almost summable to U, 

if 

1

,r ,g g,rg 0
T . U U

=
=  →          (7) 

as →  uniformly with respect to r , where  g,rU  is defined (6) and matrix summability mean t

is regular. 

The regularity conditions for   summability method are easily mean to be (see [4], [6]) 

(i) 
,rlim 0

→
 =  for every fixed value of g, 

(ii) 
1

,gg 0
M

=
   independent of  and 

(iii) ,gg 0
lim 1

=→
 = . 

We use the following notations: 
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( )
( )

,r ,gg 0
2

g 1
sin z

g 1 2N z sin r z
z2

g 1 sin
2

=

 +  
  + 

=  +   
   +

   

  

and 

( )
( )

,r ,gg 0
2

g 1
sin z

g 1 2N z cos r z
z2

g 1 sin
2

=

+ 
 + 

=  +  
  +

 

 . 

2. Known theorems: 

Minute study on Nörlund summability of Fourier series and its conjugate series was made by author in 

1980 as mentioned in the research work (see [1]) and they proved the following theorems: 

Theorem A: 

Let ( )z  and ( )z  are two functions. 

If ( )
( )

z

0

1
.p

z
u du O

P





  
   
   =
 

  

 , as z 0→ . 

and ( ) ( )P O p =    , as 0→ , then the Fourier series (1) of ( )z  at z y=  is summable 

( )N, p  to ( )z  where  p  is a real non-negative and non-increasing sequence such that P → , 

as → . 

Theorem B: 

Let the sequence  np  and the functions ( )z  be the same in theorem A. 

Then if, 

( )
( )

z

0

1
.p

z
u du O

P





  
   
   =
 

  

 , as z 0→+ , 

then the series (2) of (1) is summable ( )N,p  to ( )
0

1 z
u cot dz

2 2




 

 of every point when this integral 

exists. 

Author [17] has proved the following theorem on a generalization of a theorem of Iyengar on the 

harmonic summability of Fourier series by using positive decreasing sequence of constants. 

Theorem C: If ( ),N P  be a regular Nörlund method defined by a real, non-negative monotonic, non-

increasing sequence of coefficients  P  such that 
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0 1 2 ... 0P p p p p= + + + + → , as →  and ( )log O P= , as → , 

then if ( ) ( )
0

z

z u du =   

z

p

 
=  
 

, as 0z →+  

then the series (1) is summable ( ),N P  to ( )z  at a point z y= . 

3. Main theorems: 

Recently published research works contend the view point more or less identical to the concept 

regarding absolute summability factors of infinite series and Fourier series “(see [5, 7, 8, 9-11])”. 

Several phenomenological research works are sought to have very identical reflection on the concept 

of the matrix summability of Fourier series (see [12, 13, 15-22]). The motivating factor in such 

marvelous studies led me to the point that the degree of approximation of a function in more generalized 

as particular cases is necessary to be studied closely (see[22-35]). Our utmost effort goes on extending 

Tripathi and Singh theorems “(see [1])” by using following theorems: 

Theorem 1: 

Let  p  is positively monotonic decreasing sequence of constant such that non-vanishing 
th

 partial 

sum P →  as → . Let ( ) ( )z , z   and 
( )
( )

z z

z




 increase monotonically with z, if for       

0 1   , 

( ) ( )r rr .P O P


+ +
  + = 
 

, as →        (8) 

uniformly with respect to r, 

( )
( )

z

0

1
.p

z
u du O

P







  
   
   =

   
  

  , as z 0→+  

and 

( )
( )

1

r
1

r

u
du O 1

u


 
 
+ 

+


= , as →         (9) 

for 0 v 1   uniformly w.r.to r, then the Fourier series (1) of the function ( )z  is summable ( )  to 

the sum ( )z  at a point z y=  in the given interval. 

Theorem 2: 

Let  p  is positively monotonic decreasing sequence of constants such that its non-vanishing 
th
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Partial sum P → , as → . Let ( ) ( )z , z   and 
( )
( )

z. z

z




 increase monotonically with z  and 

satisfying the following conditions: 

( ) ( ) r rr P O P ,0 1


+ +
  + =    
 

, as →  uniformly with respect to r and if 

( )
( )

z

0

1
p

z
u du O

P







  
   
   =
 

  

  as z 0→+        (10) 

and  

( )( ) ( )
1

r

1

r

u
du O 1

u


+

+


= ,         (11) 

as , 0 1→     uniformly w.r.to r, then the series (2) of (1) of the given function ( )z  is almost 

summable ( )  to the sum 

( )
0

1 z
u cot dz

2 2




 

          (12) 

at every point z y= , whenever the integral exists. 

The objects of this chapter is to generalize the Patti’s [4] results in two ways for almost Nörlund 

summability of Fourier series in the following way from: 

Theorem 3:  

Let us suppose that  p  is real monotonic non-decreasing and ,g  be positive non-decreasing 

function of z such that 
,

1

g

g

 
 

+ 
 is non-increasing sequence of constants such that 0P →  as →  

and 

,

0 1

g

g

g

P
p O

g


−

=

 
=  

+  
 , 

( ) ( ) ( )log rr r O P ++ + = ,  

( )
0

0
z p

v dv
P






 

=  
 

           (13) 

and 
( )( ) ( )

1

1

1 2

1

r

r

v
dv O

v

 
+ +

+ +

= , as →        (14) 
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Uniformly with respect to r  then the Fourier series (1) of the function ( )z  is summable ( ),N p  at 

a point z y=  in the given interval. 

To prove theorems, we follow series a of lemmas: 

Lemma 2.1 “(see [2])”: 

If 
1

0 z
r

 
+

, then ( ) ( ),rN z O r= + . 

Lemma 2.2 “(see [2])”: 

If 
1

z
r
   

+
, then ( ),r

1
N z O

z

 
=  

 
. 

Lemma 2.3 “(see [2])”: 

If 
1

z
r
  

+
, then ( ),r z

1
N O

z

 
=  

 
. 

Lemma 2.4 “(see [2])”: 

For 
1

z
r

 
+

, 

( ), 2

1
rN z O

z

 
=  

 
 

Proof of Lemma 1: 

For 
1

0 z
r

 
+

, 

( )
( )

, ,
20

1 1
sin sin

2 2

1 sin
2

r g

g

g g
r z z

N z
z

g


=

+ + 
+ 

 =

+
  

( ) ( )

( )
,

20

2 1 sin 1 sin
2 2

1 sin
2

g

g

z z
r g g

z
g


=

+ + +
=

+
  

( ),

0

2 1g

g

r g
=

= + +  

( ) ,

0

2 1 g

g

r 
=

= + +   

( )2 2 1r= +  
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( )O r= +  

Proof of Lemma 2: 

For 
1

z
r

  
+

, 

( )
( )

, ,
20

1 1
sin .sin

2 2

1 sin
2

r g

g

g g
r z z

N z
z

g


=

+ + 
+ 

 =

+
  

( )

( )
,

20

1
sin 1 sin

2 2

1 sin
2

g

g

g z
r z g

z
g


=

+ 
+ + 

 


+
  

,

0

1

sin
2

g

g
z


=

  (expanding 
1

sin
2 2

g z+ 
 
 

 in powers of sin
2

z
) 

,

0

g

g z




=

=  sin
z

z


 
 

 
 

z


=  

1
O

z

 
=  

 
. 

Proof of the lemma 3: 

For 
1

z
r

 
+

, 

( )
( )

, ,
20

1 1
cos sin

2 2

1 sin
2

r g

g

g g
r z z

N z
z

g


=

+ + 
+  =

+
  

( )

( )
,

20

1
cos 1 sin

2 2

1 sin
2

g

g

g z
r z g

z
g


=

+ 
+ +  

=

+
  
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,

0

1
cos

2

sin
2

g

g

g
r z

z


=

+ 
+  

=  

,

0

g

gz




=

=   

z


=  

1
O

z

 
=  

 
. 

( ), 2

1
rN z O

z

 
=  

 
 

Proof of lemma 4: 

For 
1

z
r


+

, 

( )
( )

, ,
20

1 1
sin sin

2 2

1 sin
2

r g

g

g g
r z z

N z
z

g


=

+ + 
+ 

 =

+
  

( )

( )
,

20

1
sin sin 1

2 2

1 sin
2

g

g

g z
r z g

z
g


=

+ 
+ + 

 
=

+
  

,

0

.
.

1 .

g

g g z z

  

=

=
+

  

2
,

2
0 1

g

gz g



=

=
+

  

2

2

1
.

z


=  (by Jordon’s lemma) 

2

1
O

z

 
=  

 
. 

Proof of the theorem 1: 
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The 
th

 partial sum ( )U y  of Fourier series (1) of the function ( )z  at a point z y=  in the interval 

( ),−   is given by 

( ) ( ) ( )

0

1
sin z

1 2
U y y z . dz

z2
sin

2


 
+ 

 − = 








.       (15) 

Therefore, following (9), we have almost matrix transformation 
,rt  of ( ) U y  of partial sum of (1) 

given by 

( ) ( ) ,r ,g g,rg 0
t y U y

=
− =  −  

 ( )
g r

l,g rg 0 r 1

1
U y

g 1

+

= =

 
=  − 

+ 
   

 ( )
g r

l,g rg 0 r 1

1
U y

g 1

+

= =

 
=  − 

+ 
   

 ( )
g r

l,gg 0 r 1

0

1
sin r z

1 1 2
z dz

zg 1 2
sin

2



+

= =

   
+   

   =   
+   

    







   

 
( )

( ) g r

l,gg 0 r 1

0

z1 1
sin r z dz

z2 g 1 2
sin

2



+

= =

 
    

=  +   
 +    

 






   

 ( )
( )

l,gg 0 0 2

g 1
sin z

1 g 1 2
z sin r z dz

z2 2
g 1 sin

2



=

+ 
  +    =   +  

    +
   

 ( )
( )

l,gg 00 2

g 1
sin z

g 1 2
O z sin r z dz

z2
g 1 sin

2



=

  +  
    +      =   +   

    +
    

  

 ( ) ( ),r
0

O z N z dz
 = 

    

( ) ( ) ( ),r ,r
0

t y O z N z dz
  − = 

           (16) 

Now, we have to show that 
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( ) ( ) ( ),r
0

z N z dz O 1


 =  as →         (17) 

uniformly with respect to r. 

For 0 1   , 

( ) ( ),r
0

I z .N z dz


=   

( )

( )

( ) ( )
1

1

11 ,
0

.
v

v

rr
r

r r

z N z z dz



++

+ +

 
 + + =
 
 
    

1 2 3I I I= + +  (say).          (18) 

For 1I , 

( ) ( )
1

r
1 ,r

0
I O z N z dz+

 
=  

 
  

( ) ( )
1

r

0
O r z dz+= +  , (using lemma 2.1) 

( )
( )

( ) 
r

r

r .p
O r o

P

+



+

  +
 = +
  

 

( )O 1= , as →  (using (8))         (19) 

uniformly with respect to r. 

Also, for 2I , 

( ) ( )( )
v

1

r

12 ,r

r

I z N z dz
+

+

   

( )( )
v

1

r

1

r

z
O dz

z

+

+

 
 =
 
 





 

( )O 1= , as →  (using (11))         (20) 

uniformly with respect to r. 

Lastly, for 3I , 

( ) ( )
( )

v

13 ,r

r

I z N z dz


+

=   
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( )
( )

( )
v

l,gg 0
2

1

r

1
sin g z

g 1 2
z sin r z dz

z2
g 1 sin

2



=

+

  
+  +    =   +  

  +
  








  

( )
( )

( )
( )

v

l,gg 0
2

1

r

cos rz cos r g 1 z
z dz

z
2 g 1 sin

2



=

+

 
 − + +

=   
 +
 







  

( )
( )

( )
v

l,gg 0
2

1

r

cos rz
z dz

z
2 g 1 .sin

2



=

+

 
 

=   − 
 +
 







 ( )
( )

( )
( )

v

l,gg 0
2

1

r

cos r g 1 z
z dz

z
2 g 1 sin

2



=

+

 
 + +

  
 +
 







  

3,1 3,2I I= − .           (21) 

Again, for 
3,1I . 

( )
( )

13,1 l,gg 0

2 l r

1
I O z cos rzdz

1
2sin

l r





=

+

 =  
   

 
+ 

   

( )O 1= , as →           (22) 

uniformly with respect to r. 

For 
( )

1

l r

    

+
, 

( ) ( ) ( )
( )

v

13,2 l,gg 0

2 r

1
I O z cos r g 1 zdz

1
2sin

l r



=

+

=   + +
 
 
+ 

   

( )

( )

( )
( )

1l,gg 0

l r2

1
O z dz

1
2sin

l r





=

+



=  
 
 
 + 

   

( )O 1= , as →           (23) 

uniformly with respect to r. 

Hence, from (22) and (23), we have 
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( )3I O 1=  as →           (24) 

uniformly with respect to r 

Now, combining (18), (19), (20), (21), (22), (23) and (24), we get the required results (17). 

Proof of the theorem 2: 

Let ( )U y  denote 
th

 partial sum of (2) or (1) at z y=  in ( ),−  . 

Then 

( ) ( )
0

1 z 1 1
U y z cos cos z dz

z2 2 2
sin

2

   
=  − +     

  

  ( ) ( )
0

1 z
U y z cot dz

2 2



− 
 

 

 ( )

0

1
cos

1 2
z dz

z2
sin

2


 
+ 

 = − 








 

 ( ) ( )
g r

r 1 0

1 1 z
U y z cos dz

g 1 2 2

+

=
= − 

+ 
   

 
( ) g r

r 1

0

z1 1
cos r zdz

z2 2
sin

2



+

=

−  
= + 

  






  

 

( )

( ) 2

0

g 1
z cos r z

1 g 12
sin z

z2 2
g 1 sin

2


+ 

 + − +  =  
  +







. 

Therefore, the following (7), the almost matrix transformation 
,rt  of the sequence ( ) U y  of the 

partial sum of the series (2) will be given by 

( ) ( ),r g,rg,rg 00 0

1 z 1 z
t z cot dz U z cos dz

2 2 2 2

 

=
−  =  − 

 
   

 ( )g,rl,gg 0 0

1 z
U z cot dz

2 2



=

 
=  −   
   

 ( )
( )

r

l,gg 00 2

g 1 g 1
cos r zsin z

1 2 2
z dz

z2
g 1 sin

2



=

+ +   
+   

   = −  


+
  
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 ( ) ( ),r
0

O z N z dz
 = 

           (25) 

Now, we have to show that 

( ) ( ),r
0

J z N z dz


=   

( )O 1=  as to            (26) 

uniformly with respect to r. 

For 0 1   , 

( ) ( ),r
0

J z N z dz


=   

( )

( )

( ) ( )
v

v

1
1

rr
,r11

0
r r

z N z dz
++

+ +

 
 = + + 
 
 
    

1 2 3J J J= + + .           (27) 

For 1J , 

( ) ( ),r1 r

0

1
J O z N z dz

+

 
=  

 
 

( ) ( )r

0

1
O r z dz

+
= + 


, (using lemma 2.3) 

( )
( )

,r r

,r

p
O r .O

P

+



 
 = +

    

 

( )O 1= , as →           (28) 

uniformly with respect to r. 

For 2J , 

( ) ( )( )
v

1

r
,r12

r

J O z N z dz
+

+

 
 = 
 
 
  

( )( )
v

1

r

1

r

z
O dz

z

+

+

 
 =
 
 
 , (using lemma 2.1) 

( )O 1= , as →           (29) 

uniformly with respect to r. 
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Again, for 3J  

( )

( )
v

3 ,gg 0
2

1

r

g 1 g 1
cos r z sin z

2 2
J dz

z
g 1 sin

2



=

+

 + +    
+ −        =   

 +
  








  

( )
( )

( )

( )
( )

( )
v

v

,g ,gg 0 g 0
2 2

1

1 r

r

g 1
sin r z

sin rz2
z dz z dz

z z
g 1 sin 2 g 1 sin

2 2





= =

+

+

 +  
+  

  =   −  
 + + 
 




 



   

3,1 3,2J J= − .           (30) 

Applying second mean value theorem for 
3,2J , we have 

( )
( )

( )
( )

v

13,2 ,gg 0
2

r

1
J O z sin rzdz

1
2sin

r



=

+


=  

+

   

( )O 1= , as →           (31) 

uniformly with respect to r, where 

( )

1

r

    

+
. 

Again, for 
3,1J , 

( )
( )

( ) ( )
( )

v

13,1 ,gg 0
2

r

1
J O z sin r g 1 zdz

1
2sin

r



=

+


=   + +

+

   

( )

( )
( )

v

1,gg 0

r2

1
O z dz

1
2sin

r



=

+



 
 
 

=   
  
   +  

   

( )O 1= , as →           (32) 

uniformly with respect to r 

From (30), (31) and (32), we obtain 

( )3J O 1= , as →           (33) 
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uniformly with respect to r. 

Now, combining (27), (28), (29) and (33), we get (26) 

i.e. ( ) ( ),r
0

J z N z dz


=   

( )O 1= , as →  uniformly with respect to r. 

Proof of the theorem 3: The 
th

 partial sum ( )u y  of Fourier series (1) of the function ( )z  at a point 

z y=  in the interval ( ), −  is given by 

( ) ( ) ( )

0

1
sin

1 2

2
sin

2

z

y y z dz
z



  


 
+ 

 − =







       (34) 

Now, 

( )
( )

, ,

0 1

0

1
sin

1 1 2

1 2
sin

2

g r

r g

g r

z r z

t y dz
zg





 


+

= =

   
+   

   − =  
+   

    







   

( )
( )

,

0 1
0

1 1
sin

2 1 2
sin

2

g r

g

g r

z
r z dz

zg








+

= =

 
   

= +   
+    

 






   

( )
( )

,
20

0

1
sin

1 1 2sin .
2 2

1 sin
2

g

g

g
z

z r z dz
z

g



 
=

+

 
= + 

  +







  

( )
( )

,
20

0

1
sin

1 2
sin

2
1 sin

2

g

g

g
z

g
O z r z dz

z
g



 
=

  +  
   +     = +     + 

   








  

( ) ( ),
0

rO z N z dz


 =
            (35) 

we have to show that ( ) ( ),
0

rz N z dz


 ( )1O=  as →      (36) 

uniformly with respect to r . 

For 0 1  , we have 
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( ) ( ),
0

rz N z dz


  

( )

( )

( ) ( )
1

1

11 ,
0

rr
r

r r

z N z dz







++

+ +

 
 = + +
 
 
    

1 2 3K K K= + +  say         (37) 

For 1K , 

( ) ( )
1

1 ,
0

r
rK O z N z dz+

 
=  

 
  

( ) ( )
1

0

rO r z dz+
 

= +  
 
  (using lemma 2.1) 

( ) ( ). r

r

r

P
O r O N

P

+

+

+

 
= +  

 
 

( )1O=  as →           (38) 

For 2K , 

( ) ( )( )

1

12 ,

r

r

r

K O z N z dz



+

+

 
 =
 
 
  

( ) ( )( )

1

1 ,

r

r

r

z N z dz



+

+

   

( )( )

1

1 2 2

r

r

z
O dz

z

 
+

+

 
 =
 
 
  (using lemma 2.4) 

( )1O=  as →  (using (34))         (39) 

Lastly, we have 

( ) ( )
( )

13 ,r

r

K z N z dz





+

=   

( )
( )( )

1 ,
20

1
sin

1 2
sin .

2
1 sin

2

g

gr

g z
g

z r z dz
z

g



 
=+

  
+  +    = +  

  +
  

  
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( )
( )

( )( )

1 ,
20

cos cos 1

2 1 sin
2

g

gr

rz r g z
z dz

z
g



 
=+

 
 − + +

=  
 +
 

  

( )
( )( )

1 ,
20

cos

1 sin
2

g

gr

rz
z dz

z
z g



 
=+

 
 

=  
 +
 

 ( )
( )

( )( )
1 ,

20

cos 1

2 1 sin
2

g

gr

r g
z dz

z
g



 
=+

 
 + +

−  
 +
 

  

3,1 3,2I I= − .           (40) 

again for 
3,1I , 

3,1 ,

0 2

1

1
2sin

g

g

I O

r




=

 
=  

  
 

+ 

 . ( )
( )

1 cos
r

z rzdz





+

  

( )1O= , as →  uniformly with respectively r .      (41) 

For 
( )

1

r


    
+

, 

( )

3,2 ,

0
2

1

1
2sin

g

g

I O

r



=

 
=  

  
 
 + 

 ( ) ( )
( )

1 cos 1
r

z r g z dz





+

+ +  

( )

( )
( )

1,
20

1

1
2sin

g

g r

O z dz

r







 
= +

 
=  

 
+

   

( )1O= , as →           (42) 

uniformly w.r. to r . 

Combining (37), (38), (39), (40), (41) and (42), we get (36) 

Particular cases: 

(i) ( ),1C means when ,

1

1
g =

+
 

(ii) Harmonic means when 

 
( ),

1

1 log
g

g
 =

− +
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(iii) ( ),C   means when 

 ( ),

1

1
, 0 1g

g 


 





− + + 
 

− =  
+ 

 
 

 

(iv) ( ),H p  means, when 

 
( )

( )
1

, 1
0

1
log 1

log 1

p
r

g p
r

g
g


−

−
=

= +
+
  

(v) Nörlund means, when 

 ,

g

g

p

p


−
= , where  p  is non-negative monotonic decreasing sequence such that 

 
0

g

g

p p
=

= → , as → . 

(vi) Riesz means ( ),N p , when 

 ,

g

g

g

p

P
 =  where  p  is a non-negative, increasing sequence such that 

 
0

g

g

P p
=

= → , as → . 

(vii) Generalized Nörlund means ( ), ,N p q , when 

 ,

g g

g

p q

R


−
=  where  p  is a positive monotonic decreasing sequence and  gq  is positive 

monotonic increasing sequence such that 
0

g g

g

R p q−

=

= → , as → . 

An application: 

Let ( )z  be a 2 − periodic and Lebesgue integrable function of z in the interval ( ), − . Then the 

trigonometric Fourier series of the function ( )z  is given by 

𝜁(𝑧)  ~ 
𝑎𝑜

2
  + ∑ (  𝑎𝛼 

∞
𝛼=1  cos 𝛼𝑧 +𝑏𝛼 sin 𝛼𝑧 ) 

where ( )0

1
a z dz






 −
=  , 
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( )
1

cosa z z dz




 

 −
=  , 

( )
1

sinb z z dz




 

 −
=  , 

and 

( )
( ) ( )

2

y z y z
z

 


+ + −
= ,         (43) 

and 

( ) ( ) ( )
1

0

z

z z dv
z



 


   

−
= − , ( )0         (44) 

If 1 =  then 

( ) ( )1
0

z

z dv  =            (45) 

It is clear that if ( ) ( )0,z BV   then ( ) ( )1z y O =  where ( )z y  is ( ),1C  mean of the sequence 

( )M z  (see [23]). By using this fact, we obtain the specific results of Özarslan [3], Yildiz [7] and 

Bor [24]. 

Conclusion 

If  p  is positively monotonic decreasing sequence such that P ,→ →  and 

( ) ( )
( )
( )

z z
z , z ,

z


 


 increase with z satisfying the Theorem ‘A’ and ‘B’, along with the lemmas (2.1) 

to (2.4) are satisfied, then the series (1) and (2) of (1) are respectively summable ( )  to the sum ( )z  

and ( )
0

1 z
z cot dz

2 2










, under the conditions (8), (9) and (10). Thus our results generalizes the 

results of [1]. 

Similarly, if  p  is real monotonic non-decreasing and  ,g  be positive non-decreasing of z such 

that 
,

1

g

g

 
 

+ 
 is non-increasing satisfying the theorem (c) along with the lemmas (2.1) to (2.4) are 

satisfied, then the series (1) is summable to the sum under the conditions (13) and (14). 

Thus, our result generalizes the result of Patti [14]. 
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