A Study on Binary Generalized &— Closed Set in Binary Topological Space

Parvathy. C. R¹, Narmatha. S²

¹Associate Professor & Head, Department of Mathematics ²Assistant Professor, Department of Mathematics ^{1,2}PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, India.

Abstract:- In this paper, we introduced the Binary Generalized \wp —Closed set and Binary Generalized \wp —Open set in Binary Topological Space. Also we discuss some of their properties and the relations between the associated binary topological space.

Keywords: Binary topological spaces, generalized binary topological space, binary generalized ℘−Closed set

1. Introduction

The generalized closed set and its complements are introduced by Levine in 1970[6]. In 1983 Njasted [11] introduced and studied the concepts of \propto -Sets. \propto -closed sets, \propto -open functions in topological spaces concepts are studied by Mashhours et.al [7] Binary Topology was introduced by S.Nithyanantha Jothi and P. Thangavelu in 2011[4]. Further contribution to this research in 2014, they introduced the concepts of generalized binary closed sets and discussed some properties [8]. In this paper, we introduced the *Binary Generalized* \wp - Closed set in Binary Topological Space and discuss some properties.

Let X and Y be any non-empty sets. A binary topology [8] from X to Y is a binary structure $\mathcal{M} \subseteq \rho(X) \times \rho(Y)$ that satisfies the following axioms

- (i) (ϕ, ϕ) and $(X,Y) \in \mathcal{M}$,
- (ii) $(K \cap K_1, L \cap L_1) \in \mathcal{M}$ whenever $(K,L) \in \mathcal{M}$ and $(K_1 \cap L_1) \in \mathcal{M}$,
- (iii) If $\{(K_{\alpha}, L_{\alpha}) : \alpha \in \Delta\}$ is a family members of \mathcal{M} then $(\bigcup_{\alpha \in \Delta} K_{\alpha}, \bigcup_{\alpha \in \Delta} L_{\alpha}) \in \mathcal{M}$.

Proposition [8] Let (X,Y,\mathcal{M}) be a \mathfrak{BS} $(K,L) \subseteq (M,N) \subseteq (X,Y)$ then the following statements hold

- \Leftrightarrow b- $int(K,L)\subseteq(K,L)$
- \Leftrightarrow If (K,L) is binary open, then *b-int*(K,L) = (K,L)
- \Leftrightarrow *b-int* (K,L) \subseteq *b-int* (M,N)
- \Rightarrow b-int(b-int (K,L)) = b-int (K,L)
- \Leftrightarrow (K,L) $\subseteq b$ -cl (K,L)
- \Leftrightarrow If (K,L) is binary closed, then b-cl(K,L) = (K,L)
- $\Leftrightarrow b\text{-}cl(K,L)\subseteq b\text{-}cl(M,N)$
- $\diamond b cl(b cl(K,L)) \subseteq b cl(K,L)$

2. Binary Generalized & -Closed Set And Binary Generalized & - Open Set

Definition 2.1: Let (K,L) be a subset of a binary topological space (X,Y,\mathcal{M}) is called a Binary generalized \mathscr{D} –closed set [briefly $\mathscr{BG}\mathscr{D}$ – closed] if $bscl(K,L) \subseteq (M,N)$ whenever $(K,L) \subseteq (M,N)$ and (M,N) is binary \propto open.

Theorem2.2: Every binary closed set is $\mathcal{BG} \wp$ – closed set

Proof: Let (A,B) be a binary closed set of (X,Y,\mathcal{M}) then $(A,B) \subseteq (M,N)$, where (M,N) is binary \propto open in (X,Y,\mathcal{M}) . Since $bcl(A,B) \subseteq (A,B)$. Therefore $bint(bcl(A,B)) \subseteq (A,B)$. So (A,B) is $bscl(A,B) \subseteq (M,N)$. Where (M,N) is binary \propto open in (X,Y,\mathcal{M}) . Hence every binary closed set is a $\mathcal{BG} \wp$ – closed.

The converse of the above theorem need not be true from the following example.

Example 2.3 Let $X = \{a,b\}$, $Y = \{1,2,3\}$ and $\mathcal{M} = \{((\phi,\phi),(\phi,\{1\}),(\{a\},\{1\}),(\{a\},\{1,2\}),(\{b\},\{3\}),(\{b\},\{1,3\}),(X,\{1\}),(\{X\},\{1,2\}),(X,\{1,3\}),(X,Y)\}$. Then the set $(\{a\},\{3\})$ is \mathcal{BG}_{\wp} — closedset but not a binary closed set.

Theorem 2.4: Every binary g closed set is $\mathcal{BG} \wp$ – closed set.

Proof: Let (A,B) be a Binary generalized \wp —closed set. Let $(A,B) \subseteq (M,N) \subseteq (X,Y)$, then b-cl(A,B) = (A,B), $(A,B) \subseteq (M,N)$, (M,N) is binary open then b-cl $(A,B) \subseteq (M,N)$, b-int(b-cl $(A,B) \subseteq b$ -int(M,N),

Therefore b-int(b-cl(A,B)) \subseteq (M,N), since bint(M,N)= (M,N). Hence scl(A,B) \subseteq (M,N), Where (M,N) is binary \propto open. Since using every binary open is binary \propto open set then (A,B) is $\mathcal{BG} \otimes -$ closed set.

The converse of the above theorem need not be true as seen from the following example.

Example 2.5 In the example 2.3 $(X,\{3\})$ is $\mathcal{BG} \otimes -$ closed set but not g closed set.

Theorem 2.6: Every generalized binary regular closed set is $\mathcal{BG} \wp$ – closedset.

Proof: Let (A,B) be a generalized binary Regular closed set. By the definition b-cl $(A,B)\subseteq (M,N)$ where $(A,B)\subseteq (M,N)\subseteq (M,N)$, then b-cl $(A,B)\subseteq (M,N)$, and b-int $(b\text{-cl}(A,B))\subseteq b\text{-int}(M,N)$. Since b- int $(M,N)\subseteq (M,N)$, it follows that b-scl $(A,B)\subseteq (M,N)$. Every binary regular open set is binary α open. Hence (A,B) is binary generalized ω -closed set.

The converse of the above theorem need not be true as seen from the following example.

Example 2.7 Let $S=\{0,1\}$, $T=\{a,b,c\}$, and $\mathcal{M}=\{(\phi,\phi),(\{0\},\{a\}),(\{1\},\{b\}),(S,\{a,b\}),(S,T)\}$. Let $(\{1\},\{b\})$ is a $\mathcal{BG} \otimes -$ closed set but not binary regular closed set.

Theorem 2.8: Every binary g^* closed set is $\mathcal{BG} \wp$ – closed set.

Proof: Let (A,B) be a binary g^* closed set of (X,Y). Let $(A,B) \subseteq (M,N)$. Assume (M,N) is binary g open in (X,Y). Since (A,B) is binary g^* closed, bcl(A,B) = (A,B).

However b s-cl(A,B) \subseteq bcl(A,B), which implies that bcl(A,B) \subseteq (M,N). Therefore (A,B) \subseteq (M,N), is binary g open in (X,Y). Every binary generalized open set is binary- \propto open set. Therefore (A,B) is binary generalized \wp -closed set.

The converse of the above theorem need not be true from the following example.

Example 2.9: In the example 2.3 $(X,\{3\})$ is \mathcal{BG}_{ω} – closed set but not g^* closed set.

Theorem2.10: Every Binary generalized \wp —closed set is Binary gs closed set.

Proof: Let (A,B) be a Binary generalized \wp -closed set of (X,Y,\mathcal{M}) and let (M,N) is a binary α open in (X,Y,\mathcal{M}) such that $(A,B)\subseteq (M,N)$. Since every binary semi closure of $(A,B)\subseteq (M,N)$, and Some binary α open sets are binary open, then (M,N) is binary open.

We know that $bscl(A,B) \subseteq (M,N)$, and (M,N) is binary open. Therefore (A,B) is Binary gs closed set.

The converse of the above theorem need not be true as from the following example.

Example 2.11: In the example 2.3 $(X,\{2\})$ is Binary gs closed set but not $\mathcal{BG} \wp$ – closed set.

Theorem 2.12: Every $\mathcal{BG} \wp$ – closed set is binary \propto g closed set.

Proof: From the definition of binary generalized \wp –closed set, consider the subset (A,B) of (X,Y). Let (M,N) be a binary open set in (X,Y), such that $(A,B)\subseteq (M,N)$. Since every binary α open sets are binary open set, we have b-scl $(A,B)\subseteq (M,N)$, and b-int(b-cl $(A,B))\subseteq (M,N)$.

Additionally, b-cl(b-int(bcl(A,B))) \subseteq bcl(M,N). We know that bcl(M,N) \subseteq (M,N), therefore, b \propto cl(A,B) \subseteq (M,N) and (A,B) \subseteq (M,N). Since (M,N) is a binary open set in (X,Y), it follows that (A,B) is \propto g closed set. Hence it is proved.

The converse of the above theorem need not be true as can be seen in the following example.

Example 2.13: In the example 2.3 ($\{a\}$, $\{2,3\}$) is binary $\propto g$ closed set but not $\mathcal{BG} \wp$ – closed set Hence the converse of the theorem 2.11 is not possible.

Theorem 2.14: Every $\mathcal{BG} \wp$ – closedset is Binary sg closed set.

Proof: Let (A,B) be a Binary generalized \mathscr{O} –closed set of (X,Y,\mathcal{M}) and let (M,N) is a binary \propto open in (X,Y,\mathcal{M}) , such that (A,B) be a subset of (M,N). Since every binary semi closure of $(A,B) \subseteq (M,N)$, and binary \propto open sets are binary open set, (M,N) is binary open.

Every binary openset is binary semi open. (ie) $bscl(A,B) \subseteq (M,N)$, whenever $(A,B) \subseteq (M,N)$, (M,N) is binary semi open. Therefore (A,B) is a Binary sg closed set.

The converse of the above theorem need not be true as can be seen in the following example.

Example 2.15 In the example 2.3 ($\{a\},\{2,3\}$) is binary sg closed set but not $\mathcal{BG}(\mathcal{O})$ – closed set.

Theorem 2.16: Every $\mathcal{BG} \wp$ – closedset is binary g^*s closed set.

Proof: Let (A,B) be a binary generalized \mathscr{D} -closed set of (X,Y), and let $(A,B) \subseteq (M,N)$. (M,N) is a binary α -copen set in (X,Y). From the definition of binary generalized \mathscr{D} -closed set, (A,B) is a binary semi closure of (A,B). If (A,B) is binary α -copen set, then $(M,N) \subseteq b$ -int(b-cl(b-int(M,N)).

We know that $b\text{-}int(M,N) \subseteq (M,N)$ thus $(M,N) \subseteq b\text{-}int(b\text{-}cl(M,N))$. Taking the binary interior on both sides, we get $bint(M,N)\subseteq bint(b\text{-}int(b\text{-}cl(M,N)))$, which implies $(M,N)\subseteq bcl(M,N)$. Taking the complement on both sides, the result will be binary g open set . If $bscl(A,B)\subseteq (M,N)$ and (M,N) is binary g open in (X,Y), then the subset (M,N) is binary g^*s closed set. Hence, it is proved.

The converse of the above theorem need not be true as can be seen in the following example.

Definition:2.17 Let (K,L) be a subset of a binary topological space (X,Y,\mathcal{M}) is called a Binary generalized \mathscr{D} –Open sets (briefly $\mathscr{BG}\mathscr{D}$ – open) if $(K,L)^c$ is also binary generalized \mathscr{D} -open set.

Theorem 2.18: Every binary open set is $\mathcal{BG} \wp$ – open set

Proof: Proof follows from the theorem 2.2

Theorem 2.19: Every generalized Binary regular open set is $\mathcal{BG}\wp$ — open set

Proof: Proof follows from the theorem 2.6

Theorem 2.20: If $bsint(K,L) \subseteq (P,Q) \subseteq (K,L)$ and if (K,L) is binary generalized \wp open set.

Proof: Let *bsint* $(K,L)\subseteq (P,Q)\subseteq (K,L)$. Then $(K,L)^c\subset (P,Q)^c\subseteq bscl\ ((K,L)^c)$ where $(A,B)^c$ is a binary generalized $\mathscr O$ closed set. Hence, $(P,Q)^c$ is also binary generalized $\mathscr O$ closed set. Therefore, (P,Q) is binary generalized $\mathscr O$ open set.

From the above discussion we can figure out the relation between Binary generalized \wp closed set with other closed sets.

Binary ∝ g closed set.

Generalised Binary Regular closed set

Binary Closed Set

Binary gs closed set

3. Characteristics Of Binary Generalized & -Closed Set

Theorem 3.1: Union of any two $\mathcal{BG} \wp$ -Closed set is $\mathcal{BG} \wp$ -Closed set.

Proof: Let (K,L) and (R,S) are \mathcal{BG}_{ω} -Closed sets in (X,Y,\mathcal{M}) , and let (M,N) be any Binary α open set containing (K,L) and (R,S). Therefore, $bscl(K,L)\subseteq (M,N)$ and $bscl(R,S)\subseteq (M,N)$. Since $(K,L)\subseteq (M,N)$ and $(R,S)\subseteq (M,N)$, we have $(K,L)\cup (R,S)\subseteq (M,N)$.

Binary sg closed set

As (K,L) and (R,S) are $\mathcal{BG} \otimes -\text{Closed}$ sets in (X,Y,\mathcal{M}) , $bscl(K,L) \subseteq (M,N)$ and $bscl(R,S) \subseteq (M,N)$. Now, $bscl((K,L) \cup (R,S)) = bscl(K,L) \cup bscl(R,S) \subseteq (M,N)$. Since (M,N) is a binary α open set in (X,Y,\mathcal{M}) , $(K,L) \cup (R,S)$ is $\mathcal{BG} \otimes -\text{Closed}$ set.

Example 3.2 In the example 2.3 $(\phi,\{2\})$ and $(\{b\},\{2\})$ are $\mathcal{BG}_{\mathcal{O}}$ -closed set and its union $(\{b\},\{2\})$ is also the $\mathcal{BG}_{\mathcal{O}}$ -Closed set.

Theorem 3.3: Let $(K,L)\mathcal{BG}_{\mathcal{O}}$ —Closed set of (X,Y,\mathcal{M}) . If (K,L) $)\subseteq (R,S)\subseteq bscl(K,L)$ then (K_1,L_1) is also $\mathcal{BG}_{\mathcal{O}}$ —Closed set of (X,Y,\mathcal{M}) .

Proof: Let (M,N) be a binary α open set in (X,Y). If (R,S) is a subset of (M,N), then $(K,L) \subseteq (R,S)$ implies $(K,L) \subseteq (M,N)$. Since (K,L) is a binary Generalized $(M,N) = bscl(K,L) \subseteq (M,N)$. Also, $(R,S) \subseteq bscl(K,L)$ implies $bscl(R,S) \subseteq bscl(K,L)$. Thus $bscl(R,S) \subseteq (M,N)$ and so, (R,S) is a binary generalized (M,N) = bscl(K,L).

Theorem 3.4: Let (K,L) be a $\mathcal{BG}_{\mathcal{O}}$ -Closed subset of (X,Y,\mathcal{M}) . If $(K,L) \subseteq (P,Q) \subseteq \text{bs-cl}(K,L)$, then (P,Q) is also $\mathcal{BG}_{\mathcal{O}}$ -Closed subset of (X,Y,\mathcal{M})

Proof: Let $(P,Q) \subseteq (M, N)$, where (M,N) is a binary \propto open set in (X,Y,\mathcal{M}) . Then $(K,L) \subseteq (P,Q)$ implies that $(K,L) \subseteq (M,N)$. Since (K,L) is $\mathcal{BG}_{\mathcal{O}}$ —Closed set, $bs\text{-}cl(K,L)\subseteq (M,N)$. Also $(P,Q)\subseteq bs\text{-}cl(K,L)$ implies $bscl(P,Q)\subseteq (M,N)$. Therefore (P,Q) is $\mathcal{BG}_{\mathcal{O}}$ —Closed.

Conclusion

In this paper, we discussed a new form of Binary generalized \wp -closed set, $\mathcal{BG} \wp$ -open set and its characterization are discussed.

References

- [1] Abinaya.D and M.Gilbert Rani, Binary ∝ generalized closed sets in binary topological spaces, Indian Journal of Natural Sciences, 14(77)(2023)
- [2] Carlos Granados, on binary \propto open sets and binary $\propto -\omega$ open sets in binary topological spaces, South Asian journal of Mathematicd, 11(1)(2021),1-11

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055 Vol. 45 No. 3 (2024)

- [3] Gnana Arockiam.A, M. Gilbert Rani and R. Premkumar, Binary generalized star closed set in binary topological spaces, Indian Journal of Natural Sciences, 13(76)(2023), 52299-52309.
- [4] Gnana Arockiam.A, M. Gilbert Rani and R. Premkumar, Binary generalized star semi closed set in binary topological spaces.Eur.Chem.Bull.2023,12(S2),2447-2553
- [5] Jayalakshmi.S and A. Manonmani, Binary regular beta closed sets and Binary regular beta open sets in Binary topological spaces, The International Journal of Analytical and experimental modal analysis, Vol 12(4)(2020), 494-497.
- [6] Levin.N, Generalized Closed Sets in Topology, Rent. Circ. Mat. Palermo, 19(2)(1970), 89-96
- [7] Mashhour .A. S, M. E. Abd El-Monsef, and S.N. EL-Deeb, \propto open mappings, Acta. Math. Hungar., (41)(1983), 213-218
- [8] Nithyanantha jothi.S and P.Thangavelu, Topology between two sets, Journal of Mathematical Sciences & Computer Applications, 1(3)(2011),95-107.
- [9] Nithyanantha jothi.S and P.Thangavelu, Generalized binary closed sets in binary topological spaces, ultra scientist vol.26(1) A, (2014) 25-30.
- [10] Nithyanantha jothi.S and P.Thangavelu, Generalized binary regular closed sets, IRA International journal of applied sciences, vol.04, issue 02 (2016)
- [11] Njastad, On Some Classes of Nearly open sets, pacific. J. Math., (15) (1965), 961-970
- [12] Santhini.C and T. Dhivya, New notation of generalised binary closed sets in binary topological space, International journal of Mathematical Archive-9(10), 2018.