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Abstract: Linear stability of a rotating fluid saturated porous medium heated from below is studied when the 

fluid and solid phases are not in local thermal equilibrium. The Darcy model which includes Coriolis term and 

permeability is employed as a momentum equation. The critical Rayleigh number for the onset of convection 

using linear stability analysis is found numerically as a function interphase heat transfer coefficient, aspect ratio 

and Taylor number. It is found that a small interphase heat transfer coefficient has significant effect on the 

stability of the system. The rotation inhibits the onset convection. The effect of porosity modified conductivity 

ratio, diffusivity ratio, interphase heat transfer coefficient on the stability of the system is investigated. 
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1. Introduction 

Thermal convection in fluid saturated porous media is of interest due to its applications in different fields, such 

as geothermal energy utilization, nuclear waste disposal, biomechanics where fluids flow through lungs and 

arteries, solar power collectors, design of nuclear reactors and compact heat exchanges. A comprehensive 

literature survey on this subject can be found in the recent hooks by Ingham and Pop[1], Nield and Bejan [2]. In 

modeling a fluid-saturated porous medium, most of the investigators assumed a state of local thermal 

equilibrium (LTE) between the fluid and solid phase at any point in the medium. This is common for most of the 

studies where the temperature gradient at any location between the two phases is assumed to be negligible. Most 

of the works on convective instability in porous media have been investigated mainly under the assumption that 

the fluid and porous medium are everywhere in local thermodynamic equilibrium. However, in many practical 

applications, the solid and fluid phases are not in local thermal equilibrium. Nield and Bejan [S] have discussed 

a two field model for energy equation. Instead of having a single energy equation, which describes the common 

temperature of the saturated porous media, two equations are used for fluid and solid phase separately. In a two 

field model the energy equations are used for fluid and solid phase separately. In a two field model the energy 

equations are coupled by the terms, which accounts for heat lost or gained from the other phase. Nield [3] has 

discussed a local thermal non-equilibrium (LTNE) conditions exists due to many obvious causes, such as the 

presence of distributed or concentrated heat sources in one phase or the presence of some agency which forces 

different fluid and solid boundary temperature conditions. In fact, LTNE can be ruled out only if steady 

conduction with uniform solid and fluid thermal conductivities, is the only heat transfer process. As discussed 

by Banu and Rees [4] when non equilibrium effects are included in the problem the linear analysis is modified 

and it is still possible to proceed analytically to find the condition for one onset of convection. The stability of a 

horizontal fluid saturated sparsely packed porous layer heated from below and cooled from above when the 

solid and fluid phase are not in local thermal equilibrium is examined analytically by Malashetty et al. [5]. The 

stability of a horizontal fluid saturated anisotropic porous layer heated from below and cooled from above when 

the solid and fluid phase are not in local thermal equilibrium is examined analytically by Malashetty et al. [6] 

The rotation effect on thermal convection in porous media has been extensively studied for the case of local 

thermal equilibrium model. In this paper we discuss the onset of convection in a rotating porous rectangular 

channel heated from below when the fluid and solid phases are not in local thermal equilibrium. Walls of the 
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channel are non-uniformly heated to establish a linear temperature gradient and they are assumed to be 

impermeable and perfectly conducting. The critical Rayleigh number using linear stability analysis is obtained 

numerically as a function of  interphase heat transfer coefficient, Taylor number and aspect ratio. 

2. Mathematical Formulation 

Consider two-dimensional free convection in a horizontal rotating porous channel heated from below. The lower 

surface is held at temperature 1 0= + T T T  while upper surface 0.=uT T  We assume that the solid and fluid 

phases of the medium are not in local thermal equilibrium and use a two field model. The channel is rectangular 

with height ‘h’ and width ‘a’, we choose a cartesian co-ordinate system with z-axis is in the vertical direction 

and x-axis is the horizontal direction perpendicular to the channel axis. The horizontal channel walls are z = 0 

and z = h and the vertical walls at 
2

= −
a

x  and .
2

=
a

x  On assuming that the Prandtl-Darcy number is large, so 

that inertia term may be neglected and invoking Boussinesq approximation, the governing equations are 
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Since the flow is two-dimensional, we introduce the stream function   as: 
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we also define non-dimensional variables by 
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Using the equations (8) and (9) in equations (2)-(7) the non-dimensional equation can be obtained in the form; 
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Due to symmetry about y axis, 0
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 and considering ,=x yk k  

we get equation (11) as 
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Eliminating pressure between (10) and (12) we get 
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Differentiating equation (15) w.r.t. z and substituting in (16), we get 
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In the above equations we have used the following definitions: 
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3. Linear Stability analysis and numerical analysis 

The linearised forms of the governing equations (13), (14) and (17) are 
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The boundary conditions are 
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The onset of stationary convection is described by the linear version of equations (19) - (21) and the solution for 

,   and   is now taken as a single-mode component as: 

( ) ( ) ( )sin , sin , sin =   =   = D x z G x z I x z   …(23) 

In terms of D, G and I the boundary conditions are 

1 1 1
0, 0, 0.

2 2 2

     
 =  =  =     
     

D G I    …(24) 

Using (23)-(24) in equations (19)-(21), we get 
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The general solution of equation (27) is 
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where 'ic s  are arbitrary constants and im  are roots of the auxiliary equation of (28). Since the auxiliary 
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The solution of equation(28) can be obtained using Newton-Raphson method, for various values of all 

parameters and cRa  can be calculated numerically. 

 

4. Results and Discussions 

Linear stability analysis of a fluid-saturated rotating porous cavity is carried out by considering a thermal non-

equilibrium model. This may be understood as follows: let us keep the vertical permeability ‘h’ fixed (or the 

horizontal permeability ‘a’ fixed), and vary the horizontal permeability ‘h’ (or the vertical permeability). Then 

an increased horizontal permeability reduces the Rayleigh number indicating that the system becomes unstable. 

The variation of critical Rayleigh number Rac with interphase heat transfer coefficient H is shown in figure  for 

different parameter values Ta. For small values of Taylor number the stationary onset occurs. As the Taylor 

number increases the critical Rayleigh number is increased. Therefore, the rotation enhances the stability of the 

system in stationary modes. 

5. Conclusions 

The linear stability of a horizontal fluid-saturated porous channel with the effect of coriolis force of studied 

numerically when the fluid and solid phases are not in local thermal equilibrium. In case of linear stability 

theory we derived critical Rayleigh number as a function of Taylor number, interphase heat transfer coefficient, 

porosity modified conductivity ratio and mechanical anisotropy parameters. We found that there is a 

competition between the processes of rotation and thermal diffusion that causes convective instability, and also 

we found that for small value of interphase heat transfer coefficient the system behaves like a local thermal 
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equilibrium model. The rotation has stabilizing effect on convection. The effect of porosity modified 

conductivity ratio is to advance the onset of convection, while the diffusivity ratio strengths the stabilizing effect 

of rotation and interphase heat transfer coefficient. For small value of H, the critical values are independent of 

the porosity modified conductivity ratio. 
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