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Abstract:  This paper determines a cohesive framework for addressing the algorithmic filtering drawback faced 

in filtering the noise in the digital filter. Digital filters for nonlinear time-varying systems victimizing the noise 

reduction and this can be established through difference equations. The new generalized projected filter is 

adopted into the algorithmic filter structure administrated by identifying two different embedded systems of 

stochastic type and Riccati type nonlinear random equations. The gain matrix of the proposed filter is calculated 

by minimizing the covariance trace of the filtering error 𝑃𝑘+1|𝑘+1,  𝑘
th element. Simultaneously the gain of the 

filter is identified and minimizing the filtering error 𝑃𝑘+1|𝑘+1. Taking this partial differential coefficient and its 

first derivative of 𝑡𝑟 {𝑃𝑘+1|𝑘+1} with relevancy 𝐾𝑘+1 and set the derivative to zero, at some stage the higher 

order coefficient leads to the reduction of the noise in the digital filter. Further the, solutions to the non 

homogeneous difference equation problem using convolution and deconvolution methods are analyzed along 

with the numerical examples.  

Key Words: Convolution, deconvolution, difference equation, Digital filters, nonlinear time varying systems, 

digital signal processing. 

I  Introduction 

A generalized system and mathematical model has been analyzed by various researchers subject to random 

delay which reflects deterministic and nondeterministic nonlinearities [3]. Few researchers are developed and 

extend these theories in deception attacks [1].  By utilizing various filters along with the Riccati like equation 

techniques for filtering the errors and fixing the boundary of errors are developed in the recent days [5]. The 

corresponding covariance matrices values minimizing the upper bound and arrives optimal filter gain in a 

recursive manner [6, 10]. The error pattern analyses were focused along with random access protocol and 

independent and identically distributed deterministic and non deterministic variables [7, 16]. These are validated 

the upper bound by analyzing the state estimates and error covariance.  Convolution is a fundamental 

mathematical operation which takes two functions and produces a third function that represents the amount of 

overlap between one of the functions and a reversed and translated version of the other function [9, 14]. 

Similarly, the deconvolution techniques have a great importance in solving different kinds of equations [2, 13]. 

Deconvolution is the inversion of convolution equation. This method can be implemented in many applications 

[11,18]. Here we used discrete convolution and deconvolution to obtain solution to the difference equations. 

Solving the difference equation using these concepts makes great interest. In section II we discussed on the 

notation of discrete convolution and deconvolution of finite and infinite sequences. In section III we presented 

our main concepts which are the unique solution to the non homogeneous linear difference equation. Further we 

used these concepts to solve the numerical solution of initial value problem and boundary value problem with 
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suitable examples. Section IV focuses the covariance of the one-step prediction error and error calculations.  

Finally section V concludes the paper. 

II    Preliminaries 

Fourier transform of periodic signal having Fourier series coefficient is a chain of impulses, occurring at 

multiplies of fundamental frequency, which is the strength of the impulse [4]. A system is an abstract module 

that accepts input signals and produces output signals in response [15]. A function 𝑓(𝑡) be the continuous-time 

signal, where 𝑡 ∈ 𝑅. A function 𝑓[𝑛] be the discrete-time signal, where  𝑛 ∈ 𝑍. A continuous-time signal 𝑓(𝑡) is 

periodic with period T if, 𝑓(𝑡) =  𝑓(𝑡 + 𝑇) for all 𝑡 ∈ 𝑅. A discrete-time signal 𝑓[𝑛] is periodic with period 𝑁 if 

𝑓[𝑛] =  𝑓[𝑛 + 𝑁]   for all 𝑛 ∈  𝑍.     

A signal with the smallest period for which the signal is periodic is called fundamental period.  Consider the 

signal of the form 𝑓(𝑡) =  𝐶𝑒𝑎𝑡, where 𝐶 is the complex number if both 𝐶 and 𝑎 are real, then there are three 

possible cases [8, 17]:  

Case (i): If a < 0, then as t →∞, the signal tends to zero 

Case (ii):  If a > 0, then as t →∞, the signal tends to ∞ 

Case (iii): and for a = 0, the signal becomes constant.  

Suppose 𝑓(𝑡 + 𝑇) =  𝑒𝑗(𝑤0𝑡+𝜑) for some positive real 𝑤0 and φ, where 𝐶 = 𝑒𝑗𝜑                   and 𝑎 =  𝑗𝑤0. Note 

that 𝑓(𝑡 + 𝑇) =  𝑒𝑗(𝑤0(𝑡+𝑇)+𝜑) = 𝑒𝑗(𝑤0𝑡+𝜑)𝑒𝑗𝑤0𝑇 . If 𝑤0T is multiple of 2π, then 𝑒𝑗𝑤0𝑇 = 1 and the signal is of 

periodicity 𝑇. Thus, the fundamental period of this signal is 𝑇 =
2𝜋

𝑤0
. Also if  𝑤0 = 0, then  𝑓(𝑡) = 1 and this is 

periodic with any period and we see that  𝑓(𝑡) = 𝑒−𝑗𝑤0𝑇  with period 𝑇0. Then 𝑤0 is known as the fundamental 

frequency of the input signal. 

III Linear Discrete Convolution and Deconvolution 

Let 𝑎 = (𝑎0, 𝑎1 , 𝑎2, …… 𝑎𝑛) and 𝑏 = (𝑏0 ,𝑏1 , 𝑏2, …… 𝑏𝑛) are the finite sequence with same number of 

elements. The discrete convolution of these sequences is given by  

𝑐 = 𝑎 ∗ 𝑏 = (𝑐0, 𝑐1 , 𝑐2, …… 𝑐𝑛)    (1) 

where c is a finite sequence and defined as below 

                    𝑐0 = 𝑎0 𝑏0  

                     𝑐1 = 𝑎1 𝑏0 + 𝑎0 𝑏1  

                 ……..   

𝑐𝑘 = ∑𝑎𝑛−𝑖𝑏𝑖

𝑛

𝑖=𝑜

              (2) 

Here  𝑎 and  𝑐 are known finite sequences with 𝑎0 ≠ 0, we can determine the finite sequence b provided the 

condition (i) to be satisfied. This is known as deconvolution of the sequence 𝑐 by the sequence 𝑎.This was 

denoted by  𝑏 = 𝑐/𝑎     (3) 

The relations are defined as follows 

𝑏0 = 𝑐0/𝑎0 

𝑏1 =
1

𝑎0
(𝑐1 − 𝑎1 𝑏0 ) 

     …………         
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𝑏𝑘 =
1

𝑎0
(𝑐𝑘 −∑𝑎𝑛−𝑖 𝑏𝑖 

𝑛−1

𝑖=0

)           (4) 

Inverse of the finite sequence of 𝑎 is given  by  𝑎−𝐼 =  𝛿/𝑎 , such that  

                                 
𝑐

𝑎
= 𝑐 ∗ 𝑎−𝐼                                             (5) 

We consider the infinite case with same definition, with arbitrary 𝑛. Therefore  

(𝑎0, 𝑎1 , 𝑎2, …… 𝑎𝑛 … . ) ∗ (𝑏0 ,𝑏1 , 𝑏2, …… 𝑏𝑛… . ) = (((𝑎0, 𝑎1 , 𝑎2, …… 𝑎𝑛 … . ) ∗ (𝑏0 ,𝑏1 , 𝑏2, …… 𝑏𝑛 … . )) : 𝑛

= 0, 1, 2….  

 3.1 Linear Differnce Equation With Constant Coefficient 

 Consider the following non homogeneous linear difference equation 

∑ 𝑎𝑛−𝑖𝑢𝑖+𝑛 = 𝑏𝑛 ,    𝑛 = 1,2, … .𝑘
𝑖=0                                         (6) 

with the coefficients 𝑎0 ≠ 0 and we denote 

𝑎 = (𝑎0, 𝑎1 , 𝑎2, …… 𝑎𝑛 , … . )      (7) 

such that 𝑘 = 0   if    𝑛 > 𝑘  and 

 𝑏 = (𝑏0 ,𝑏1 , 𝑏2, …… 𝑏𝑛 , … . . )                                               (8)                                                  

Theorem 3.1.1 : The unique solution 𝑢 = (𝑢0, 𝑢1 , 𝑢2, …… 𝑢𝑛, … ) of the equation (6) with the initial values 

𝑢0, 𝑢1,……𝑢𝑘−1 is given by  

𝑢 = ((𝑎0, 𝑎1 , 𝑎2, …… 𝑎𝑘−1) ∗ ((𝑢0, 𝑢1 , 𝑢2, …… 𝑢𝑘−1), 𝑏) ∗ 𝑎
−1                                (9) 

Proof : Let us denote 𝑐 = (𝑐0, 𝑐1 , 𝑐2, …… 𝑐𝑛 , … . ) = 𝑎 ∗ 𝑢                 (10) 

Using convolution product, we get 

                                    𝑐0 = 𝑎0 𝑢0  

 𝑐1 = 𝑎1 𝑢0 + 𝑎0 𝑢1  

         ……..        

  𝑐𝑘−1 = ∑ 𝑎𝑘−1−𝑖𝑢𝑖
𝑘−1
𝑖=𝑜                          (11) 

Therefore 

𝑐 = (𝑐0, 𝑐1 , 𝑐2, …… 𝑐𝑘−1) = (𝑎0, 𝑎1 , 𝑎2, …… 𝑎𝑘−1) ∗ (𝑢0, 𝑢1 , 𝑢2, …… 𝑢𝑘−1)      (12)  

Changing the index 𝑖 = 𝑗 + 𝑘, and take 𝑎𝑘+𝑛 = 0, 𝑛 = 1,2, …. which implies 

𝑐𝑘+𝑛 = ∑𝑎𝑘+𝑛−𝑖𝑢𝑖

𝑘+𝑛

𝑖=𝑜

 

             = ∑ 𝑎𝑛−𝑗𝑢𝑗+𝑘
𝑛
𝑗=−𝑘   

            = ∑ 𝑎𝑛−𝑗𝑢𝑗+𝑘
𝑛
𝑗=0  

         = 𝑏𝑘             𝑛 = 1,2, ….   (13) 

Hence, the equation (12) and (13) gives  

𝑢 = ((𝑎0, 𝑎1 , 𝑎2, …… 𝑎𝑘−1) ∗ ((𝑢0, 𝑢1 , 𝑢2, …… 𝑢𝑘−1), 𝑏) 

  = (𝑎0 𝑢0 , 𝑎1 𝑢0 + 𝑎0 𝑢1 , …… , , 𝑏0 ,𝑏1 , 𝑏2, …… 𝑏𝑛, ….      
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= 𝑏 ∗∑𝑎𝑘−1−𝑖𝑢𝑖              (14)

𝑘−1

𝑖=𝑜

 

where (11) and (14) gives the solution to the non homogeneous linear difference equation (6) and the converse 

is also true.  

EXAMPLE  3.1.2  :  The linear difference equation given by 𝑢𝑛+2 − 2𝑢𝑛−1 − 3𝑢𝑛 = 𝑏𝑛,  where 𝑛 = 0,1,2, …. 

has the initial conditions 𝑢0 = 𝑢1 = 1  with  𝑎 = (1, −2, −3,0,0, … ) and  𝑏 = (0,1,2, … ). 

Solution: We know that 

𝑢 = ((𝑎0, 𝑎1 ) ∗ (𝑢0, 𝑢1 ), 𝑏) 

                                                            = ((1, −2) ∗ (1,1), 𝑏) 

                                                           = (1,−1,0,1,2,3, … ) 

This results the sequence  

𝑢 =
𝑐

𝑎
= (1,15,14,45, … ) 

Hence the solution. 

EXAMPLE 3.1.3 : The boundary value problem formed by the difference equation 

  𝑢𝑛+2 + 𝑢𝑛 = 𝑏𝑛 , 𝑛 = 0,1,2, … with 𝑏 = (2,0, −2,0,2,0, −2,0, … ) has 𝑎 = (1,0,1,0,1,0,1,0… ) and 𝑎−1 =

(1,0, −1,0,1,0, −1,0… ) 

Solution : Consider 

𝑢 = (0,0,1 ∗ 𝑎−1) + 𝑢0 . (1,0,0… ) ∗ 𝑎
−1 + 𝑢1 . (0,1,0,0… ) ∗ 𝑎

−1 

    = (0,0,2,0 − 4,0,6,0, … ) + 𝑢0 . (1,0, −1,0,1,0, −1,0, … ) + 𝑢1 . (0,1,0 − 1,0,1,0, −1… ) 

Case 1: If 𝑢3 = 0, 𝑢4 = −3, which gives 𝑢1 = −𝑢3 = 0  and 𝑢0 = 1 

Hence the boundary value problem has the unique solution 

𝑢 = (1,0,1,0, −3,0,5,0, … ) 

Case 2: If 𝑢2 = 1, 𝑢4 = −3,  𝑢2 = 2 − 𝑢0 = 1  and 𝑢4 = −4 + 𝑢3 = −3 . Then  𝑢0 = 1. Hence the boundary 

value problem has infinite solutions  by the  following relation 

𝑢 = (1,0,1,0, −3,0,5,0, … ) + 𝑢1 . (0,1,0 − 1,0,1,0, −1… ) 

where 𝑢1 is arbitrary.  

Case 3: If 𝑢2 ≠ 1, 𝑢4 = −3, which gives both 𝑢0 = 1 and 𝑢0 ≠ 1. This leads to the contradiction. Therefore it 

has no solution.   

IV          One step error prediction and covariance  

The gain matrix of the filter 𝐾𝑘+1 is calculated by minimizing the covariance trace of the filtering error 𝑃𝑘+1|𝑘+1.  

The gain matrix and filter's mechanism works recursively within the theoretical and reasonable significance and 

to attenuate  𝑡𝑟 {𝑃𝑘+1|𝑘+1}. Algorithmic filters are used to attenuate the conditional covariance 

matrix  𝔼{𝑒𝑘+1|𝑘+1𝑒𝑘+1|𝑘+1
𝑇 |𝜉(𝑘 + 1)}, wherever the gain of the filter 𝐾𝑘+1  is calculated piece wise [12] and the 

same can be extended in the bio signal processing.   

We denote the prediction error in one step as 𝑒𝑘+1|𝑘 = 𝑥𝑘+1 − 𝑥̂𝑘+1|𝑘  and the filter error is  𝑒𝑘+1|𝑘+1 = 𝑥𝑘+1 −

𝑥𝑘+1|𝑘+1.   Similarly, the filter error is often written as: 

𝑒𝑘+1|𝑘 = 𝐴𝑘𝑒𝑘|𝑘 + 𝐵𝑘𝜔𝑘       (15) 

𝑒𝑘+1|𝑘+1 = (𝐼 − 𝐾𝑘+1𝛷𝜉(𝑘+1)𝐶𝑘+1)𝑒𝑘+1|𝑘 − 𝐾𝑘+1𝛷𝜉(𝑘+1)𝑣𝑘+1   (16) 

Where 𝐴 , 𝐵 and C are matrices and 𝛷𝜉(𝑘+1) denoted as difference between the covariance of the matrices 𝐴 and 

B. 
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The covariance and one-step error prediction is calculated from the following theorems. 

Theorem 4.1: Consider the filtering system’s (16) error dynamics. The covariance of the predicted error in one 

step 𝑃𝑘+1|𝑘 ≜ 𝐸{𝑒𝑘+1|𝑘𝑒𝑘+1|𝑘
𝑇 } and the covariance of the filtering error  𝑃𝑘+1|𝑘+1 ≜ 𝐸{𝑒𝑘+1|𝑘+1𝑒𝑘+1|𝑘+1

𝑇 }(with 

the initial condition 𝑃0|0) and is given by the subsequent equations 

𝑃𝑘+1|𝑘 = 𝐴𝑘𝑃𝑘|𝑘𝐴𝑘
𝑇 + 𝐵𝑘𝑄𝑘𝐵𝑘

𝑇       (17) 

𝑃𝑘+1|𝑘+1 = ∑ 𝑝𝑖
𝑁
𝑖=1 𝜇𝑖,𝑘+1𝑃𝑘+1|𝑘𝜇𝑖,𝑘+1

𝑇 +∑ 𝑝𝑖
𝑁
𝑖=1 𝐾𝑘+1𝛷𝑖𝑅𝑘+1𝛷𝑖𝐾𝑘+1

𝑇  (18) 

here  𝜇𝑖,𝑘+1
𝑇 = 𝐼 − 𝐾𝑘+1𝛷𝑖𝐶𝑘+1 and 𝑃𝑘|𝑘 , 𝑅𝑘+1 and 𝑄𝑘 are Riccati type matrices with positive coefficients.  In 

addition, 𝑃𝑘+1|𝑘+1 is decreased by the subsequent filter gain:  

𝐾𝑘+1 = 𝑃𝑘+1|𝑘𝐶𝑘+1
𝑇 𝛷̅(∑ 𝑝𝑖

𝑁
𝑖=1 𝛷𝑖ℛ𝑘+1𝛷𝑖)

−1     (19) 

where ℛ𝑘+1 = 𝐶𝑘+1𝑃𝑘+1|𝑘𝐶𝑘+1
𝑇 + 𝑅𝑘+1  

Proof: Initially, consider the error covariance of the one - step error prediction 𝑃𝑘+1|𝑘 and this satisfies 

𝑃𝑘+1|𝑘 = 𝐴𝑘𝑃𝑘|𝑘𝐴𝑘
𝑇 + 𝐵𝑘𝑄𝑘𝐵𝑘

𝑇       (20) 

Then consider the covariance of the filtering error 𝑃𝑘+1|𝑘+1, and considering (17), we have 

𝑃𝑘+1|𝑘+1 = 𝔼{𝑒𝑘+1|𝑘+1𝑒𝑘+1|𝑘+1
𝑇 } 

 = {𝜇𝜉(𝑘+1),𝑘+1𝑒𝑘+1|𝑘𝑒𝑘+1|𝑘
𝑇 𝜇𝜉(𝑘+1),𝑘+1

𝑇 + 𝐾𝑘+1𝛷𝜉(𝑘+1)𝑣𝑘+1𝑣𝑘+1
𝑇 𝛷𝜉(𝑘+1)

𝑇 𝐾𝑘+1
𝑇 } (21) 

Further (21) can be extended according to 𝛷𝜉(𝑘+1)  as follows: 

𝛷𝜉(𝑘+1) = ∑ 𝛿(𝜉(𝑘 + 1) − 𝑖)𝑁
𝑖=1 𝛷𝑖      (22) 

The corresponding error prediction can be written like 

𝔼{𝒦𝜉(𝑘+1),𝑘+1𝑒𝑘+1|𝑘𝑒𝑘+1|𝑘
𝑇 𝜇𝜉(𝑘+1),𝑘+1

𝑇 } = 𝔼

{
 
 

 
 (𝐼 − 𝐾𝑘+1∑𝛿(𝜉(𝑘 + 1) − 𝑖)

𝑁

𝑖=1

𝛷𝑖𝐶𝑘+1) 𝑒𝑘+1|𝑘𝑒𝑘+1|𝑘
𝑇 +

 (𝐼 − 𝐾𝑘+1∑𝛿(𝜉(𝑘 + 1) − 𝑖)𝛷𝑖𝐶𝑘+1)
𝑇

𝑁

𝑖=1 }
 
 

 
 

 

= 𝑃𝑘+1|𝑘 − 𝔼 {∑𝛿(𝜉(𝑘 + 1) − 𝑖)

𝑁

𝑖=1

𝐾𝑘+1𝛷𝑖𝐶𝑘+1𝑒𝑘+1|𝑘 × 𝑒𝑘+1|𝑘
𝑇 }

− 𝔼 {∑𝛿(𝜉(𝑘 + 1) − 𝑖)

𝑁

𝑖=1

𝑒𝑘+1|𝑘𝑒𝑘+1|𝑘
𝑇 𝐶𝑘+1

𝑇 𝛷𝑖𝐾𝑘+1
𝑇 }

+ 𝔼 {∑𝛿(𝜉(𝑘 + 1) − 𝑖)

𝑁

𝑖=1

𝐾𝑘+1𝛷𝑖𝐶𝑘+1 × 𝑒𝑘+1|𝑘𝑒𝑘+1|𝑘
𝑇 𝐶𝑘+1

𝑇 𝛷𝑖𝐾𝑘+1
𝑇 } 

= ∑ 𝑝𝑖(𝐼 − 𝐾𝑘+1𝛷𝑖𝐶𝑘+1)
𝑁
𝑖=1 𝑃𝑘+1|𝑘(𝐼 − 𝐾𝑘+1𝛷𝑖𝐶𝑘+1)

𝑇    

and 

𝔼{𝐾𝑘+1𝛷𝜉(𝑘+1)𝑣𝑘+1𝑣𝑘+1
𝑇 𝛷𝜉(𝑘+1)

𝑇 𝐾𝑘+1
𝑇 } = 𝔼{∑ 𝑝𝑖𝐾𝑘+1𝛷𝑖𝑅𝑘+1𝛷𝑖𝐾𝑘+1

𝑇𝑁
𝑖=1 }  

𝑃𝑘+1|𝑘+1 =∑𝑝𝑖

𝑁

𝑖=1

𝒦𝑖,𝑘+1𝑃𝑘+1|𝑘𝒦𝑖,𝑘+1
𝑇 +∑𝑝𝑖

𝑁

𝑖=1

𝐾𝑘+1𝛷𝑖𝑅𝑘+1𝛷𝑖𝐾𝑘+1
𝑇  

 The corresponding traces are  

𝜕𝑡𝑟{𝑃𝑘+1|𝑘+1}

𝜕𝐾𝑘+1
= −2∑ 𝑝𝑖(𝒦𝑖,𝑘+1𝑃𝑘+1|𝑘𝐶𝑖,𝑘+1

𝑇 𝛷𝑖)
𝑁
𝑖=1 + 2𝐾𝑘+1∑ 𝑝𝑖(𝛷𝑖𝑅𝑘+1𝛷𝑖) = 0

𝑁
𝑖=1     
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Based on the higher order equations, the optimum filter gain 𝐾𝑘+1 is determined and predicted as 

𝐾𝑘+1 = 𝑃𝑘+1|𝑘𝐶𝑘+1
𝑇 𝛷̅(∑ 𝑝𝑖𝛷𝑖ℛ𝑘+1𝛷𝑖

𝑁
𝑖=1 )−1     

This completes the proof. 

V Conclusion  

The deterministic and non deterministic cohesive framework for identifying the filtering problems and its 

drawback against minimizing the random noise was analyzed. Further, nonlinear time-varying systems 

victimizing the noise reduction in the digital signal through Riccati type difference equations. Generalized 

projected filter is adopted into the algorithmic filter structure administrated by identifying two different 

embedded systems of stochastic type and Riccati type nonlinear random equations. Simultaneously the gain 

matrix of the proposed filter is calculated by minimizing the covariance trace of the filtering error 𝑃𝑘+1|𝑘+1,  𝑘
th 

element. Further we applied the convolution and deconvolution concepts along with the initial conditions in the 

difference equations. We also arrived that how the discrete convolution and deconvolution, be used to compute 

the numerical values of linear non-homogeneous difference and with constant coefficients, through some solved 

examples.  
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