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Abstract—Accurate identification of  lung  sounds  recorded  by electronic stethoscopes is critical to the early 

diagnosis of respiratory disorders. In the last thirty years, ML(machine learning) methods have played a significant 

part in enhancing  the accuracy  of  expert  evaluations.  This  review  article  offers a thorough analysis of the 

developments in lung sound clas- sification, emphasizing a novel method that makes use of an Enhanced Long  

Short-Term  Memory  (ELSTM)  model.  Using a Savitzky-Golay filter to preprocess lung sound audio signals    

in order to eliminate noise is the first step. The preprocessed signals are then used to extract important 

characteristics, such  as Stockwell Transform, spectral-based features, and Short-Time Fourier Transform (STFT). 

The multi-layered design of the ELSTM model makes use of these characteristics to enhance expressiveness, 

representation learning, and sequence learning. To improve classification accuracy, a hybrid loss function that 

combines Categorical Cross-Entropy (CCE) and Focal Loss (FL) is utilized to effectively forecast the error 

between actual and projected values. This work presents a comprehensive assessment of the literature  on  lung  

sound  categorization,  emphasizing  the several approaches and machine learning models that have been 

investigated. It examines these strategies’ advantages and disadvantages critically while highlighting the ELSTM 

model’s contributions to solving contemporary problems. This study intends to lead future  research  and  

applications  in  the  field  of respiratory sound analysis by integrating prior research and offering a novel model. 

Ultimately, this will help in the timely identification and treatment of respiratory  disorders. 

Index Terms—Lung sound, classification, ELSTM, Savitzky- Golay filter,  and STFT. 

 

I. Introduction 

More than 500 million people worldwide suffer from respiratory disorders, making it one of the most common 

medical illnesses worldwide [1]. The majority of patients  have difficulty identifying or comprehending the 

symptoms of chronic illnesses, which delays diagnosis. The most common technique  used  by  doctors  to  assess  

patients’  lung  sounds in order to diagnose diseases is manual auscultation [2]. An experienced medical 

professional is required to auscultate the patient’s lung sounds since poor equipment calibration and noisy 

surroundings, such as heartbeat and coughing noises, make disease diagnosis difficult [3]. There are three primary 

forms of lung sounds: wheeze, crackles, and rhonchi. When there’s an obstruction in the airway, the patient 

experiences wheezing, which is a persistent, high-pitched, unnatural sound that comes from their lungs when they 

have diseases including viral pneumonia, COVID and pulmonary fibrosis [4], [5]. Dur- ing inhalation or 

exhalation, crackles are sudden, intermittent sounds associated with conditions such as chronic obstructive 

pulmonary disease (COPD) and asthma[4], [5]. Continuous, coarse, low-pitched noises resembling rattling or 

snoring are caused by secretions in the airways [5]. By employing these sound patterns during the auscultation 

procedure, medical pro- fessionals acquire their knowledge regarding the pertinent lung ailment. The healthcare 

industry has clearly benefited from  AI in recent years, especially when it comes to the detection  of diseases like 

cancer, respiratory issues, and neurological abnormalities.Researchers have shown considerable  interest in 

utilizing deep learning (DL) for classifying lung sounds   [6]. The study of disease-specific features is made easier 
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by feature extraction using deep learning, a data driven technique that extracts unique features straight from 

unprocessed image or data [7]. Convolutional Neural Networks (CNNs) are ex- tremely ideal for tasks like 

recognition of object, segmentation of image, and classification because they can retrieve set of features from 

image data and learn to identify patterns. As       a result, Convolutional Neural Networks (CNN) have been 

utilized to categorize spectrograms produced by the sounds   of the lung [8]. In-depth assessments of current 

approaches and AI models for classifying lung sounds are provided in   this work, along with a critical evaluation 

of their   advantages and disadvantages. 

The primary contributions of the paper are outlined   below. 

• This paper provides a comprehensive review of existing methodologies and machine learning models for 

lung sound classification. By critically analyzing the strengths and limitations of these approaches, it highlights 

the advancements and unique contributions of the ELSTM model. The synthesis of past research, combined with 

the introduction of the novel ELSTM model, aims to guide future studies and applications, ultimately contributing  

to the timely diagnosis and treatment of respiratory conditions. 

• The research integrates advanced preprocessing tech- niques and feature extraction methods, such as the 

Savitzky-Golay filter, Short-Time Fourier Transform (STFT), and Stockwell Transform, along with spectral- 

based features, to  enhance  the  quality  of  input  data  for the ELSTM model.  Additionally,  the  employment 

of a hybrid loss function combining Categorical Cross- Entropy (CCE) and Focal Loss (FL) further refines the 

prediction accuracy, effectively reducing errors between actual and predicted values. 

• The discussion includes potential future enhancements to further improve lung sound classification 

techniques. The synthesis of past research, combined with the introduction of the novel ELSTM model, aims to 

guide future studies and applications, ultimately contributing to the timely diagnosis and treatment of respiratory  

conditions. 

The remaining sections of this paper are organized as follows: Section 2 presents basic information on lung sound 

classifi- cation and reviews state-of-the-art deep learning techniques in this area. The suggested model is explained 

in depth in Section 3, and its performance is assessed and analyzed in Section 4. Lastly, a summary of the study’s 

conclusions may be found    in Section 5. 

II. Related Works 

Through the use of a stethoscope to listen for ambient sounds, Rocha et al. [9]  created  categorization  models  

for the diagnosis of chest diseases. Initially, they assembled 920 samples of lung sounds for various categories 

(e.g., COPD, Healthy, etc.) into a database. The challenge’s second job was to identify the characteristics of the 

sounds and categorize them based on whether they were crackles, wheezy noises,    or both. Finally, they used 

variables including MFCC,energy, spectral features, entropy, and coefficients of wavelet to con- duct possibility 

studies on machine learning(ML) techniques like SVM( support vector machine) and ANN(artificial neural 

networks).Using a lung data set, Dalal et al. [10]  investi- gated several machine learning techniques for classifying 

lung sounds.Using the ICBHI challenge data set, Fateh et al. [11] suggested a CNN model that had already been 

trained to extract deep features. There are four categories in the data   set: wheezes, normal, wheezes plus crackles, 

and crackles. Initially, they employed a visual method using spectrogram images  produced  by  feature  extraction  

from  lung    sounds. Next, they employed the Random Subspace Ensembles (RSE) approach to use the depth 

features as the input to the LDA( Linear Discriminant Analysis) classifier. Consequently, their model 

outperformed the current methods in terms of clas- sification accuracy, increasing it by 5Based on the  ICBHI 

lung sound data collection, Demir et al. [12] suggested two CNN-based methods for classifying lung disorders. 

There are 6898 recordings across 4 classes in the data collection. First, they used the STFT( Short Time Fourier 

transform) method  to turn the lung sounds into spectrogram images. A method  for multi channel lung sound 

categorization using temporal, spectral and spatial data was published by Elmar et al. [13].   In order to categorize 

the sounds of lung gathered from 17 channel finding devices, they suggested utilizing spectrogram characteristics 

to train a CRNN(convolutional recurrent neural network). An F1-score of 92%was achieved by their CRNN model 

in the binary classification. Acharya et al. [14] used patient-specific data to retrain a deep RNN (recurrent neural 

network) method, which allowed them to get a score of 71.81% on four-class categorization. A deep residual 
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network (ResNet) was trained by Chen et al. [15] to perform triple categorization of respiratory sounds with up to 

100%, 96.27%, and 98.79% accuracy, sensitivity, and specificity, respectively. The suggested model reportedly 

fared better than   CNN. 

To train a lightweight  neural  network  model,  Shuvo  et  al. [16] utilized empirical mode decomposition (EMD) 

and continuous wavelet transform (CWT). Their lightweight CNN outperformed several larger networks and other 

modern lightweight models, achieving accuracy scores of 99.92% for three class chronic categorization and 

99.70% for six class pathological categorization. Cinyo et al. [17] proposed a CNN architecture integrated with 

SVM(support vector machine) or softmax, showing that the VGG16-CNN-SVM  model  had  the  highest  

classification  accuracy  at  83%.  Saraiva  et    al. 

[18] recommended a CNN for quadruple classification and achieved a 74.3% accuracy. Tariq et al. [19] developed 

a feature-related fusion network using MFCCs, spectrograms and chromagrams to classify lung sounds into six 

categories, reaching an accuracy of 99.1%. Jayalakshmy et al. [20] used conditional generative adversarial 

networks and a CNN with scalograms as features, achieving 92.5% accuracy in four-class classification. Jasmine 

et al. [21, 22] introduced a novel deep learning system to identify lung  disorders. 

III. Materials and Methods 

A. Data set 

The ICBHI 2017 Challenge dataset, also known as the In- ternational Conference on Biomedical and Health 

Informatics 2017 Challenge dataset, is a comprehensive and widely used collection of respiratory sound 

recordings designed for re- search in respiratory disease detection and classification. This dataset is crucial for 

evaluating algorithms and models that identify various respiratory conditions based on lung sound analysis. The 

dataset comprises 920 recordings of respiratory sounds, totaling approximately 5.5 hours of audio, collected from 

126 patients with a range of ages and clinical conditions. 

 

Fig. 1.   Sound Processing Techniques 

The recordings encompass different respiratory conditions, including healthy individuals, and patients with 

chronic ob- structive pulmonary disease (COPD), respiratory infections, bronchitis, pneumonia, and asthma. Each 

recording is anno- tated with detailed labels specifying the type of respiratory cycle (inspiration or expiration) and 

the presence of respiratory anomalies such as crackles and wheezes. The recordings are segmented into individual 

respiratory cycles, providing fine- grained labels that are useful for training and evaluating classification models. 

The primary goal of the ICBHI 2017 Challenge was to develop and benchmark machine learning and deep learning 

models  for  the  automatic  classification  of respiratory sounds. This involves identifying respiratory cycles, 

detecting anomalies, and classifying conditions. The dataset is vital for advancing the field of respiratory sound 

analysis, offering a standardized benchmark for researchers to compare their models and methodologies, thereby 

fostering  the development of robust and accurate diagnostic tools for respiratory diseases. Researchers use the 
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dataset to train mod- els, validate techniques, and benchmark their results against those of other researchers, 

promoting the exchange of ideas and advancements in methodology. 

B. Preprocessing 

To ensure data quality, preprocessing procedures such as segmentation into respiratory cycles, signal 

normalization,  and noise reduction using Savitzky-Golay filters are essen-  tial. Lung sound characteristics are 

captured by the use of feature extraction techniques, such as time-domain statistics, frequency-domain 

transformations like Stockwell Transform and Short-Time Fourier Transform (STFT), and spectral-based features 

like Mel-Frequency Cepstral Coefficients (MFCCs). The ICBHI 2017 data set has made a substantial contribution 

to the advancement of lung sound classification methodolo- gies, despite obstacles such as class imbalance and 

variability in recording conditions. This has made it possible to  de-  velop models that improve the precision and 

dependability    of respiratory disease diagnostics. Different techniques for classifying lung sounds are shown in 

Image 1. The ICBHI 2017 Challenge data set must be preprocessed in order for machine learning and analysis 

of the lung sound recordings to be done effectively. It guarantees that the data is uniform, clean, and appropriate 

for training models and extracting features.Fig.2 shows the lung sound classification model. The precise 

procedures for preparing the lung sound recordings are as follows: 

Noise Reduction 

Background noise can mask important respiratory signals in lung sound recordings. Techniques for reducing noise 

are used to improve the recordings’ quality. The Savitzky-Golay filter is one efficient technique that smoothes 

audio signals by fitting successive polynomial functions to data points inside a moving window. This reduces high-

frequency noise while maintaining the essential elements of lung sounds.The overall equations  are shown in 1-

5. 

Segmentation 

Lung sound recordings are continuous audio streams that need to be segmented into individual respiratory cycles 

(inspiration and expiration phases) for detailed analysis. This segmentation is crucial because different respiratory 

phases can exhibit distinct acoustic patterns. 

Normalization 

Normalization is used to provide consistency between record- ings by standardizing the amplitude of the audio 

signals. This step is crucial because differences in the environment and recording equipment can produce 

amplitude disparities in the signal. Among the normalization strategies  are: 

Min-Max Normalization: Scaling the amplitude of the audio signal to a fixed range, typically [0, 1] or [-1,    1]. 

Z-score Normalization: Standardizing the signal by subtract- ing the mean and dividing by the standard deviation 

of the signal amplitude. 

Resampling: Resampling may be required if the recordings are collected at different sampling rates. Uniformity 

through- out the data collection is ensured by standardizing the sam- pling rate. Resampling all recordings to a 

common rate,   such 

44.1 kHz, is done to ensure consistency, for instance, if some are at 22 kHz and others at 44.1   kHz. 

Feature Extraction 

Lung sound categorization relies heavily on feature extraction, which converts the preprocessed audio signals into 

a set of features that machine learning models may utilize to find patterns and anticipate outcomes. The various 

feature types that can be retrieved from lung sound recordings are described in detail below: 

Time-Domain Features 

Time-domain features extract the essential statistical charac- teristics of lung sound recordings straight from the 

audio stream. The signal’s core tendency is revealed by the mean, which represents the average amplitude. The 
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variability and intensity of the signal are reflected in the variance, which quantifies the spread of amplitude values. 

The frequency content of the signal is shown by the zero-crossing rate  (ZCR), which determines how frequently 

the signal crosses the zero amplitude line. When detecting pathological disorders,    a higher ZCR can be a 

significant indicator of a higher frequency. These characteristics provide a basic description of lung sounds, which 

is necessary for more in-depth examination and categorization. 

Frequency-Domain Features 

The representation of the signal in the frequency domain is   the source of frequency-domain characteristics. The 

spectral characteristics of the lung sounds are captured by these fea- tures. 

Short-Time Fourier Transform  (STFT) 

A technique that computes the Fourier transform of each  brief, overlapping section of the signal after splitting it 

into segments. This gives the signal a spectral representation that varies with time. 

 

 

Fig. 2.   Lung Sound classification model 

where X(t,f) is the STFT of the signal x[n] at time t and frequency f, and w[n] is a window function that isolates 

the segment of the signal. 

Stockwell Transform 

It is sometimes referred to as the S-transform and offers a time- frequency representation of the signal by fusing 

wavelet    and 

which shows the location of the majority of the energy in  the signal.  

                  

 

STFT components. It offers a multi-resolution analysis   while        reserving phase information.where S(t,f)is 

the S-transform of   signal x(t) where P(f) is the power spectrum at frequency   f. 

C. Long Short-Term memory 
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Spectral-Based Features 

The spectrum representation of the signal is the source of spectral-based features, which offer comprehensive 

details on the energy distribution and frequency  content. 

Mel-Frequency Cepstral Coefficients (MFCCs) 

These coefficients approximate the response of the human ear to various frequencies by representing the signal’s 

short-term power spectrum on a mel scale. We first convert the signal to the frequency domain and compute the 

power spectrum before computing the MFCCs. After that, a Mel filter bank is applied to highlight perceptually 

significant frequencies. The dynamic range of the resulting Mel spectrum is compressed by taking its logarithm. 

Finally, we acquire MFCCs (main characteristics of the signal) by applying the DCT(Discrete Cosine Transform) 

on the log-Mel spectrum, which is useful for tasks like voice recognition. 

 

LSTM networks have demonstrated its ability to accurately simulate the temporal relationships present in audio 

data in  the context of lung sound categorization. They handle lung sound data that has already been processed 

and is provided    as a series of time- or frequency-domain feature vectors, each of which represents a distinct 

audio signal time frame. Input, forget, and output gates are used by LSTM networks to operate sequentially and 

record relevant temporal patterns and corre- lations, as seen in Figure 3. Because lung sounds frequently display 

patterns spanning numerous respiratory cycles, LSTMs are well-suited for studying lung sounds due to their ability   

to keep important information throughout extended periods. LSTM networks acquire hierarchical representations 

of these sequences through their multi-layered design, and their hidden states are particularly good at 

encapsulating the dynamic temporal features of lung sounds. These hidden states act as higher-order  

characteristics  that  distinguish  between healthy 

and unhealthy sounds. Subsequently, a fully connected layer receives  the  final  hidden  state  or  a  combination  

of LSTM a measurement of the spectral distribution’s  skewness.  where X[n] is the log-mel spectrum and k is 

the cepstral coefficient index. Spectral Roll-off: The frequency below which a given portion of the whole spectrum 

is present. It is layers, which is followed by a softmax layer for classification. With the use of this design, lung 

sound types can be precisely identified as each class (e.g., normal, crackle, wheeze) gives   a probability output. 

The Enhanced LSTM (ELSTM) model   is an enhancement over conventional LSTM networks that combines 

several changes to improve performance. It more thoroughly captures complex temporal connections and hierar

here P(f) is the power spectrum and fs is the 

sampling    rate. 

Spectral  Centroid  The  ”center  of  mass”  of  the spectrum,mechanisms, the model is better able to identify 

different lung sound properties by focusing attention on prominent   portions 

 
Fig. 3.   LSTM model 

of the input sequences. In addition, class imbalance is ad- dressed by using hybrid loss functions, which increase 

 

chical patterns by stacking LSTM layers. By adding   attention 
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the sen- sitivity of the model to less common classes. One such hybrid loss function is the combination of 

Categorical Cross-Entropy (CCE) and Focal Loss (FL). Together, these improvements strengthen the ELSTM 

model’s resilience and effectiveness in correctly identifying lung sounds, which greatly aids in the early 

identification and diagnosis of respiratory  disorders. 

Focal Loss Function 

In lung sound classification using LSTM or ELSTM models, Focal Loss addresses the challenges of class 

imbalance, es- pecially when distinguishing minority classes like abnormal lung sounds (e.g., crackles or 

wheezes). After  processing lung sound features through LSTM or ELSTM layers, the model’s predictions are 

refined by a softmax layer, which produces class probabilities. Focal Loss modifies the standard Cross-Entropy 

Loss by incorporating a focusing  parameter and a class balancing factor. This adjustment penalizes mis- 

classifications more effectively, particularly for minority class instances, by emphasizing harder-to-classify 

examples. Conse- quently, Focal Loss enhances the model’s ability to learn and distinguish subtle features 

indicative of respiratory conditions, thereby improving diagnostic accuracy in lung sound analysis tasks. 

  

Challenges 

lung sounds, can bias model training and lead to poorer 

 perfor- mance on minority classes. Techniques like data  

augmentation, class weighting, and specialized loss functions 

 such as Focal Loss  are  essential  to  mitigate  this  imbalance  

 and  improve 

model sensitivity to less frequent classes. Complexity and Variability of Lung Sounds: Lung sounds exhibit a wide 

range of variations influenced by factors such as patient age, body size, and underlying respiratory conditions. 

Capturing and interpreting these variations accurately requires models that can handle complex temporal 

dependencies and subtle acoustic patterns present in the audio signals. Model Interpretability: Deep learning 

models like LSTM and ELSTM, while effec- tive in learning from sequential data, can be challenging to interpret 

due to their black-box nature. Understanding how and why a model makes specific predictions, especially in 

medical diagnostics, is crucial for gaining trust and acceptance among healthcare professionals. Data Quality and 

Preprocessing: The quality of input data, including factors like noise, artifacts,  and inconsistencies in recording 

conditions, can significantly impact model performance. Robust preprocessing techniques such as noise reduction, 

normalization, and feature extraction play a vital role in preparing the data for accurate classifi- cation. Scalability 

and Deployment: Deploying LSTM or EL- STM models in clinical settings requires consideration of scal- ability, 

computational efficiency, and real-time performance. Models must be optimized to handle large volumes of data 

efficiently while maintaining high accuracy and responsiveness in practical applications. 

D. Performance measures 

To assess the discrimination performance, several indicators were employed, including sensitivity, accuracy, 

specificity, F1- score and precision. The equations are shown in (1) to (5). These metrics were crucial  in  

evaluating  the  effectiveness of discrimination. Four performance indexes were calculated: false positive index 

(FP), true positive (TP), false negative index (FN), and true negative index (TN). A TP (True Positive) case 

signifies accurate identification of COVID-19, while an FP (False Positive) case indicates misidentification of 

COVID- 19 as viral pneumonia. Conversely, an FN (False Negative) case occurs when COVID-19 is correctly 

identified as viral pneumonia, and a TN (True Negative) case denotes correct identification of viral pneumonia as 

COVID-19.The equations are shown in 7-11. 
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   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

                                                                                              (7)                        

      𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

                                                                                             (8)      

In the domain of lung sound classification using LSTM or ELSTM models, several challenges need to be tackled 

to achieve effective and accurate diagnosis of respiratory condi- tions. These challenges include: Data Imbalance: 

Imbalanced datasets, where certain classes (e.g., abnormal lung sounds like crackles or wheezes) are 

underrepresented compared to normal 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                (9) 

    

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃         
                        (10) 

                        (10) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗    
Precision ∗  sensitivity

   Precision +  sensitivity 
            (11) 

                      ( 

Conclusion 

This paper reviews the literature on lung sound classification using deep learning (DL) techniques. The analysis 

of various studies highlights the field’s dynamic evolution and the con- tinuous efforts to improve classification 

model accuracy and efficiency. DL has proven to be a promising and adaptable tool for diagnosing  respiratory  

diseases,  as  evidenced  by  its related applications. Advancements in feature extraction, data augmentation, and 

model explainability contribute to the robustness and versatility of these models. Despite significant progress, 

future research should address challenges such as implementing real-world applications, enhancing model inter- 

pretability, and incorporating clinical data to further validate the practical utility of DL in lung sound   analysis. 
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