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Abstract:- This paper explores the complex realm of multivalued homotopy functions in algebraic topology. It 
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1. Introduction 

This paper delves into the intricate world of multivalued homotopy functions, exploring their properties and 

applications through four distinct sections. Each section addresses a critical aspect of multivalued homotopy, 

revealing the depth and breadth of this fascinating topic in algebraic topology. 

The second section delves into the concept of multivalued homotopy functions, where each input can 

correspond to multiple output paths. This section establishes foundational definitions, explores unique 

properties, and provides illustrative examples to contrast multivalued mappings with traditional single-valued 

functions. 

The third section extends the discussion to group operations in multivalued homotopy functions. By 

generalizing classical group operations to a multivalued context, we reveal new algebraic structures and 

symmetries. This section elucidates how these operations are defined and manipulated, highlighting their role in 

enhancing our understanding of multivalued homotopy. 

The fourth section examines the multivalued fundamental group and its action on homotopy classes. We explore 

how the fundamental group, a pivotal concept in algebraic topology, is adapted to multivalued scenarios. The 

analysis focuses on the implications of multivalued operations for the structure of homotopy classes, uncovering 

intricate connections between topological spaces and their algebraic invariants. 

Finally, we address the equivalence of multivalued homotopy functions. Establishing criteria for equivalence is 

crucial for determining when two multivalued homotopy functions are topologically indistinguishable. This 

section presents key theorems and proofs that characterize equivalence relations, providing a robust framework 

for comparing and classifying multivalued homotopy functions. 
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Through a comprehensive exploration of these four key areas, this paper aims to illuminate the complex 

relationships and algebraic structures underlying multivalued homotopy functions, contributing to a deeper 

understanding of their significance in algebraic topology. 

2.  𝓜 − Functions in Homotopy  

In algebraic topology, multivalued functions and homotopy are fundamental concepts used to study the 

properties and structures of topological spaces. While standard functions map a single input to a single output, 

multivalued functions can map a single input to multiple outputs. This flexibility makes them useful in various 

scenarios, particularly in the context of covering spaces, homotopy, and path lifting. Here, we will explore how 

multivalued functions interact with homotopy in algebraic topology. When dealing with multivalued functions, 

the concept of homotopy can be extended to ℳ − homotopy, which considers continuous deformations between 

multivalued functions. The classification of homotopy classes of multivalued maps can be more complex than 

single-valued maps. By studying the homotopy between multivalued functions, one can classify the different 

ways a space can be mapped to another, considering the multivalued nature of the maps. Multivalued functions 

expand the traditional notion of homotopy, allowing for mappings that can assign multiple outputs to a single 

input. This generalization is particularly useful in complex systems where single-valued functions fall short in 

capturing all the nuances of continuous deformations.   

Definition 2.1. Consider two continuous functions 𝒦, ℒ ∶ 𝒳 → 𝒴 between topological spaces 𝒳 and 𝒴. A ℳ − 

homotopy between 𝒦 and ℒ is a multivalued function ℋ ∶ 𝒳 × [0, 1] → 𝒫(𝒴). Where 𝒫(𝒴) denotes the power 

set of 𝒴 satisfying the following conditions, for each 𝓍 ∈ 𝒳 and 𝔱 ∈ [0, 1].  ℋ(𝓍, 𝔱) is a non-empty subset of 𝒴 

is a set containing all the intermediate states between 𝒦(𝒳) and ℒ(𝒳) at time 𝔱.  

1. Initial and Final conditions: 

❖ ℋ(𝓍, 0) = 𝒦(𝒳)  ∀  𝓍 ∈ 𝒳. 

❖ ℋ(𝓍, 1) = ℒ(𝒳)  ∀  𝓍 ∈ 𝒳. 

2. Continuity: 

For every 𝔱 ∈ [0, 1], the set-valued map 𝓍 ⟼ ℋ(𝓍, 𝔱) is continuous in the sense of multivalued 

functions. This means that for any 𝓍 ∈ 𝒳 and 𝔱 ∈ [0, 1], for any open set 𝒱 ⊆ 𝒴 such that ℋ(𝓍, 𝔱) ⊆

𝒱, there exists an open neighborhood 𝒰 ⊆ 𝒳 × [0, 1])(𝓍, 𝔱) such that for all (𝓍′, 𝔱′) ∈ 𝒰,  ℋ(𝓍′, 𝔱′) ⊆

𝒱. 

3. Path conditions: 

For each fixed 𝓍 ∈ 𝒳 and for any 𝓎 ∈ ℋ(𝓍, 𝔱) and 𝓎′ ∈ ℋ(𝓍, 𝔱′) with (𝔱 ≤ 𝔱′), there exists a 

continuous path in 𝒴 connecting 𝓎 and 𝓎′.  

Remark 2.2. This definition extends the classical idea of a homotopy by allowing the intermediate "points" 

between 𝒦(𝒳) and ℒ(𝒳) to be sets of points rather than single points. The continuity condition for multivalued 

functions ensures that these sets change in a controlled manner, maintaining a form of continuous deformation. 

The path connection condition guarantees that, even though we're dealing with sets, there is a coherent way to 

"travel" through these sets continuously. 

Example 2.3. we'll identify a scenario where the conditions for a ℳ − homotopy are not satisfied. Specifically, 

we can consider a case where the continuity condition or the path connection condition fails. 

Let 𝒳 = {0, 1} a simple two-point space and let 𝒴 = ℝ  the real line. Now define 𝒦, ℒ ∶ 𝒳 → 𝒴 as:  

❖ 𝒦(0) = 0, 𝒦(1) = 2 

❖ ℒ(0) = 1, ℒ(0) = 3 
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The ℳ − Homotopy ℋ, Suppose we define ℋ ∶ 𝒳 × [0, 1] → 𝒫(𝒴), Where 𝒫(𝒴) denotes the power set of 𝒴 

satisfying the follows: 

❖ ℋ(0, 𝔱) = [0, 1]  ∀  𝔱 ∈ [0, 1] 

❖ ℋ(1, 𝔱) = {2 + 𝔱} ∀  𝔱 ∈ [0, 1] 

1. Initial Conditions For (𝔱 = 0): 

❖  ℋ(0, 0) = [0, 1]  which does not equal {𝒦(0) = 0}. . This violates the condition ℋ(𝓍, 0) =

{𝒦(𝒳)}.  And  ℋ(1, 0) = {2}, which equals {𝒦(1) = 2}. 

2. Final Conditions For (𝔱 = 1): 

❖ ℋ(0, 1) = [0, 1]  which does not equal {ℒ(0) = 1}. This violates the condition ℋ(𝓍, 1) =

{ ℒ(𝒳)}.  And  ℋ(1, 1) = {3}, which equals {ℒ(1) = 3}. 

3. Continuity: Continuity of the multivalued function ℋ is not continuous in the usual sense of multivalued 

functions because the set-valued map ℋ(0, 𝔱) = [0, 1] does not continuously deform to a single value. For a 

continuous multivalued function, the values should smoothly transition from 𝒦(𝒳)  to ℒ(𝒳), which is not 

the case here since ℋ(0, 𝔱) remains a fixed interval [0, 1].  

4.  Path Connection: For (𝓍 = 0), ℋ(0, 𝔱) = [0, 1] does not specify a clear path between any specific points 

in [0, 1] and ℒ(0) = 1. For (𝓍 = 1), ℋ(1, 𝔱) = {2 + 𝔱} does form a valid continuous path. 

This example problem demonstrates that ℋ fails to satisfy the ℳ − homotopy conditions because: It does not 

meet the initial and final conditions for (𝓍 = 0). It fails the continuity requirement for (𝓍 = 0). The path 

connection condition is not clearly defined for (𝓍 = 0). This serves as a counterexample showing that not every 

multivalued function ℋ between 𝒻 and ℊ qualifies as a valid ℳ − homotopy. 

Example 2.4. Consider multivalued functions 𝒦, ℒ ∶  𝑆1 → 𝒫(ℂ)  where 𝒦(𝜃) = { 𝔢𝔦𝜃 , 𝔢−𝔦𝜃 } and ℒ(𝜃) =

{ 𝔢𝔦(𝜃+𝜋), 𝔢−𝔦(𝜃+𝜋) }. A   ℳ − homotopy ℋ𝔱 could continuously transform 𝒦 into ℒ. 

Example 2.5. Suppose 𝒳 is the unit interval [0, 1] and 𝒴 is the Euclidean plane ℝ2. Let 𝒦 and  ℒ be two 

multivalued functions defined by,  

❖ 𝒦(𝒳) = {(𝒳, 0)  𝑓𝑜𝑟  (𝒳 [0, 1])} 

❖ ℒ(𝒳) = {(𝒳, 1)  𝑓𝑜𝑟  (𝒳 [0, 1])} 

A homotopy ℋ ∶ [0, 1] × [0, 1] → ℝ2 between 𝒦 and ℒ can be defined by, ℋ(𝓍, 𝔱) = {𝓍, 𝔱} for each 𝓍 ∈ [0, 1] 

and ∈ [0, 1] , ℋ(𝓍, 𝔱) provides a continuous deformation from (𝓍, 0) to (𝓍, 1). 

Problem 2.6. Given a covering space 𝜙 ∶ 𝐴 → 𝐵 and a loop 𝛾 ∶ [0, 1] → 𝐵 based at 𝛽 ∈ 𝐵, find a multivalued 

homotopy lifting 𝛾 to a loop in 𝐴. 

Solution: 

1. Identify the set of points 𝛽 ∈ 𝜙−1(𝛽) as the possible starting points for the lifted loop. 

2. Define a multivalued function 𝒦 that maps each 𝔱 ∈ [0, 1] to the set of points in 𝜙−1(𝛾(𝔱)). 

3. Construct a ℳ − homotopy ℋ𝔱 that continuously deforms the initial point 𝛽 to the endpoint, ensuring 

ℋ0 = 𝛽 and ℋ1 = 𝛽. 

Problem 2.7. Let 𝒳 = 𝑆1 unit circle in ℝ2 and 𝒴 = ℝ2. Define tow multivalued function 𝒦, ℒ ∶ 𝑆1 → 𝒴  as 

follows; 

❖ 𝒦(𝜃) = {𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃} Representing the unit circles. 
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❖ ℒ(𝜃) = {2𝑐𝑜𝑠𝜃, 2𝑠𝑖𝑛𝜃} Representing a circle of radius 2. 

A homotopy ℋ ∶ 𝑆1 × [0, 1] → ℝ2 between 𝒦 and ℒ can be defined by, ℋ(𝜃, 𝔱) = {(1 + 𝔱)𝑐𝑜𝑠𝜃, (1 + 𝔱)𝑠𝑖𝑛𝜃}. 

Here, ℋ(𝜃, 0) = 𝒦(𝜃) and ℋ(𝜃, 1) = ℒ(𝜃), for each 𝔱 ∈ [0, 1]. ℋ(𝜃, 𝔱) describes a circle with radius (1 + 𝔱), 

continuously deforming the unit circle into the circle of radius 2. 

Problem 2.8. Let 𝒳 = [0, 1], and 𝒴 = ℝ2. Define tow multivalued function 𝒦, ℒ ∶ [0, 1] → 𝒴  as follows; 

❖ 𝒦(𝒳) = {(𝒳, 0), (𝒳, 1)} Representing a pair of interval line segments at each 𝓍 ∈ [0, 1]. 

❖ ℒ(𝒳) = {(𝓍, 0)} Representing a single horizontal line segment from (0, 0) to (1, 0). 

A homotopy ℋ ∶ [0, 1] × [0, 1] → ℝ2 between 𝒦 and ℒ can be defined by, ℋ(𝓍, 𝔱) = {(𝓍, 0), (𝓍, (1 − 𝔱))}. 

Here, ℋ(𝒳, 0) = 𝒦(𝒳) and ℋ(𝒳, 1) = ℒ(𝒳), for each 𝔱 ∈ [0, 1], ℋ(𝓍, 𝔱) provides a continuous deformation 

where the point (𝓍, 1) moves linearly downward to (𝓍, 1), effectively collapsing the vertical segments into the 

horizontal line segment. 

Theorem 2.9. If 𝒳 and 𝒴 are path-connected spaces, then any two multivalued functions 𝒦, ℒ → 𝒫(𝒴) that 

map each point in 𝒳 to a single set in 𝒴 can be connected by a ℳ − homotopy. 

Proof: Since 𝒳 and 𝒴 are path-connected, there exists a path between any two points in 𝒴. Construct a 

continuous family of multivalued functions ℋ𝔱 such that ℋ0 = 𝒦 and ℋ1 = ℒ, where ℋ𝔱  is defined by a 

continuous deformation between the sets 𝒦(𝒳) and ℒ(𝒳) for each 𝓍 ∈ 𝒳. The continuity of  ℋ𝔱 follows from 

the path-connectedness of  𝒴. 

Theorem 2.10. The set of homotopy classes of multivalued loops at a base point 𝛽 ∈ 𝐵 forms a group under the 

operation of concatenation. 

Proof: Let [𝒦] and [ℒ] be homotopy classes of multivalued loops based at 𝛽. Define the concatenation ([𝒦] ∗

[ℒ]) by concatenating representatives of these classes. This operation is associative, has an identity element (the 

constant multivalued function at 𝛽, and each element has an inverse (the multivalued function retracing the loop 

in reverse). Therefore, the set of homotopy classes under concatenation forms a group. 

Example 2.11. Consider 𝒳 = [0, 1] and 𝒴 = ℝ. Let 𝒦 be a multivalued function such that 𝒦(𝔱) = {𝔱, 2𝔱} and 

ℒ(𝔱) = {𝔱, 𝔱 + 1}. A ℳ − homotopy ℋ𝔱 connecting 𝒦 and ℒ can be defined as ℋ𝔱(𝔱) = {(1 − 𝔱)𝔱 + 𝔱(𝔱 + 1),

(1 − 𝔱)2𝔱 + 𝔱(𝔱 + 1)}. 

Example 2.12. In the covering space 𝜙 ∶ ℝ → 𝑆1, where 𝜙(𝔱) = 𝔢2 𝔦𝔱, consider the multivalued function 𝒦 that 

assigns to each point in 𝑆1 the set of all its preimages in ℝ.  This function is homotopic to itself under any 

continuous deformation that lifts to ℝ. 

Remark  2.13. The homotopy classes of multivalued functions can reveal more intricate topological properties 

of spaces than single-valued functions. They provide a richer structure for studying spaces with branching 

behaviors or complex coverings. 

5. Group Operations in 𝓜 − Homotopic Functions 

In algebraic topology, group operations play a fundamental role, particularly in the context of fundamental 

groups and homotopy classes. When considering ℳ − homotopic functions, we can explore how group 

operations might be applied or extended to these more complex mappings. Here’s a detailed examination of how 

group operations can be used with ℳ − homotopic functions. We often use group operations to understand the 
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structure and relationships between homotopy classes. This concept can be extended to ℳ − homotopic 

functions. Below are the definitions and explanations on how group operations can be used with multivalued 

homotopic functions. Group operations can indeed be applied to ℳ − homotopic functions, primarily through 

the concatenation of paths and loops. This extends the classical notion of the fundamental group to settings 

where multivalued functions are considered. The resulting structures provide a richer framework for exploring 

the topological properties of spaces and their coverings, enhancing our understanding of  ℳ − homotopy and its 

applications in algebraic topology. The group operations within the context of ℳ − homotopic functions 

necessitate a reevaluation of algebraic structures. These operations must be defined carefully to ensure that the 

set of ℳ − homotopy classes retains the necessary algebraic properties, such as closure, associativity, and the 

existence of an identity element.  

Concatenation of Multivalued Paths: 

❖ Consider two multivalued paths 𝒦 and ℒ in 𝒳 from a base point 𝛽. If 𝒦 maps each point 𝔱 in [0, 1] to 

a set of points 𝒦(𝔱) ⊂ 𝒴, and ℒ similarly maps [0, 1] to sets in 𝒴, we can define a concatenated path 

(𝒦 ∗ ℒ) by: 

(𝒦 ∗ ℒ)(𝔱) = {
𝒦(2𝔱)             𝑖𝑓     0 ≤ 𝔱 ≤ 0.5

ℒ(2𝔱 − 1)     𝑖𝑓      0.5 < 𝔱 ≤ 1
 

❖ This concatenation operation combines the multivalued paths, effectively defining a new multivalued 

path that traverses 𝒦 first and then ℒ. 

1. Homotopy Classes and Group Structure: 

❖ Just as with single-valued functions, we can consider homotopy classes of multivalued functions. Two 

multivalued functions 𝒦 and ℒ are homotopic if there exists a continuous family of multivalued 

functions ℋ𝔱 connecting them. 

❖ The set of homotopy classes of multivalued loops at a point 𝛽 can be endowed with a group structure 

by using the concatenation of loops as the group operation. 

2. Group operation on homotopy class: 

❖ The homotopy classes of these multivalued loops can be combined using concatenation, forming a 

group structure analogous to the fundamental group. The identity element is the class of the constant 

loop, and the inverse of a loop is its traversal in the opposite direction. 

Definition 3.1. Group Operations on ℳ − Homotopic Functions is a set of multivalued functions from 𝒳 →

𝒫(𝒴) (denoted as ℱ), we can define group operations as follows, assuming that 𝒴 has a group structure, If 

(𝒴, +) is an abelian group, the addition of two ℳ − homotopic functions (𝒦, ℒ ∈ ℱ) is defined by: 

[(𝒦+ℒ)(𝓍) = {𝒻 + ℊ | 𝒻 ∈  𝒢(𝓍)}] for all (𝓍 ∈ 𝒳). The resulting function (𝒦+ℒ) is also a multivalued 

function. If (𝒴, ∗) is a group, the multiplication of two ℳ − homotopic functions (𝒦, ℒ ∈ ℱ) is defined by: 

[(𝒦 ∗ ℒ)(𝓍) = {𝒻 ∗ ℊ | 𝒻 ∈  𝒢(𝓍)}] for all (𝓍 ∈ 𝒳). The resulting function (𝒦 ∗ ℒ) is also a multivalued 

function. If (𝒴, ∗) is a group, the inverse of a ℳ − homotopic (𝒦 ∈ ℱ) function is defined by, 𝒦−1(𝓍) =

{𝒻−1 | 𝒻 ∈ 𝒦(𝓍)} for all (𝓍 ∈ 𝒳). The resulting function 𝒦−1 is also a multivalued function. 

Definition 3.2. A ℳ − homotopy between two multivalued functions 𝒦, ℒ ∶ 𝒳 → 𝒫(𝒴) is a continuous family 

of multivalued functions ℋ𝔱 ∶ 𝒳 → 𝒫(𝒴) for 𝔱 ∈ [0, 1], such that: ℋ0 = 𝒦 and ℋ1 = ℒ. 

Remark 3.3.  A ℳ − homotopies generalize the concept of single-valued homotopies by allowing the image of 

a point to be a set. This is particularly useful in contexts where functions may naturally have multiple values, 

such as in covering spaces or when considering multi-valued solutions to equations. 
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Corollary 3.4. The set of homotopy classes of multivalued loops at a base point 𝛽 forms a group under 

concatenation, with the identity element being the class of the constant loop and the inverse of a class being the 

class of the reverse loop. 

Theorem 3.5. The set of homotopy classes of maps from a pointed topological space (𝒳, 𝓍0) to a pointed 

topological space (𝒴, 𝓎0), denoted by [𝒳, 𝒴], forms a group under the operation of concatenation of loops 

(when 𝒴 is a loop space). 

Proof: Closure, If [𝒻], [ℊ] ∈ [𝒳, 𝒴], their concatenation [𝒻 ∙ ℊ] is also in [𝒳, 𝒴]. Here, [𝒻 ∙ ℊ]  represents the 

map obtained by first applying 𝒻 and ℊ. Since 𝒻 and  ℊ are continuous, their concatenation (𝒻 ∙ ℊ) is also 

continuous. Associativity: For [𝒻], [ℊ], [𝓀] ∈ [𝒳, 𝒴], the concatenation operation is associative, ((𝒻 ∙ ℊ)  ∙ 𝓀) = 

(𝒻 ∙ (ℊ ∙ 𝓀)). This follows directly from the associativity of function composition. Identity Element: The 

constant map ℯ ∶  𝒳 → 𝒴 defined by ℯ(𝓍) = 𝓎0 for all 𝓍 ∈ 𝒳 serves as the identity element in [𝒳, 𝒴]. For any 

[𝒻] ∈ [𝒳, 𝒴], (𝒻 ∙ 𝑒) = 𝒻 and (𝑒 ∙ 𝒻) = 𝒻). Inverse Element, For each [𝒻] ∈ [𝒳, 𝒴], there exists an inverse 

element [𝒻−1] such that (𝒻 ∙ 𝒻−1~𝑒) and (𝒻−1 ∙ 𝒻~𝑒). Here, (𝒻−1) represents the map that "reverses" the path 

defined by 𝒻. Hence, [𝒳, 𝒴] forms a group under concatenation. 

Theorem 3.6. Homotopy Groups are Abelian for (𝑛 ≥ 2). For (𝑛 ≥ 2), the 𝑛𝑡ℎ homotopy group 𝜋𝑛(𝒴, 𝓎0) is 

abelian. 

Proof: Consider two maps 𝒻, ℊ ∶ 𝑆𝑛 → 𝒴 based at 𝓎0. To show commutativity, we need to demonstrate that the 

homotopy classes of their concatenations are equal: [𝒻 ∙ ℊ] = [ℊ ∙ 𝒻]. Cube Construction, Construct a map ℋ ∶

𝐼𝑛 → 𝒴 such that ℋ|{𝜕𝐼𝑛} = (𝒻 ∙ ℊ) and ℋ|{𝜕𝐼𝑛} = (ℊ ∙ 𝒻). Here, 𝐼𝑛 is the 𝑛 − dimensional cube, and 𝜕𝐼𝑛 

represent different ways of gluing the boundary. Homotopy, The map ℋ provides a homotopy between (𝒻 ∙ ℊ)  

and (ℊ ∙ 𝒻), demonstrating that [𝒻 ∙ ℊ] = [ℊ ∙ 𝒻] in 𝜋𝑛(𝒴, 𝓎0). Since concatenation is commutative for (𝑛 ≥ 2), 

𝜋𝑛(𝒴, 𝓎0) is abelian. 

Theorem 3. 7. (Hurewicz Theorem). For a simply connected space 𝒳, the first nontrivial homotopy group  

𝜋𝑛(𝒳) is isomorphic to the first nontrivial homology group ℋ𝑛(𝒳) for (𝑛 ≥ 2). 

Proof: Define the Hurewicz homomorphism 𝒽 ∶ 𝜋𝑛(𝒳) → ℋ𝑛(𝒳) that maps a homotopy class of maps [𝒻] to 

the corresponding homology class. Isomorphism, For (𝑛 ≥ 2), 𝒽 is an isomorphism. This is proven using the 

exact sequences of homotopy and homology groups, and by showing that 𝒽 is both injective and surjective. 

Injectivity, If 𝒽[𝒻] = 0, then 𝒻 is homotopic to a constant map, implying [𝒻] = 0 in 𝜋𝑛(𝒳). Surjectivity, For 

any homology class 𝑐 ∈ ℋ𝑛(𝒳), there exists a map 𝒻 ∶ 𝑆𝑛 → 𝒳 such that 𝒽([𝒻]) = [𝑐]. Hence, 𝜋𝑛(𝒳) for 

(𝑛 ≥ 2). 

6. 𝓜 − functions in Fundamental Group 

Extending the concept of the fundamental group to include multivalued functions enriches our understanding of 

topological spaces. This approach allows for a more flexible and comprehensive analysis of loops and paths, 

accommodating scenarios where traditional single-valued paths are insufficient. Establishing equivalence among 

ℳ − homotopy functions involves defining suitable equivalence relations that respect the multivalued nature of 

the functions. This process ensures that the generalized homotopy classes form a coherent and meaningful 

extension of classical homotopy classes. In the context of single-valued functions, homotopy classes of loops at 

a base point (𝛽 ∈ 𝐵) form a group known as the fundamental group 𝜋1(𝐵, 𝛽). The group operation is the 

concatenation of loops. This concept can be extended to ℳ − homotopy classes, though with some nuances. 

Consider the universal covering space 𝜙 ∶ 𝐴 → 𝐵 and let (𝛽 ∈ 𝐵) with 𝛼 ∈ 𝜙−1(𝛽). 
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1. Multivalued loop lifting: A loop 𝜸 ∶ [0, 1] → 𝐵 based at 𝛽 can be lifted to a multivalued loop in 𝐴. Each 

point in the fiber 𝜙−1(𝛽) can be connected by paths corresponding to elements of the fundamental group 

𝜋1(𝐵, 𝛽). 

2. Concatenation of Multivalued loops: If 𝛾1 and 𝛾2 are two loops in 𝐵 based at 𝛽 their concatenation (𝛾1 ∗

𝛾2) can be lifted to multivalued loops in 𝐴 resulting in a ℳ − function representing the combined path. 

3. Homotopy classes of multivalued loops: The homotopy classes of multivalued loops at a base point (𝛽 ∈

𝐵) form a group under the operation of concatenation. Specifically: 

➢ Identity element: The constant multivalued function at  𝛽 serves as the identity element. 

➢ Inverse: The inverse of a multivalued path  𝒦 is a path that retraces 𝒦 in the opposite 

direction. 

Definition 4.1. A multivalued path in a topological space 𝒳 from a point α0 to a point α1 is a continuous 

multivalued function Γ ∶ [0, 1] → 𝒳 such that Γ(0) = α0 and . Γ(1) = α1.  

Example 4.2.  Consider the space  ℝ2 and points (0, 0) and (1, 1). A multivalued path from (0, 0) to (1, 1). 

could be a function Γ that, at each time 𝔱 ∈ [0, 1], includes all points on the line segment connecting (0, 0) and 

(1, 1). Thus, Γ(𝔱) = {(1 − 𝔱)(0, 0) + 𝔱(1, 1)}. 

Example 4.3. In a space 𝒳, consider two loops 𝛼 and 𝛽 based at 𝓍0. Let be a multivalued homotopy between 𝛼 

and 𝛽 such that 𝔱 ∈ [0, 1], for each ℋ(𝔱) represents a continuous deformation of 𝛼 into 𝛽 via multivalued 

intermediate loops. 

Theorem 4.4. (Lifting of 𝓜 − Homotopies) Given a covering space 𝜙 ∶ 𝐴 → 𝐵 and a ℳ − homotopy ℋ𝔱 ∶

𝒳 → 𝒫(𝒴), there exists a lifted ℳ − homotopy ℋ̃𝔱 ∶  𝒳  → 𝒫(𝒴̃) such that (𝜙 ∘ ℋ̃𝔱) = ℋ𝔱 . 

Proof: Since 𝜙 is a covering map, each point in 𝒳 has a neighborhood 𝜆 such that 𝜙−1(𝜆) is a disjoint union of 

open sets in 𝒳. The continuity of  ℋ𝔱 and the lifting properties of 𝜙 ensure that ℋ̃𝔱 can be defined continuously 

on 𝒳 in a manner that respects the multivalued nature of the functions. 

Problem 4.5. Given two ℳ − functions 𝒦, ℒ ∶ 𝒳 → 𝒫(𝒴), determine if there exists a ℳ − homotopy ℋ𝔱 ∶

𝒳 → 𝒫(𝒴) connecting 𝒦 and ℒ. 

Solution: To determine if there exists a ℳ − homotopy connecting 𝒦 and ℒ we need to check if there exists a 

continuous function ℋ𝔱 ∶ 𝒳 × [0, 1] → 𝒫(𝒴) such that; 

1. ℋ0(𝓍) = 𝒦(𝓍) ∀ 𝓍 ∈ 𝒳  

2. ℋ1(𝓍) = ℒ(𝓍) ∀ 𝓍 ∈ 𝒳  

3. ℋ𝔱 is continuous for all 𝔱 ∈ [0, 1] 

A multivalued homotopy exists if and only if these conditions are satisfied. 

Problem 4.6. Consider the covering space 𝜙 ∶ 𝐴 → 𝐵. Describe the set of ℳ − functions that represent lifts of a 

given path in  𝐵. Determine the homotopy classes of these multivalued functions. 

Solution: For the covering space 𝜙 ∶ 𝐴 → 𝐵 the set of ℳ − functions representing lifts of a given path in 𝐵 is 

described by the fibers of the covering map 𝜙. The homotopy classes of these multivalued functions depend on 

the homotopy classes of the paths in 𝐵 and the properties of the covering map 𝜙. To describe the set of 

multivalued functions representing lifts of a given path in 𝐵 we need to consider the Preimage of the path under 
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the covering map 𝜙. The homotopy classes of these multivalued functions correspond to the homotopy classes 

of the paths in 𝒳 and are determined by the properties of the covering map 𝜙. 

Theorem 4.7. Let 𝒳 be a topological space and 𝓍0 ∈  𝒳. The set of multivalued loops based at  𝓍0, under the 

operation of concatenation followed by ℳ − homotopy equivalence, forms a group, denoted {𝜋−1(ℳ)} 

(𝒳, 𝓍0) 

Proof: Closure: Let 𝛼 and 𝛽 be two elements in {𝜋−1(ℳ)}(𝒳, 𝓍0), where 𝛼 and 𝛽 are multivalued loops based 

at 𝓍0. The concatenation (𝛼 ∗ 𝛽) is also a multivalued loop based at 𝓍0. Hence, the set of multivalued loops is 

closed under concatenation.  

Associativity: For multivalued loops 𝛼, 𝛽 and 𝛾 based at 𝓍0, the concatenation operation is associative, i.e., 

(𝛼 ∗ 𝛽) ∗ 𝛾~𝛼 ∗ (𝛽~𝛾). This follows from the properties of path concatenation in classical homotopy theory 

and holds for multivalued functions as well since ℳ − homotopies can interpolate between any two such 

concatenations. 

Identity Element: The constant multivalued loop 𝑒𝓍0
(𝔱) = 𝓍0 for all 𝔱 ∈ [0, 1] acts as the identity element. For 

any multivalued loop 𝛼, the concatenations (𝑒𝓍0
∗ 𝛼) and (𝛼 ∗ 𝑒𝓍0

) are homotopic to 𝛼. 

Inverse Element: For a multivalued loop 𝛼, define the inverse loop 𝛼−1 by (𝛼−1(𝔱)) = 𝛼(1 − 𝔱). Then, (𝛼 ∗

𝛼−1 ~ 𝑒𝓍0
) and (𝛼−1 ∗ 𝛼 ~ 𝑒𝓍0

). Hence, {𝜋−1(ℳ)}(𝒳, 𝓍0) satisfies the group axioms. 

Theorem 4.8. Two topological spaces 𝒳 and 𝒴 are ℳ − homotopy equivalent if there exist multivalued 

functions 𝒻 ∶ 𝒳 → 𝒴 and  ℊ ∶ 𝒴 → 𝒳 such that (𝒻 ∘ ℊ) and are multivalued homotopic to the identity maps on 

𝒳 and 𝒴, respectively. 

Proof: Existence of Multivalued Functions, Suppose there exist multivalued functions 𝒻 ∶ 𝒳 → 𝒴 and  ℊ ∶ 𝒴 →

𝒳. ℳ −Homotopy to Identity, Assume (ℊ ∘ 𝒻 ~ 𝑖𝑑𝒳  ) and (𝒻 ∘ ℊ ~ 𝑖𝑑𝒴), where ~ denotes ℳ − homotopy 

equivalence. This means there exist ℳ − homotopies ℋ ∶ 𝒳 × [0, 1] → 𝒳 and ℋ ∶ 𝒴 × [0, 1] → 𝒴 such that, 

ℋ(𝓍, 0) = (ℊ ∘ 𝒻)(𝓍) and ℋ(𝓍, 1) = (𝓍) for all 𝓍 ∈ 𝒳. 𝒦(𝓎, 0) = (ℊ ∘ 𝒻)(𝓎) and  𝒦(𝓎, 1) = (𝓎) for all 

𝓎 ∈ 𝒴 Homotopy Inverses, By definition of ℳ − homotopies, ℋ and 𝒦 provide continuous deformations from 

(ℊ ∘ 𝒻) → 𝑖𝑑𝒳  and from (𝒻 ∘ ℊ) → 𝑖𝑑𝒴 . Therefore,  𝒳 and 𝒴 are ℳ − homotopy equivalent, as the existence of 

these ℳ − homotopies ensures the spaces can be continuously deformed into each other through multivalued 

functions. 

Corollary 4.9. If 𝒳 and 𝒴 are path-connected, then any two multivalued functions from 𝒳 to 𝒴 can be 

connected by a ℳ − homotopy. 

5. Equivalence class of 𝓜 − Homotopy Functions 

In algebraic topology, homotopy theory investigates the properties of spaces that are invariant under continuous 

deformations. Traditional homotopy functions consider single-valued maps between spaces, but in more 

complex scenarios, multivalued functions are essential. These functions, which map each point in one space to a 

set of points in another, enable a richer framework for studying topological properties. Equivalence of ℳ − 

homotopy functions aims to classify multivalued functions based on their homotopy classes. Two multivalued 

functions 𝒦 and ℒ are considered equivalent if there exists a ℳ − homotopy ℋ𝔱 that continuously transforms 𝒦 

into ℒ. Group operations can be defined on the set of equivalence classes of ℳ − homotopy functions, 

analogous to the operations on the fundamental group. This includes the concatenation of multivalued paths and 

the consideration of homotopy classes of loops, which form a group under the operation of concatenation. 

Equivalence of ℳ − homotopy functions offers a powerful framework for studying topological spaces. By 
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extending classical homotopy concepts to multivalued settings, mathematicians can explore more intricate 

properties of spaces, uncovering new relationships and invariants that are not apparent through single-valued 

functions alone. This approach is particularly useful in the study of complex spaces, such as those encountered 

in covering space theory and other advanced topics in algebraic topology. 

Importance of Equivalence: 

❖ Topological Invariants: Understanding the equivalence of ℳ − homotopy functions helps in 

identifying topological invariants that remain unchanged under continuous deformations, providing 

deeper insights into the fundamental structure of spaces. 

❖ Classification: Classifying spaces using ℳ − homotopy equivalence extends the traditional methods, 

allowing for a more nuanced understanding of spaces that may exhibit complex or branching behaviors. 

Definition 5.1. A multivalued function 𝒦 from a topological space 𝒳 to a topological space 𝒴 is a relation 𝒦 ⊆

𝒳 × 𝒴 such that each 𝓍 ∈ 𝒳 is associated with a subset 𝒦(𝓍) ⊆ 𝒴. Two continuous functions 𝒻, ℊ ∶  𝒳 → 𝒴 

are homotopy equivalent if there exists a continuous function ℋ ∶  𝒳 × [0, 1] → 𝒴 such that,  

❖ ℋ(𝓍, 0) = 𝒻(𝓍)  ∀ 𝓍 ∈ 𝒳 

❖ ℋ(𝓍, 1) = ℊ(𝓍)  ∀ 𝓍 ∈ 𝒳   

Definition 5.2. A homotopy equivalence class functions [𝒻] between two topological spaces 𝒳 and 𝒴 can be 

defined a function 𝒻 ∶  𝒳 → 𝒴 consist of all functions  ℊ ∶  𝒳 → 𝒴 that are homotopy equivalent to 𝒦. In terms 

of ℳ − homotopy functions we can represent [𝒻] as, 𝒦 ∶ 𝒳 → 𝒫(𝒴)  defined by, ℱ(𝓍) = {𝓎 ∈ 𝒴 | ∃  ℊ ∈ [𝒻],

ℊ(𝓍) = 𝓎}. 

Remark 5.3.  ℱ maps each point 𝓍 ∈ 𝒳 to the set of points in 𝒴 that can be reached by applying any function ℊ 

that is homotopy equivalent to 𝒻. Thus ℱ encapsulates all the possible outcomes in 𝒴 for each equivalence class 

of  𝒻. 

Problem 5.4. Maps between the circle 𝑆1 and itself. 

Solution: Consider the circle 𝑆1. Let define 𝒻 ∶  𝑆1 → 𝑆1 as the identity map, where 𝒻(𝒳) = 𝓍 ∀ 𝓍 ∈ 𝑆1 and let 

define  ℊ ∶  𝑆1 → 𝑆1 as a rotation by a fixed angle 𝜃. So  ℊ(𝒳) = ℝ𝜃(𝓍), where ℝ𝜃 represents the rotation of 𝒳 

by the angle 𝜃. These two functions 𝒻 and ℊ are homotopic if 𝜃 is a multiple of 2𝜋, meaning ℊ is essentially the 

identity map (a full rotation brings every point back to itself). The homotopy ℋ ∶ 𝑆1 ×  [0, 1] →  𝑆1 can be 

defined by ℋ(𝓍, 𝔱) = ℝ − {𝔱𝜃(𝓍)}, which continuously rotates each point 𝓍 from 0 to 𝜃 as 𝔱 goes from 0 to 1. 

The homotopy equivalence class [𝒻] of the identity map 𝒻 induces all maps ℊ that can be written as rotation by 

integer multiples of 2𝜋. 

Problem 5.5. Maps between ℝ𝑛 and a point. 

Solution: Consider the Euclidean space ℝ𝑛 and a single point space {⋆}. Define 𝒻 ∶ ℝ𝑛 → {⋆} as the constant 

map sending every point in ℝ𝑛 to the point {⋆} and any other constant map ℊ ∶  ℝ𝑛 → {⋆} also sends every point 

in ℝ𝑛 to the point {⋆}. Both 𝒻 and ℊ are clearly homotopic because the only map possible from ℝ𝑛 to a single 

point is the constant map. A homotopy ℋ: ℝ𝑛 ×  [0, 1] → {⋆} can be trivially defined as ℋ(𝓍, 𝔱) = {⋆}∀ 𝓍 ∈ ℝ𝑛 

and  𝔱 ∈ [0, 1]. The homotopy equivalence class [𝒻] of the constant map 𝒻 includes only the constant maps, as 

these are the only possible maps between ℝ𝑛 and {⋆}. 

Problem 5.6. Maps from the unit interval [0, 1] to itself. 
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Solution: Consider the unit interval  [0, 1]. Define the function 𝒻 ∶ [0, 1] → [0, 1] by 𝒻(𝓍) = 𝓍 is the identity 

map. and define the map ℊ ∶ [0, 1] → [0, 1] by ℊ(𝓍) = 𝓍2. The functions 𝒻 and ℊ are homotopic . A homotopy  

ℋ ∶ [0, 1] × [0, 1] → [0, 1] can be given by  ℋ(𝓍, 𝔱) = (1 − 𝔱)𝓍 + 𝔱𝓍2, which continuously deforms 𝒻(𝓍) = 𝓍 

to ℊ(𝓍) = 𝓍2. As 𝔱 goes from 0 to 1. The homotopy equivalence class [𝒻] of the identity map 𝒻 includes all 

functions ℊ that can be continuously deformed to 𝒻. 

Example 5.7. Consider the universal covering space 𝝓 ∶ 𝑨 → 𝑩. If  𝜸 ∶ [𝟎, 𝟏] → 𝑩 is a loop based at 𝜷, the set 

of all possible lifts of 𝜸 to 𝑨 represents a multivalued function. The equivalence of these 𝓜 −functions under 

homotopy provides information about the structure of 𝑩 and the behavior of its covering spaces. 

Problem 5.8. For a multivalued function 𝒦 ∶ 𝒳 → 𝒫(𝒴), find the homotopy class [𝒦] and describe its 

properties. Determine the conditions under which two multivalued functions 𝒦 and ℒ are in the same homotopy 

class. 

Solution: To find the homotopy class [𝒦] of a multivalued function 𝒦 ∶ 𝒳 → 𝒫(𝒴), we consider all 

continuous deformations (homotopies) of  𝒦 within the space of multivalued functions. Two multivalued 

functions 𝒦 and ℒ are in the same homotopy class if there exists a continuous function ℋ𝔱 connecting them, i.e., 

𝒦 and ℒ are homotopic. Properties of the homotopy class [𝒦] may include its fundamental group, homology 

groups, and other algebraic invariants associated with the space 𝒳 and 𝒴. Two multivalued functions 𝒦 and ℒ 

are in the same homotopy class if and only if they are homotopic. 

Conclusion: 

The ℳ − homotopy functions represent a significant and promising development in algebraic topology. By 

broadening the scope of homotopy theory, we can tackle more complex topological problems and gain deeper 

insights into the fundamental nature of topological spaces. Future research in this area is likely to reveal further 

applications and theoretical advancements, solidifying the importance of multivalued approaches in the broader 

context of mathematical topology. 
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