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Abstract: The steady-state flow across an isothermal, permeable stretched sheet of an incompressible, viscous, 

and electrically conducting Carreau fluid is investigated in this work. It considers Brownian motion, a magnetic 

field, transpiration, thermophoresis, concentration and thermal slip, and thermal radiation. Buongiorno's model 

manages the Brownian motion and thermophoresis in the regulating equations for energy and concentration. 

Local similarity transformations let one convert the governing partial differential equations into a collection of 

ordinary differential equations. These nonlinear ordinary differential equations then numerically are solved in 

concert with the RK-method utilizing a strong numerical approach known as shooting technique. The study 

investigates how various physical properties influence the graphical depictions of profiles of temperature, speed, 

and concentration of nanoparticles. In several situations the findings show excellent consistency with earlier 

investigations. 

Keywords: Transpiration effect; Magnetic field; Carreau fluid; Nanofluid; Thermal radiation; Permeable 
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1. Introduction 

Carreau fluids are an intriguing subject for the study of fluid dynamics because of their non-Newtonian 

properties, especially when combined with nanofluid particles. Nanofluids are formed by the incorporation of 

nanoparticles into regular fluids, resulting in improved properties and efficiency. This combination has the 

ability to greatly improve heat transmission, rheological qualities, and other crucial aspects that are essential for 

several technological applications. This session will explore the intricate behavior of Carreau fluids when they 

are mixed with nanofluid particles. This research will examine the influence of this combination on several 

domains, including industrial processes and biological applications. In order to address the limitations of the 

power law model in accurately calculating viscosity at very high and low shear rates, Carreau [1] developed the 

Carreau model. Salahuddin and his colleagues [2] investigated the motion of a Carreau-Yasuda fluid with 

magnetohydrodynamics (MHD) characteristics across a compressed sensor surface. Sulochana [3] examined the 

influence of transpiration on the movement of Carreau nanofluid under the effects of magnetohydrodynamics at 

a stagnation point on a stretched surface. Khan et al. [4] examined the thermal and mass transfer characteristics 

of a Carreau nanofluid on a computationally expanding or contracting cylinder. Khan and Azam [5] examined 

the dynamic characteristics of heat and mass transmission in a Carreau nanofluid over a stretched surface, while 

also considering the influence of magnetohydrodynamics. Khan and his colleagues [6] performed a 

computational analysis on the turbulent Falkner-Skan flow in Carreau nanofluid. The researchers examined the 

effects of the magnetic field and the convective boundary condition. Raju and Sandeep [7] examined the transfer 

of mass and heat in the Falkner-Skan flow of Carreau fluid across a wedge, taking into consideration the effects 

of cross diffusion and a magnetic field. Khan et al. [8] investigated the flow characteristics of 2D Carreau-

Yasuda flow across a heated surface, taking into consideration the impacts of Dufour and Soret's effects. Waqas 

and his colleagues [9] conducted an analysis on a set of partial differential equations (PDEs) that explain the 
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behavior of a Carreau-Yasuda fluid as it flows over an expanding surface. The equations also included partial 

slip, chemical reaction, heat radiation, and bio-convection. Riaz et al. [10] examined the motion of a Carreau 

nanofluid in a microchannel, taking into account its three-dimensional structure and temporal variations. Hayat 

et al. [11] investigated the movement of Carreau fluid over a stretched permeable sheet in a two-dimensional 

barrier layer. Waqas and his coauthors did a research on the unique characteristics of a magneto-hydrodynamic 

Carreau nanofluid [12]. The researchers analyzed the behavior of this nanofluid under different situations. The 

researchers conducted an analysis on the mobility of an MHD Carreau nanofluid system in both two and three 

dimensions, in addition to studying a chemical reaction. This work is referenced in the following citations: [13], 

[14], [15], [16], [17], [18], [19], [20], [21], [22], and [23]. The works mentioned in the literature [26–34] had a 

significant impact on understanding the nature of the reported work.  

The aim of this study is to calculate the numerical solutions for the movement of a two-dimensional, viscous, 

electrically conducting, non-Newtonian Carreau fluid towards a permeable stretched sheet with a constant 

temperature. The calculations will be based on the previously stated references. This study examines the impacts 

of heat radiation, Brownian motion, magnetic field, thermophoresis, and nanofluid particles. The controlling 

partial differential equations are transformed into a set of nonlinear ordinary differential equations by the use of 

local similarity transformations. Afterwards, the equations are numerically solved using the RK-method and 

shot technique to analyze the influence of various physical factors on flow variables, including temperature, 

concentration, and velocity, using graphical analysis. Ultimately, a thorough examination is conducted to 

confirm the accuracy of the current study by comparing it to the existing body of research.  

2. Flow Governing Equations 

This research investigates the impact of heat radiation and a magnetic field on the flow of a non-Newtonian 

Carreau-nanofluid. The flow is constant, incompressible, viscous, and electrically conducting. It occurs towards 

a stretched sheet that is permeable but not linearly isothermal. The study also considers the existence of a 

transpiration effect. Figure 1 illustrates the physical coordinate system of this flow at y = 0. The investigation is 

based on the following assumptions: 

i. Flow generation is caused by non-linear stretching of the sheet when two equal and opposing pressures are 

applied simultaneously along the x-axis. 

ii. The sheet is extended with a velocity 
n

wu ax= with the origin location fixed, where the power-law index, n 

is a non-linear stretching parameter, a is a constant and x is the coordinate orientated parallel to the stretching 

surface. 

Stretching Carreau-nanofluid sheet momentum, thermal and species boundary layers

 

Fig. 1. Geometry representation of the fluid 
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iii. It is assumed as, the plate with constant surface temperature 
wT  and concentration 

wC is placed in a gentle 

fluid of constant ambient temperature T
 and concentration C

. 

iv. Normally, a variable magnetic field B(x) will be provided to the surface of the sheet while the magnetic field 

induced is minimal and may be justified for MHD flow at the small magnetic Reynolds number. 

The conservation equations for mass, momentum, energy, and nano-particle species, ignoring buoyancy forces, 

edge effects, and the existence of a pressure gradient, are as follows: 

Continuity Equation: 

0
u v

x y

 
+ =

 
(1) 

Momentum Equation: 
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Equation of thermal energy: 
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(3)    

The radiative heat flux
rq  (using Roselandapproximation) is defined as 

* 4

*

4

3
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T
q

K y
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(4) 

We assume that the temperature variances inside the flow are such that the term
4T can be represented as linear 

function of temperature. This is accomplished by expanding
4T in a Taylor series about a free stream 

temperature T
 as follows: 

( ) ( )
24 4 3 24 6 ............T T T T T T T T    = + − + − +                                                   

(5) 

After neglecting higher-order terms in the above equation beyond the first-degree term in ( )T T− , we get 

4 3 44 3T T T T  −                      

(6) 

Thus substituting Eq. (8) in Eq. (7), weget 
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Using (9), Eq. (5) can be written as 
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(8) 
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Equation of species concentration: 

2 2

2 2

T
B

DC C C T
u v D

x y y T y
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+ = +
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(9) 

The boundary conditions for Carreau-nano fluid flow are 

    

( ) ( ), , , 0

0, 0, ,

n
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(10) 

Where ( )wv x is the variable velocity components in vertical direction at the stretching surface in which ( )wv x

< 0 represents to the suction cases and ( )wv x >0 represent to the injection ones. The wall transverse velocity 

condition in (12) differs from that in Rana and Bhargava [24] since wall transpiration is now included. The 

following similarity variables are introduced for solving governing equations (4), (5) and (10) as 
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Using Eq. (11),  the fundamental Eqs. (2), (3) to (8) become 
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(14)          

and the corresponding boundary conditions (10) become 
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where the involved physical parameters are defined as  
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The parameters of engineering interest in heat and mass transport problems are the Skin-friction coefficient

( )Cf , local Nusselt number ( )xNu and the Sherwood number ( )xSh . These parameters characterise the skin-

friction coefficient, wall heat, mass transfer rates, respectively, and are defined by 
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Where Rex

ax


= is the local Reynolds number. 

Numerical Solutions by Runge-Kutta Shooting Technique: 

In the case of a full set of Eqs. (12)-(14), it seems that exact solutions are not possible. These results are the 

result of the nonlinear nature of (12)-(14), the requirement of numerical approaches to resolve the problem, and 

the inclusion of suitable boundary conditions in the formula (15). After being translated into a set of non-linear 

ordinary differential equations, which can be solved quantitatively via similarity transformations, the governing 

partial differential equations are solved numerically. It is necessary to combine the shooting methodology with a 

Runge-Kutta method in order to numerically solve the resulting boundary value issue. It is possible to get a 

collection of first-order differential equations by decomposing a set of nonlinear differential equations into a set 

of first-order differential equations. It has been demonstrated in the figure that the linked ordinary differential 

equations (12)-(14) may be reduced to a system of seven simultaneous equations for seven unknowns. The 

coupled ordinary differential Eqs. (12)-(14) are third order in f(η) and second-order in θ(η) and ϕ (η) which have 

been reduced to a system of seven simultaneous equations for seven unknowns. In order to numerically solve 

this system of equations using Runge-Kutta method, the solutions require seven initial conditions but two initial 

conditions in f(η) one initial condition in each of θ(η) and ϕ (η) are known. However, the values of f  (η),θ(η) 

and ϕ (η) are known atη → ∞. These end conditions are utilized to produce unknown initial conditions at η= 0 

by using shooting technique. The most important step of this scheme is to choose the appropriate finite value of 

η∞. Thus, to estimate the value of η∞ we start with some initial guess value and solve the boundary value 

problem consisting of Eqs. (12)-(14) to obtain f  (0),  (0) and   (0). The solution process is repeated with 

another larger value of η∞ until two successive values of f  (0),  (0) and   (0)differ only after desired 

significant digit. The last value η∞ is taken as the finite value of the limit η∞ for the set of physical parameters 

for determining velocity, temperature, and concentration, respectively, are f(η), θ(η) and ϕ(η)in the boundary 

layer. After getting all the initial conditions we solve this system of simultaneous equations using fourth order 

Runge-Kutta integration scheme. Thus, the coupled boundary value problem of third-order in f(η),second-order 

in θ(η) and ϕ (η) has been reduced to a system of seven simultaneous equations of first-order for seven 

unknowns as follows: 
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and the corresponding boundary conditions became 
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( ) ( ) ( ) ( ) ( ) ( ) ( )0 , 0 1, 0 1, 0 1, 0, 0, 0wf f p p   = = = =  →  →  →
                                 

(21) 

The boundary value problem is first converted into an initial value problem (IVP), which is then further 

explored. The beginning value problem is then solved by accurately guessing the missing starting value for 

various combinations of factors using the shooting method, which is repeated until the problem is solved. In this 

instance, the step size h = 0.1 is used for calculating purposes. Additionally, a 10-6 error tolerance is being used. 

The information gathered is presented in the form of tables and graphs, with the main features of the problems 

addressed and explored in depth. 

Program Code Validation 

Table-1.: Comparison of present ( )f   profiles results with the published results of  Rashidi et al. [25] 

at 0We M K R= = = =  

η Results of Rashidi et al. [25] Present numerical results 

0.0 1.00000000 1.0000000000000000000 

1.0 0.34838179 0.3470876157602564522 

2.0 0.12812649 0.1365760764507265034 

3.0 0.04815841 0.0354856862083756027 

4.0 0.01825518 0.0170760766727560762 

5.0 0.00694248 0.0056313242876806547 

6.0 0.00264353 0.0014858723578206583 

 

A very good validation of the present numerical results has been achieved with the numerical and analytical 

solutions results by Rashidi et al. [25] respectively as shown in table-1in absence of Carreau fluid, Porous 

medium, Thermal radiation, and Magnetic field.  

4. Results and Discussion 

In this research work, it is considered the radiative, steady Carreau-nanofluid flow of an incompressible, 

viscous, electrically conducting non-Newtonian fluid over a stretching sheet under the influence of magnetic 

field. The numerical solutions of the governing equations of the flow field are obtained by using RK – method 

along with shooting method. The flow is presided over by the non-dimensional parameters namely, Magnetic 

field parameter (M), Porous medium parameter (K), Suction/Injection parameter (fw), Carreau fluid parameter 

(We), Stretching sheet parameter (n), Prandtl number (Pr), Thermal radiation parameter (R), Thermophoresis 

parameter (Nt), Brownian motion parameter (Nb) and Lewis number (Le).   

➢ Fig. 2 depicts the influence of magnetic parameter on velocity profiles. It is observed that there is 

inverse relationship between magnetic parameter and velocity profiles. This is because with increase in 

magnetic parameter a force is produce, which is notable as Lorentz force. With the production of this force a 

resistive force induces, in opposite to the motion of fluid particles. Therefore, reduction takes place in profiles of 

velocity. 

➢ Fig. 3 shows the effect of Carreau fluid parameter (We) on velocity profiles. Here we observe that the 

velocity profiles are decreasing function of Carreau fluid parameter. 
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Fig. 2.M effect on velocity profiles 

 

 
Fig. 3. We effect on velocity profiles  

 

 
Fig. 4. Keffect on velocity profiles  
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Fig. 5.fw effect on velocity profiles 

➢ Fig. 4 illustrates the influence of the wall transpiration (i.e. suction/injection) parameter, fw, on the 

evolution of velocity profiles in the stretching sheet boundary layer regime. The flow is observed to be strongly 

decelerated with suction (fw = 0.2) whereas it is accelerated markedly with increasing blowing (injection, fw = − 

0.2). Suction causes the boundary layer to adhere more closely to the wall and this destroys momentum leading 

to a plummet in velocity. Momentum boundary layer thickness is therefore decreased with suction. Conversely 

injection adds nanofluid via lateral mass flux through the sheet and this assists momentum development, 

enhancing velocity and causing a concomitant increase in momentum boundary layer thickness.It is interesting 

to note that suction does not, however induce flow reversal-velocity remains positive throughout the boundary 

layer regime. Excellent flow control is therefore achieved in the nanofluid sheet regime with suction. 

 

 
Fig. 6.Pr effect on temperature profiles 

 

 
Fig. 7.Nb effect on temperature profiles 
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➢ Fig. 5 illustrates the effect of Permeability parameter (K) on the velocity distribution. From this figure, 

it is observed that the velocity profile decreases with the increased in the Permeability (porosity) parameter K. 

This arises due to the fact that an increase in K amplifies the porous layer and thereby reduces the thickness of 

momentum boundary layer.   

➢ Fig. 6 presents the effect of Prandtl number (Pr) on the fluid temperature. As the value of Pr increases, 

the temperature gradient of the fluid decreases. As Pr increases, the momentum diffusivity increases and 

dominates the thermal diffusivity. The fluid velocity is high enough to help the heat transfer of the fluid. This 

makes the heat dissipation rate faster and makes the boundary layer to become thinner. 

 

 
Fig. 8.Nb effect on concentration profiles 

 

 
Fig. 9.Nt effect on temperature profiles 

 

 
Fig. 10.Nt effect on concentration profiles 
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Fig. 11.R effect on temperature profiles 

 

➢ The Brownian movement parameter (Nb) then, at that point the Thermophoresis limitation (Nt) affect 

the dimensionless temperature & nanoparticle concentration profiles, as exposed in Figs. 7 to 10. The 

temperature profile appears to increase as the Brownian motion parameter (Nb) is increased, while the 

nanoparticle volume concentration profile drops. We also find that as the Thermophoresis parameter (Nt) is 

increased, the dimensionless temperature & nanoparticle volume portion rise. This remains because the 

temperature gradient produces the Thermophoretic force, which causes an extremely high-speed flow away 

from the stretching sheet. As the Thermophoresis parameter (Nt) develops, the liquid is warmed and moves from 

the extending surface, and thus, the warm limit layer width increments, also the temperature slope at the surface 

reductions as both Nt&Nb esteem increment.  

 

 
Fig. 12.Le effect on concentration profiles 

 

➢ Fig. 11 shows that the thermal radiation parameter (R) has an influence on the temperature distribution

( )  . Heat dispersion increases when the thermal radiation parameter R is raised over its default value. As the 

value of R is raised, the thermal buoyancy force increases and the thickness of the thermal boundary layer 

decreases. On a physical level, increasing the thermal radiation parameter R causes more heat to be created in 

the fluid flow zone, resulting in more uniform temperature distributions ( )  . 

➢ Fig. 12 depicts the influence of the Lewis number (Le) on concentration profiles. The dimensionless 

Lewis number is defined as the ratio of thermal and mass diffusivity. It is noticed that the nano particle volume 

fraction experiences a strong reduction for the values of Le.  

➢ Table-2 shows the numerical values of Skin-friction coefficient (Cf) for variations in values of the 

engineering parameters such as, M, fw, We, n, K, Pr, R, Nb, Nt and Le. From this table, it is observed that the 

https://www.sciencedirect.com/science/article/pii/S2212540X1830021X#f0070
https://www.sciencedirect.com/topics/engineering/thermal-diffusivity
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Skin-friction coefficient is increasing with rising values of Nb, R and Nt, while it is decreasing with increasing 

values of We, M, fw, n, K, Pr, and Le.  

➢ The numerical values of rate of heat transfer coefficient in terms of Nusselt number (
xNu ) are 

displayed in Table-3 for different values of Pr, Nb, Nt and R.The rate of heat transfer coefficient is gradually 

rising with increasing values of R, Nb and Nt, while the reverse effect is observed in increasing values of Pr.  

➢ The effects of Nb, Ntand Le on rate of mass transfer coefficient or in terms of Sherwood number 

coefficient (
xSh ) are discussed in Table-4. From this table, it is observed that the reduced rate of mass transfer 

coefficient is increasing with increasing values of Nt and decreasing with increasing values of Nb and Le.  

Table-2.: Numerical values of skin-friction coefficient (Cf) for variations of M, fw, We, n, K, Pr, R, Nb, Nt 

and Le 

M fw We n K Pr R Nb Nt Le Cf 

0.2 - 0.2 0.2 0.1 0.5 0.71 0.5 0.3 0.2 0.3 1.4575256027239 

0.5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4187687812872 

0.7 1.3976582182468 

 

- 0.1 1.4265876192856 

0.1 1.3958768765891 

0.2 1.3766087609876 

 

0.4 1.4356868165898 

0.7 1.4065659641291 

 

0.3 1.4189682425452 

0.5 1.3856896987634 

 

0.8 1.4156587672342 

1.2 1.3790668678688 

 1.00 1.4065876876134 

3.00 1.3687687656181 

 

1.0 1.4965876180568 

1.5 1.5214255982897 

 

0.5 1.4858598289154 

0.7 1.5051859825982 

 

0.5 1.5076475217346 

0.8 1.5258769876125 

 
0.5 1.4159956345859 

0.7 1.3908676062361 

Table-3.: Numerical values of reduced rate of heat transfer coefficient (
xNu ) for different values of Pr, 

Nb, Ntand R 
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Pr Nb Nt R xNu  

0.71 0.5 0.5 0.5 0.561548548259828 

1.00 
 

 

 

0.514589258925367 

3.00 0.497856523547625 

 

0.8 0.597634652745922 

1.0 0.613576185782436 

 

0.8 0.584664554726872 

1.0 0.601582589256822 

 
0.8 0.539876876452568 

1.0 0.516787987325676 

Table-4.: Numerical values of rate of mass transfer coefficient (
xSh ) for various values of Nb, Nt and Le 

 

Nb Nt Le xSh  

0.5 0.5 0.5 0.664572345722962 

0.8 
 

 

0.630988979898238 

1.0 0.615485982586145 

 

0.8 0.685656868612585 

1.0 0.704765471256971 

 
1.0 0.645659659123415 

1.2 0.617687653134576 

5. Conclusions 

This report presents a numerical investigation of steady-magnetohydrodynamic Carreau-nanofluid, highlighting 

the derivation of non-linear ordinary differential equations governing velocity, concentration, and temperature 

profiles in the presence of magnetic field, thermal radiation, porous medium towards a non-linear stretching 

sheet with transpiration effects. By employing the Runge-Kutta method along with shooting technique and 

visual aids such as graphs and tables, the study verifies convergence and offers valuable insights for developing 

efficient fluid systems at the nanoscale. It is worth concluding that. 

➢ A rise in the Carreau fluid parameter amplifies the non-Newtonian effects, which in turn leads to an 

increase in the viscosity of the fluid and has an impact on the internal velocity profiles, which are essential for 

the precise regulation of flow. By gaining an understanding of its effect, one may make the process of designing 

and studying systems that include non-Newtonian fluids easier, which ultimately leads to improvements in both 

efficiency and performance. 

➢ Regarding fluids with high conductivity, the strength of the magnetic field greatly affects the velocity 

profiles, leading to the emergence of resistive forces that alter the flow patterns. The Lorentz force acts as a 

resistive force, reducing the velocity of the fluid, due to the influence of the magnetic field parameter M. Due to 

this phenomenon, there are observable flow patterns that affect the distribution of velocity. This phenomenon is 

especially noticeable in fluids with high conductivity when they are exposed to strong magnetic fields. 
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➢ The intricate relationship between the volume fraction of nano particles and the velocity of fluids 

emphasizes the need of meticulous thought while performing experiments on nano fluids. By augmenting the 

proportions of nano particles in the fluid, it is feasible to modify the fluid's viscosity, thereby impacting the flow 

dynamics and perhaps leading to non-Newtonian behaviour. 

➢ In program code validation, the obtained results are in good agreement with the published results of 

Rashidi et al. [25] at 0We M K R= = = = . 

Nomenclature: 

List of Symbols: 

vu, : Velocity components in x and y axes 

 respectively (m/s) 

yx, : Cartesian coordinates measured along 

 the stretching sheet (m) 

f : Dimensionless stream function 

f  : Fluid velocity (m/s) 

Pr : Prandtl number 

C : Fluid concentration ( )3/ mmol  

C
: Dimensional ambient volume fraction 

 ( )3/ mmol  

T : Fluid temperature ( )K  

wT : Temperature at the surface ( )K
 

Cf : Skin-friction coefficient 

T : Temperature of the fluid far away  from 

the stretching sheet ( )K  

M : Magnetic field parameter 

wC : Dimensional concentration at the 

 stretching surface ( )3/ mmol  

xNu : Rate of heat transfer coefficient (or) 

 Nusselt number 

xSh : Rate of mass transfer coefficient (or) 

 Sherwood number 

fC : Specific heat capacity at constant pressure 

pC : Specific heat capacity of nanoparticle 

material 

oB : Uniform magnetic field 

Le : Lewis number 

U : Reference velocity ( )/m s  

Nb : Brownian Motion parameter 

Nt : Thermophoresis parameter 

BD : Brownian diffusion coefficient 

TD : Thermophoresis diffusion coefficient 

a : Positive real number 

wu :  Stretching velocity of the fluid along     

 x - direction(m/s)  

wv : Stretching velocity of the fluid along  

 y - direction(m/s) 

rq : Radiative heat flux 

g : Acceleration due to gravity(m/s2) 

R : Thermal radiation parameter 

*K : Mean absorption coefficient 

n : Non-linear stretching parameter 

O : Origin 

Ko: Dimensional Permeability parameter 

K : Non-dimensional Permeability  

Parameter 

Nu : Rate of heat transfer coefficient (or) 

 Nusselt number 

Sh : Rate of mass transfer coefficient (or) 

 Sherwood number 

We : Carreau fluid parameter 
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fw : Suction/Injection parameter 

qw: Heat flux 

qm: Mass flux 

Greek symbols: 

 : Dimensionless similarity variable 

 : Dimensionless temperature ( )K
 

m : Nanofluid thermal diffusivity ( )sm /2
 

 : Kinematic viscosity ( )sm /2
 

 : Dimensionlessnanofluid  

 concentration ( )3/ mmol  

* : Stefan-Boltzmannconstant 

p : Density of nanoparticle material 

 : Electrical Conductivity 

 : Fluid density (kg / m3) 

f : Density of the fluid(kg / m3) 

 : Cauchy Stress tensor 

Superscript: 

/
: Differentiation w.r.t   

Subscripts: 

f : Fluid 

w : Condition on the sheet 

 : Ambient Conditions 
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