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Abstract: The Internet of Things (IoT) and Software-Defined Networking (SDN) are changing current 

networking with better flexibility and management. However, also create new security problems, particularly 

because hackers targeting SDN infrastructure often utilise IoT devices as entry points. IoT-SDN configurations 

are exposed to a wide range of security threats because of their complexity and increasing interconnectedness. We 

propose a new approach to enhance network security in IoT-SDN ecosystems by means of deep learning, more 

precisely the Residual YOLOv7 framework. Because residual learning records and adjusts temporal data, 

YOLOv7 can precisely identify anomalies and attacks. By use of real-time analytics, this method continuously 

monitors network traffic, detects anomalous activity, and responds quickly to any threats. Strong network defence 

and efficient resource allocation are facilitated by the precise attack identification made feasible by the inclusion 

of Residual YOLOv7. By means of experimental evaluation, we demonstrate that the proposed Residual YOLOv7 

model significantly raises attack detection rates and reduces false positives when compared to conventional 

techniques. With 2.3% false positive rate, we showed a 97.5% threat detection accuracy in simulated IoT-SDN 

setups. The system's real-time processing powers ensure quick security measure implementation, which lowers 

the risk of prolonged exposure to threats. The adaptability of the response to various types of attacks also generally 

improves network resilience. 
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1. Introduction 

The Internet of Things (IoT) has quickly spread, and among the connected devices that have substantially 

increased in number are simple sensors to complex smart home systems [1]. The growth of the connections calls 

for more advanced and flexible network management systems. Promisingly, dynamic and programmable network 

topologies made possible by Software-Defined Networking (SDN) can efficiently handle the massive and diverse 

data flows from Internet of Things devices [2]. SDN's ability to centralise management—which keeps the control 

and data planes apart—improves network control and visibility [3]. 

Combining SDN with IoT has certain security concerns even if there are benefits. Since IoT gadgets are often 

built with little security features, they might be easy targets for hackers. After being compromised, these devices 

can act as entry points for attacks on the SDN system [4]. The complexity and dynamic nature of these threats are 

too much for conventional security methods, which usually rely on set, unchanging rules [5]. The variability of 

data generated by the Internet of Things makes the application of effective security measures much more 

challenging, hence real-time monitoring and flexible response strategies are necessary [6]. 

The principal objective is to offer a security architecture capable of identifying and thwarting attacks in IoT-SDN 

environments. This framework must be able to control the enormous unpredictability and amount of network 

traffic, as well as to identify threats with great accuracy and low latency and to adapt to new and evolving attack 
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patterns. Current solutions usually fall short in two areas: real-time detecting capabilities and false positive 

reduction, which can lead to needless network disruptions and resource waste. 

The objectives of this research are to: Improve anomaly and threat detection in IoT-SDN environments with a 

deep learning-based security architecture leveraging Residual YOLOv7. It is feasible to have a high detection 

accuracy and a low false positive rate. Make it feasible to monitor in real time and respond quickly to hazards 

discovered. Allocate resources to ensure efficient network operation and robust protection against new security 

threats. 

This work is special since it uses the state-of-the-art deep learning model Residual YOLOv7 to the domain of IoT-

SDN security. Attack detection with residual YOLOv7 is more precise and adaptive than with traditional security 

techniques because it uses residual learning to record and convert temporal data. This innovative use of deep 

learning improves the system's real-time processing and analysis of vast volumes of data in addition to the 

accuracy of risk detection. 

This work provides improved accuracy and fewer false positives for attack detection in IoT-SDN systems by using 

a novel application of Residual YOLOv7, significantly advancing the field of network security. 

2. Related Works 

Many studies have been done on the potential confluence of IoT with SDN to totally change network management 

and operation. Still, there also introduces unique security problems that need for innovative solutions. Many 

studies have looked into different approaches to enhance the security of IoT-SDN configurations, ranging from 

machine learning to complex deep learning models. 

Many papers have underlined the security vulnerabilities in SDN and IoT systems. The intrinsic flaws in IoT 

devices caused by their low resources and lack of robust security mechanisms are highlighted by [6] in their 

comprehensive study of IoT security issues. Comparably, [7] discuss the security concerns particular to SDN, 

such controller attacks and data plane security challenges. The necessity for quickly effective security solutions 

that addressed the unique characteristics of IoT-SDN configurations is highlighted by these groundbreaking 

studies. Machine learning (ML) has found wide applicability in intrusion detection in network security. In [8], for 

instance, machine learning methods are applied to identify abnormalities in Internet of Things networks, and 

encouraging results are obtained in identifying deviations from normal activity. However, the high dimensionality 

and dynamic nature of network data in real-time applications usually pose challenges for traditional machine 

learning methods. Deep learning (DL) offers a further advanced approach to handle complex and high-

dimensional data. Recently, several deep learning architectures have been studied to enhance security in SDN and 

IoT. For example, [9] show that utilising a Recurrent Neural Network (RNN) for anomaly detection in Internet of 

Things networks, detection accuracy increases noticeably. Comparably, by identifying DDoS attacks in SDN 

using Convolutional Neural Networks (CNNs), [10] demonstrate that DL may effectively manage specific types 

of network vulnerabilities. 

Introduced by [11], residual learning has considerably increased the capabilities of DL models by allowing them 

to train deeper networks without the vanishing gradient problem. This concept has been applied to improve the 

performance of several deep learning models on challenging problems. Especially its most recent iteration, 

YOLOv7, the You Only Look Once (YOLO) paradigm has shown remarkable performance in real-time object 

recognition and may be adjusted for anomaly detection in network security. Emphasising the efficacy and 

accuracy of YOLO in object detection tasks, [12] suggests that network traffic monitoring and anomaly detection 

could benefit from its application. In continuation of these earlier work, we use Residual YOLOv7 to enhance 

anomaly detection in IoT-SDN situations. 

3. Proposed Method 

The proposed method uses deep learning—more especially, the Residual YOLOv7 model—to enhance security 

in IoT-SDN systems. This approach records and converts temporal data to facilitate precise monitoring and prompt 

response to security threats, hence achieving real-time anomaly identification and threat reduction. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024) 

__________________________________________________________________________________ 

2193 

 

Figure 1: Proposed Framework 

Important components of the system architecture are: 

• IoT Devices: A continuous flow of data is produced by several sensors and intelligent devices. 

• SDN Controller: Dynamic network flow and configuration management via the SDN Controller provide a 

centralised control point. 

• Data Collection Module: Data collection module gathers information from Internet of Things devices and 

network traffic. 

• Preprocessing Module: Normalising and filtering the collected data, the preprocessing module removes noise 

and useless data. 

• Residual YOLOv7 Model: The core of anomaly detection, the Relative YOLOv7 Model integrates residual 

learning with the YOLOv7 framework. 

• Alert and Response System: This system sounds an alert and initiates response protocols when it detects 

anomalies or attacks. 

Internet of Things devices and network traffic are among the real-time data collecting methods. Among the metrics 

in this data are device status, network packet information, and flow statistics. This data is ensured to be in a 

consistent format suitable for analysis by the preprocessing module by normalisation. Noise and irrelevant data 

are removed to raise the accuracy of the detection model. 

Deep neural network training has challenges, notably the vanishing gradient problem, which residual learning 

tackles. Because residual blocks let the model to learn residual mappings instead of direct mappings, deeper 

networks are easier to train. It takes this capability to capture intricate patterns and temporal correlations in 

network traffic data. 

Especially its most current version, YOLOv7, the You Only Look Once (YOLO) framework is well-known for 

its efficiency in real-time object detection. We adapt YOLOv7 to identify network traffic irregularities. In its 

analysis of the preprocessed data, the model highlights unusual trends as potential risks. 

Remaining learning with YOLOv7 consists of the following stages: 

• Feature Extraction: High-level features are obtained by passing the input data through several convolutional 

layers with residual connections. 
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• Detection Layers: YOLOv7's detection layers then compare observed typical patterns with current network 

behaviour to process these features and identify anomalies. 

• Temporal Data Handling: YOLOv7's detection layers then compare observed typical patterns with current 

network behaviour to process these features and identify anomalies. 

The model issues an alert that the alert and response system processes when it detects an anomaly. According to 

its severity, this system categorises the threat and initiates the appropriate response, such blocking malicious 

traffic, isolating affected devices, or notifying network administrators. 

3.1. Data Preprocessing 

The model issues an alert that the alert and response system processes when it detects an anomaly. According to 

its severity, this system categorises the threat and initiates the appropriate response, such blocking malicious 

traffic, isolating affected devices, or notifying network administrators. 

• As in Table 1, data from network traffic and a range of Internet of Things devices is collected. This includes 

device states, flow statistics, network packet data, and sensor readings. 

• Normalisation as in Table 2 adjusts the data to a standard range, often [0, 1] or [-1, 1], to ensure that different 

features add equally to the model. It becomes even more important when handling disparate data from many 

sources. 

Table 1: Data collected from IoT Nodes 

Timestamp Device ID Sensor Value Packet Size (bytes) Flow Duration (ms) 

2024-05-28 10:00:00 1 35.0 150 200 

2024-05-28 10:00:01 2 28.0 200 300 

2024-05-28 10:00:02 1 37.0 100 250 

 

Table 2: After normalization 

Timestamp Device ID Sensor Value Packet Size (bytes) Flow Duration (ms) 

2024-05-28 10:00:00 1 0.538 0.375 0.4 

2024-05-28 10:00:01 2 0.431 0.5 0.6 

2024-05-28 10:00:02 1 0.569 0.25 0.5 

 

• As in Table 3, cleaning means getting rid of or fixing any anomalies, missing data, or contradictions that could 

distort the findings. Either imputation or discarding incomplete records can be used to manage missing values, 

depending on the circumstances and amount of missing data. 

Table 3: Original data with missing values and outliers: 

Timestamp Device ID Sensor Value Packet Size (bytes) Flow Duration (ms) 

2024-05-28 10:00:00 1 35.0 150 200 

2024-05-28 10:00:01 2 NaN 200 300 

2024-05-28 10:00:02 1 3700.0 100 250 
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Table 4: After cleaning 

Timestamp Device ID Sensor Value Packet Size (bytes) Flow Duration (ms) 

2024-05-28 10:00:00 1 35.0 150 200 

2024-05-28 10:00:01 2 31.0 200 300 

2024-05-28 10:00:02 1 37.0 100 250 

• As Table 4 shows, pertinent elements are selected from the raw data. The data may be reduced in 

dimensionality, or additional features created to better represent the underlying patterns. 

• Converting data means putting it in a Residual YOLOv7 model-compatible format. For temporal investigation, 

this could mean altering, encoding, and categorising variables. 

Table 5: Transformed data for model input: 

Timestamp Feature Vector 

2024-05-28 10:00:00 [0.538, 0.375, 0.4] 

2024-05-28 10:00:01 [0.431, 0.5, 0.6] 

2024-05-28 10:00:02 [0.569, 0.25, 0.5] 

Temporal analysis needs the creation of data points sequences that document the development of features over 

time in order to find trends that indicate abnormalities. 

Table 6: Sequences for temporal analysis: 

Sequence ID Sequence Data 

1 [[0.538, 0.375, 0.4], [0.431, 0.5, 0.6]] 

2 [[0.431, 0.5, 0.6], [0.569, 0.25, 0.5]] 

Residual Learning  

A proposed residual learning process enables more effective training of deeper neural networks by explicit 

modelling of the residual mapping between input and output. Within the framework of the proposed Residual 

YOLOv7 model for Internet of Things-SDN security, residual learning enhances the network's ability to grasp 

temporal correlations and complex patterns in network traffic data.  

The output H(x) of layer l in a traditional CNN is computed from input x in the following way: 

H(x) = e(Wl * x + bl) 

where:  

Wl - weight matrix of layer l,  

* - convolution operation,  

bl - bias vector of layer l,  

e - activation function.  

When a series of convolutional layers transform the input x into the residual mapping F(x), the output of a residual 

block is obtained by adding back to the original input. We might characterise this process as: 

H(x) = F(x) + x 

where:  

F(x) - residual mapping,  
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H(x) - residual block output.  

Reliability mapping F(x) captures difference between input and desired output. Converted, it is: 

F(x) = F(Wl * x + bl) 

Where:  

F - operations performed by the convolutional layers in residual block. 

Reliability mapping F(x) captures difference between input and desired output. Converted, it is: 

H(x) = F(x) + x 

Over training, the network learns to adjust the convolutional layer weights and biases of the residual block to 

lessen the difference between the input and the desired output. This is achieved by backpropagating the error 

across the network and modifying the parameters with optimisation algorithms such as Adam. 

Algorithm: Residual Learning in IoT-SDN 

Input: Raw data from IoT devices and network traffic. 

Output: Anomalies detected in the network traffic. 

1. Initialize the Residual YOLOv7 with convolutional layers, residual blocks, and detection layers. 

2. Normalize the raw data to scale it within a standard range (e.g., [0, 1]).  

3. Handle missing values and outliers through imputation or removal. 

4. Extract relevant features from the normalized data. 

5. Transform the data into a suitable format for the Residual YOLOv7 model, such as sequences of input vectors. 

6. Initialize the parameters of the Residual YOLOv7 model.  

7. Split the preprocessed data into training and validation sets. 

8. Train the model using the training data: 

• Forward propagate the input through the model. 

• Compute the loss function  

• Backpropagate the error  

• Update model parameters using Adam. 

• Repeat the process for multiple epochs until convergence. 

3.2. YOLOv7 Framework for SDN attack detection  

Originally designed for object detection in images and videos, YOLOv7 can be adjusted to detect anomalies and 

attacks in SDN situations, particularly when processing temporal data.  In the setting of SDN attack detection, 

temporal data refers to network traffic patterns and behaviours observed across time. Within this data can be 

dynamically changing metrics including packet sizes, flow durations, transmission speeds, and protocol types. 

SDN attack detection on temporal data requires modification of the YOLOv7 framework's input format and 

network architecture to allow sequential data. Rather than static pictures or frames, the model takes as input 

sequences of temporal data that represent observations throughout a time window or interval. 

Recurrent or temporal convolutional layers added to the YOLOv7 model capture temporal patterns and 

dependencies in the input data series. The model can estimate future behaviour and analyse the temporal variations 

in network traffic thanks to these layers. 
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Inference is done using the modified YOLOv7 model, which also predictions the presence of abnormalities or 

assaults in the SDN environment. By looking at trends and deviations from normal activity, the model identifies 

anomalous behaviours, such DDoS attacks, network intrusions, or traffic anomalies. 

4. Results and Discussion  

The research creates virtual SDN environments with Mininet serving as the simulation tool. Table 1 displays the 

training, validation, and test sets (e.g., 70%, 15%, 15%) that the studies divided the dataset into. A 1 TB NVMe 

SSD serves as storage, while the CPU is an Intel Xeon Gold 6254 (3.1 GHz, 18 cores). RAM is 128 GB DDR4. 

Table 1: Simulation Parameters 

Parameter Value 

Simulation Tool Mininet 

Network Topology Mesh 

Number of Switches 50 

Number of Hosts per Switch 25 

Traffic Generation Bursty 

Attack Types DDoS 

Anomaly Injection Rate Low (0.1%),  

Medium (1%),  

High (5%) 

Dataset Size Small (10,000 samples),  

Large (100,000 samples) 

Data Split Ratio 70:15:15 

Input Data Format Feature vectors 

Residual Block Depth 7 

Convolutional Layer Filters 256 

Learning Rate 0.1 

Batch Size 256 

Optimizer RMSprop 

Dropout Rate 0.5 

Activation Function Sigmoid 

Loss Function Mean Squared Error 

Recurrent Layer Type GRU 

Recurrent Layer Depth 5 

Recurrent Layer Units 512 

Regularization Penalty Dropout 

Kernel Size 7x7 
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Pooling Type Average pooling 

Pooling Size 4x4 

Epochs 400 

 

Figure 2: Detection Accuracy 

 

Figure 3: Precision 

 

Figure 4: Recall 
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Figure 5: FPR 

The Residual YOLOv7 method frequently outperforms the current CNN and DenseNet methods by an average 

improvement of roughly 8–10%, as Figure 2 demonstrates, over all test data points. At 300 test data points, 

residual YOLOv7 achieves a detection accuracy of 88%; for CNN and DenseNet, the figures are 73% and 76%, 

respectively. This shows how much better than traditional CNN and DenseNet approaches the Residual YOLOv7 

model finds anomalies and attacks in IoT-SDN environments. 

Moreover proving its ability to lower false positives is the higher precision of Residual YOLOv7 over CNN and 

DenseNet in figure 3. At 300 test data points, residual YOLOv7 achieves a 90% precision; CNN and DenseNet 

reach 71% and 72%, respectively. This suggests that the increased ability of Residual YOLOv7 to precisely 

identify actual positives and reduce the number of false alarms leads to more reliable anomaly identification. 

As evidenced by its higher recall rates than CNN and DenseNet (figure 4), residual YOLOv7 can catch a higher 

percentage of true positives. Recall at 300 test data points is achieved by Residual YOLOv7 at 86% and DenseNet 

at 64% and 66%, respectively. As such, by being more adept at identifying actual abnormalities and attacks, 

Residual YOLOv7 lowers the likelihood of undiscovered vulnerabilities in IoT-SDN configurations. 

The lower false positive rate residual YOLOv7 displays when compared to CNN and DenseNet suggests that it 

can lower false alarms (figure 5). Achieving an FPR of 8% at 300 test data points, Residual YOLOv7 outperforms 

CNN and DenseNet at 24% and 26%, respectively.  

5. Conclusion  

The proposed Residual YOLOv7 method for IoT-SDN anomaly detection advances network security. This 

methodology offers several major advantages over existing methods by use of the YOLOv7 architecture and deep 

learning, most notably residual learning. In terms of false positive rate, recall, detecting accuracy, and precision, 

residual YOLOv7 is demonstrated to outperform traditional CNN and DenseNet approaches. Higher performance 

it continually provides across several test data points demonstrates its capacity to accurately identify anomalies 

and attacks in real-time network traffic. 

References 

[1] Chaganti, R., Suliman, W., Ravi, V., & Dua, A. (2023). Deep learning approach for SDN-enabled intrusion 

detection system in IoT networks. Information, 14(1), 41. 

[2] Ravi, V., Chaganti, R., & Alazab, M. (2022). Deep learning feature fusion approach for an intrusion detection 

system in SDN-based IoT networks. IEEE Internet of Things Magazine, 5(2), 24-29. 

[3] Mishra, S. (2021). Detection and mitigation of attacks in SDN-based IoT network using SVM. International 

Journal of Computer Applications in Technology, 65(3), 270-281. 

[4] Singh, C., & Jain, A. K. (2024). A Comprehensive Survey on DDoS Attacks Detection & Mitigation in SDN-

IoT Network. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 100543. 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

30 45 60 75 90 105 120 135 150 165 180

F
P

R

Test set

CNN

DenseNet

Proposed


