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Abstract:- We propose a physics-informed neural network (PINN) to solve boundary value system of differential 

equation problems. PINN is a scientific machine learning method that has been used very frequently lately to find 

numerical solutions of partial differential equations and offers positive results. PINNs have shown effective 

performance in solving a variety of differential equations, including complex derivatives and multidimensional 

equations. Well-trained PINNs most closely predict the numerical solutions of boundary value problems. 

Numerical experiments include various types of linear differential equation systems. 
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1. Introduction 

Neural networks have been studied successfully in many fields and have been used to approximate the solutions 

of differential equations; see, e.g., [1-4]. In this research, many (unsupervised) neural networks were successfully 

developed without data sets; e.g. physics-informed neural networks (PINNs), where the loss function is defined 

by using a certain residual from the differential equation under consideration [5-6]. Additionally, PINNs use 

sequence points in the space-time domain as the training data set and PINNs provide suitable conditions for the 

solution of time-dependent, multidimensional equations [7-10]. There are some advantages of using PINNs in 

numerical solutions of differential equations compared to many other numerical methods. First of all, they are 

unsupervised learning processes, and therefore the learning process can begin without knowing the exact solution 

of a model differential. The exact solution is usually used to compare the solution with PINN, that is, to find the 

error. The most advantageous aspect of using PINNs (over traditional numerical methods) is that they apply to 

many different types of differential equations because the underlying equation used is (like exact solution) is used 

only when calculating the error. Numerical experiments show that the present PINN method provides accurate 

solutions on the considered computational space-time domain. In this article, we approximate the solutions of 

various 1D boundary value problems. Here we propose a physics informed neural network (PINN) method to 

solve differential equation systems with variable coefficients on a finite domain. The PINN generate approximate 

solutions to the boundary value problems by training to minimize the physical loss function consisting of residual 

[10]. Numerical experiments show that the present PINN method provides accurate solutions on the considered 

computational space-time domain. 

2. Boundary Value Problems 

Systems of ordinary differential equations have been applied to many problems in physics, engineering, biology 

and so on. There are many publications dealing with the linear system of second-order boundary value problems. 

They introduced various numerical methods. For instance, a finite difference method has been proposed in recent 

works [13]. We consider the following linear system of second-order boundary value problems [12]: 

𝑢′′ + 𝑎1𝑢
′ + 𝑎2𝑢 + 𝑎3𝑣

′′ + 𝑎4𝑣
′ + 𝑎5𝑣 = 𝑓1(𝑥), 

𝑣′′ + 𝑏1𝑣
′ + 𝑏2𝑣 + 𝑏3𝑢

′′ + 𝑏4𝑢
′ + 𝑏5𝑢 = 𝑓2(𝑥) 

 where 𝑎𝑖(𝑥), 𝑏𝑖(𝑥), 𝑓1(𝑥) and 𝑓2(𝑥) are given functions, and 𝑎𝑖(𝑥), 𝑏𝑖(𝑥) are continuous,𝑖 = 1,2,3,4,5.   
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3. Physics Informed Neural Network (PINN) 

Physics-informed neural networks (PINNs) are a deep learning technique used in solving differential equations 

[11]. 

It allows computers to compute the partial derivative of a value function accurately and quickly. 

For time-dependent problems, we consider time t as a special component of x, and 

Ω contains the temporal domain.  

We use PINN method for the solution of a linear system of second order boundary value problems with the 

assumption that the solutions are unique. 

PINNs generate approximate solutions to systems by training a neural network to minimize a loss function 

consisting of terms representing the misfit of the boundary conditions along the boundary of the space-time 

domain as well as the ODEs residual at selected point in the interior [16].  

By considering𝑧 = [𝑢, 𝑣]𝑇 PINN method assumes the following approximate function 

𝑤𝜃(𝑧) ≔ 𝑊𝐿𝜎𝐿(𝑊𝐿−1𝜎𝐿−1(…𝜎1(𝑊0𝑧 + 𝑏0)) + 𝑏𝐿−1) + 𝑏𝐿 

𝜃 onsists weight matrices (W) and bias vectors (b) 

Weight matrices; 

𝑊0 ∈ 𝑅𝑚×2,𝑊𝑖 ∈ 𝑅𝑚×𝑚 (𝑖 = 1,2, … , 𝐿 − 1)And 

𝑊𝐿 ∈ 𝑅1×𝑚 

m denotes the number of neurons, L is the number of layers 

Bias vectors; 

𝑏𝑖 ∈ 𝑅𝑚×1(𝑖 = 1,2, … , 𝐿 − 1) and 𝑏𝐿 ∈ 𝑅 . 

𝜎 (.) function is the activation function that transforms the neural network into a nonlinear form. 

The approximation in (2) is an approximation function of the multilayer feed forward neural network. Here m is 

the number of neurons in the layers and L is the number of layers. 

Equation (2) contains vectorized parameters 

𝜃 = 𝑊0, 𝑏0,𝑊1, 𝑏1, … ,𝑊𝐿 , 𝑏𝑙 

and it is necessary   to optimize this approximation function to provide the given ODEs. 

The residue we will use in this process, PINN approximation for eq. (2) 

𝑅𝜃(𝑢, 𝑣) ≔ 𝜃𝑡𝑤𝜃(𝑢, 𝑣) − 𝐿[𝑤𝜃](𝑢, 𝑣) 

is continuous residual function. The L operator in this function is defined as,𝐿: 𝑉 → 𝑅; 𝑉 = 𝑤(𝑢, 𝑣): 𝑅2 → 𝑅 

The PINN method minimizes the residual function on the collocation points defined on the boundary value 

problem calculation region, while the function tries to optimize the 𝜃 parameter. Let's take the collocation points 

as. 

𝑋𝑖
𝑟 = {(𝑢𝑖

𝑟 , 𝑣𝑖
𝑟)}𝑖=1

𝑁𝑟 ⊂ [𝑢𝐿 , 𝑢𝑅]. [0, 𝑇]. 

Although these collocation points are random in the classical PINN method, we take them as equally spaced 

points. Since the derivative approximation of the equation in (5) requires  𝑥𝑖 points with step size ℎ . 

The PINN method is obtained by minimizing the following loss functional for the solution of equation (6). 

𝜙𝜃 ≔ 𝜙𝜃
𝑟(𝑋𝑟) + 𝜙𝜃

𝑏𝑋𝑏
𝑟 
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There are three different loss functions and they belong to the residue, boundary conditions, respectively. We 

chose to optimize all loss functions using Adam method. Residual loss function can be written as𝜙𝜃
𝑟(𝑋𝑟) =

1

𝑁𝑟
∑ |𝑟𝜃(𝑢𝑖

𝑟 , 𝑣𝑖
𝑟)|2𝑁𝑟

𝑖=1 . 

On the other hand, functions of boundary conditions are defined as 

𝜙𝜃
𝑏𝑋𝑏

𝑟 =
1

𝑁𝑏

∑|𝑤𝜃(𝑢𝑖
𝑏 , 0) − 𝑓(𝑢𝑖

𝑏)|
2

𝑁𝑏

𝑖=1

. 

Thus, the solution of the following optimization problemΘ∗ = 𝐴 = argmin
𝜙

⬚𝜃(𝑥𝑅) 

Residue; returns to the optimum 𝜙∗ parameters that minimize the initial and boundary functions.  

In this study, the codes are written on the Python library Tensor Flow and the optimal 𝜙∗ parameters were obtained 

with the Adam algorithm. 

4. Numerical ıllıstratıons 

Figures and Tables 

Let us assume the following differential equation systems. 

𝑢′′(𝑥) + 𝑥𝑢(𝑥) + 𝑥𝑣(𝑥) = 𝑓1(𝑥) 

𝑣′′(𝑥) + 2𝑥𝑣(𝑥) + 2𝑥𝑢(𝑥) = 𝑓2(𝑥) 

with boundary condition can be taken from the exact solution 

𝑢(0) = 𝑢(1) = 0, 𝑣(0) = 𝑣(1) = 0 

where 0 < 𝑥 < 1,   𝑓1(𝑥) = 2 and 𝑓2(𝑥) = −2 

The exact solution of this problem for 

𝑢(𝑥) = 𝑥2 − 𝑣(𝑥) = 𝑥 − 𝑥⬚ 

Numerical results are listed Table1: 

Table 1. Literature studies and comparison of PINN results in different parameters. 

𝐸𝑝𝑜𝑐ℎ  𝐿 = 1,𝑁 = 15  

5000  6.034541𝑒−05 

10000  2.86675𝑒 − 07  

20000  8.25724𝑒 − 07  

 

Figure 1. Comparison of PINN and analytical soulution 
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Figure 2. The absolute error surface given by the PINN model 

5. Conclusion 

In this article, approximate solutions and error analysis of the boundary value problems are obtained using the 

feed forward PINN model. Compared to the traditional numerical methods, PINNs employ automatic 

differentiation to handle differential operators. 

Unlike numerical differentiation, automatic differentiation does not differentiate the data. 

The neural networks modelled for the solutions of the problems were obtained by using the Adam algorithm in 

the Tensor Flow library. 

With the help of numerical experiments, it has been shown that the PINN method can be an alternative 

convergent approach method. 

The effect of the number of the collocation points, and the number of neurons in each layer on the absolute error 

are presented with quantitative observations. 

The PINN method has been compared with the numerical methods available in the literature. 
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