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Abstract: Generative Adversarial Networks (GANs) have transformed the field of image synthesis, particularly 

with the introduction of Conditional GANs (cGANs) which allow for a more customized approach by 

integrating extra information throughout the generative process. The presence of blurry images can have a 

detrimental impact on image quality and can impede subsequent image processing activities. To combat image 

blurriness, we introduce a novel single-image blur removal technique that relies on conditional generative 

adversarial networks (CGAN). In this method, CGAN acts as the fundamental framework, taking the blurred 

image as supplementary conditional data and enforcing a Lipschitz constraint. The network architecture is 

trained using a combination of conditional adversarial loss, content loss, and perception loss to rectify the 

blurred regions and reconstruct the image. Through experimental evaluations, it is evident that the proposed 

approach outperforms existing algorithms in terms of blur removal, effectively diminishing blurriness while 

maintaining image sharpness. 

Keywords: Generative Adversarial Networks, Conditional GANs, Image Synthesis, Training Stability, Blurry 

Images, Generator Loss Function. 

 1. Introduction 

The study evaluates the performance of the standard classifiers in classifying the  real images from AI-generated 

images. To carry out the study, first we need to understand in depth about the problems that can be created using 

AI-generated images. 

1.1 History of Image Synthesis 

Image synthesis, also known as computer graphics or rendering, has a rich and fascinating history that spans 

several decades. The roots of image synthesis can be traced back to the mid-20th century when early pioneers in 

computer science began exploring the concept of creating images using computers. In the 1960s, Ivan 

Sutherland created the first ever computer-generated image, known as Sketchpad, which laid the foundation for 

future developments in this field. In the following years, researchers and innovators like David Evans, Ed 

Catmull, and Alvy Ray Smith made significant contributions to the field by developing techniques such as 

hidden surface removal and rendering algorithms. These advancements paved the way for the emergence of 

image synthesis as a field of study and opened up new possibilities for creating realistic and visually appealing 

computer-generated images. In the 1980s and 1990s, the advent of powerful graphics hardware and software 

further accelerated the progress in image synthesis, leading to the development of increasingly sophisticated 

algorithms and rendering techniques. Today, image synthesis is an essential component in a wide array of fields 

such as entertainment, virtual reality, simulation, and scientific visualization. This technology is constantly 

progressing and improving through the development of methods such as ray tracing, global illumination, and 

physically-based rendering. The history of image synthesis reflects the continuous pursuit of creating images 

that are indistinguishable from reality and has undoubtedly left an indelible mark on the field of computer 

graphics. 

 1.2 An Overview of Generative Adversarial Networks (GANs) 

Generative Adversarial Networks (GANs) were first introduced by Ian Goodfellow and colleagues in 2014. This 

innovative machine learning framework comprises two neural networks - the generator and the discriminator - 
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that participate in a competitive game. GANs are primarily used as generative models for image synthesis, 

aiming to understand the underlying probability distribution of the training data and generate new samples that 

closely resemble real data. The generator network takes random noise as input to produce synthetic data, while 

the discriminator network's role is to differentiate between real and generated data. Through adversarial 

learning, GANs are trained by having the generator and discriminator networks engage in a two-player game, 

continuously enhancing their capabilities. The ultimate goal of training is for the generator to create data that is 

indistinguishable from real data by the discriminator, achieving a state where D(G(z)) ≈ 0.5.  

 

Fig. 1: Architecture of GANs 

 In terms of applications, Generative Adversarial Networks (GANs) are primarily utilized for tasks related to 

image synthesis, such as creating lifelike images from random noise, translating images from one style to 

another, and transferring artistic styles. They have demonstrated success in generating visually impressive and 

highly realistic synthetic images. Conversely, CNNs are extensively applied in a range of computer vision 

assignments like classifying images, detecting objects, segmenting images, and recognizing images. CNNs are 

praised for their ability to capture complex features and patterns within images, enabling precise predictions to 

be made. 

It is worth noting that while GANs and CNNs have divergent architectures and purposes, there is potential for 

integration. CNNs can be incorporated into the architecture of GANs, combining the generative capabilities of 

GANs with the feature extraction abilities of CNNs. This integration holds promise for improving image 

synthesis results by leveraging CNNs to capture relevant features and patterns in the generated images. 

1.3 Conditional Generative Adversarial Networks (cGANs) 

Conditional Generative Adversarial Networks (cGANs) expand upon the GAN framework by incorporating 

supplementary information throughout the training phase. Conditional Generative Adversarial Networks 

(cGANs) involve the provision of additional conditioning information to both the generator and discriminator, 

typically in the form of labels or other auxiliary data. This extra information allows for the generation of 

targeted and specific outputs. The architecture of a cGAN involves feeding both the noise vector and the 

conditional information to the generator, creating a more controlled and directed generative process. The 

training procedure for conditional Generative Adversarial Networks (cGANs) closely resembles that of 

traditional GANs, but with the incorporation of conditional information. Throughout the training phase, the 

generator and discriminator collaborate, with the generator striving to generate authentic data based on the 

provided input information, while the discriminator is tasked with distinguishing between genuine and synthetic 

samples while considering the additional conditioning. This iterative process persists until the generator 
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successfully produces data that is virtually indistinguishable from real data, and the discriminator is no longer 

able to discern between the two sources. 

 

Fig. 2: Architecture of cGANs 

 1.4 Introduction to Generator Loss Function 

1.4.1 Adversarial Loss: The adversarial loss drives the generator to generate images that are indistinguishable 

from real ones. The primary aim of generator G is to trick the discriminator D. The adversarial loss for the 

generator can be formulated as: 

𝑳𝒂𝒅𝒗(𝑮) = −𝑬𝒛~𝒑𝒛
[𝐥𝐨𝐠 𝑫(𝑮(𝒛))] 

where z represents the noise vector fed into the generator, while D(G(z)) denotes the discriminator's assessment 

of the likelihood that the produced image is authentic. 

1.4.2 Content Loss: The content loss ensures that the generated image G(z) is similar to the ground truth image 

x. This can be measured using L1 or L2 loss. L1 loss is often preferred for its ability to produce sharper images. 

The content loss is given by: 

𝑳𝒄𝒐𝒏𝒕𝒆𝒏𝒕(𝑮) = 𝑬𝒛,𝒙~𝒑𝒅𝒂𝒕𝒂
[‖𝑮(𝒙) − 𝒙‖𝟏] 

where x represents the ground truth, while the L1 norm is denoted by ∥⋅∥1. 

1.4.3 Perceptual Loss: Using a pre-trained network such as VGG, the perceptual loss evaluates high-level 

features between the generated images and the ground truth images. This helps maintain details and textures. 

The perceptual loss is formulated as: 

𝑳𝒑𝒆𝒓𝒄𝒆𝒑𝒕𝒖𝒂𝒍(𝑮) = 𝑬𝒛,𝒙~𝒑𝒅𝒂𝒕𝒂
∑‖ϕ𝒊(𝑮(𝒛)) − ϕ𝒊(𝒙)‖

𝟐

𝟐

𝒊

 

where ϕi denotes the feature map obtained from the pre-trained network’s i-th layer while ∥⋅∥2 denotes the L2 

norm. 

1.5 Motivation 
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GANs possess a natural ability to understand intricate data patterns, leading to their utilization in a wide range 

of industries such as computer vision, artistic creation, and enhancing datasets. However, traditional GANs lack 

control over the content and style of the generated images. Conditional GANs address this limitation by 

introducing additional information, such as class labels or specific attributes, providing a mechanism to guide 

the synthesis process. The motivation behind this research lies in the need for advanced generative models that 

not only produce high-quality images but also allow users to influence and condition the generated content. 

Whether applied to style transfer, image-to-image translation, or the creation of diverse datasets, conditional 

image synthesis holds promise for numerous practical applications. 

1.6 Objective 

This study aims to explore the structure and processes of conditional Generative Adversarial Networks (cGANs) 

in order to synthesize images, enhance the stability and robustness of cGAN training, explore novel applications 

and case studies where cGANs excel in generating diverse and realistic images, and analyze the limitations to 

propose future improvements. Specifically, the study will examine how cGANs use conditional information to 

guide image generation, employ advanced techniques like spectral normalization to stabilize training, and 

highlight applications in fields such as medical imaging and creative industries. Additionally, it will address 

current limitations, such as scaling and control of complex attributes, and propose future directions, including 

more sophisticated conditioning mechanisms and the use of transformer architectures, to improve cGAN 

performance. 

2. Literature Review 

The realm of image deblurring has experienced notable progressions due to the emergence of deep learning 

methodologies, specifically through Conditional Generative Adversarial Networks (CGANs). This section 

reviews related works that have employed CGANs and other deep learning methods for image deblurring, 

providing a context for the current study. 

The implementation of deep learning has greatly enhanced the ability to remove blurriness from images. Xu et 

al. (2014) proposed a deep convolutional network for blind deblurring, demonstrating the potential of CNNs to 

learn blur patterns directly from data. Similarly, Sun et al. (2015) introduced a CNN for non-uniform motion 

blur removal, highlighting the robustness of deep learning models. 

CGANs have been specifically tailored for image deblurring by conditioning the generation process on the input 

blurred images. Kupyn et al. (2018) introduced DeblurGAN, a CGAN-based approach that significantly 

improved deblurring performance by incorporating adversarial and content losses. DeblurGAN leveraged a 

multi-scale architecture and perceptual loss to enhance the deblurring quality. 

Building on this, Kupyn et al. (2019) proposed DeblurGAN-v2, which utilized a deeper ResNet-based generator 

and incorporated feature pyramid networks to capture blur at multiple scales. The method successfully attained 

cutting-edge outcomes across various standard datasets, showcasing the efficiency of advanced CGAN 

architectures for deblurring tasks. 

The choice of loss functions significantly impacts the performance of CGANs in image deblurring. Adversarial 

loss encourages the generation of realistic images, while content loss (e.g., L1 or L2 loss) ensures fidelity to the 

ground truth. Perceptual loss, as used by Johnson et al. (2016), measures high-level feature differences using 

pre-trained networks, contributing to visually pleasing results. Evaluation metrics like Peak Signal-to-Noise 

Ratio (PSNR) and Structural Similarity Index (SSIM) are frequently utilized to measure the effectiveness of 

deblurring techniques. 

Qian et al. (2018) introduced a pioneering work using CGANs for raindrop removal, proposing a network that 

combined adversarial training with a perceptual loss. Their model, called "Attentive Generative Adversarial 

Network," included an attention mechanism to focus on raindrop regions, significantly enhancing the removal 

process. The perceptual loss, computed through a pre-trained VGG network, guaranteed that the produced 

images preserved high-level feature coherence with the ground truth images. 
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Fig 3: Zhang et al.’s images degraded with 

raindrops and corresponding ground-truth images  

Content loss is commonly calculated by comparing the pixel values of the generated images with those of the 

ground truth images, ensures that the generator accurately reconstructs image details. The L1 or L2 norm is 

commonly used: 

𝑳𝒄𝒐𝒏𝒕𝒆𝒏𝒕(𝑮) = 𝑬𝒛,𝒙~𝒑𝒅𝒂𝒕𝒂
[‖𝑮(𝒙) − 𝒙‖𝟏] 

Zhu et al. (2019) demonstrated that incorporating content loss alongside adversarial loss helps maintain fidelity 

to the original scene while removing raindrops. 

 

Fig 4:  Zhu et al’s Loss function comparison on the grounds of performance 

This study seeks to make a meaningful contribution to the continuous improvement of image deblurring 

methods by utilizing CGANs. It aims to provide valuable perspectives and feasible remedies for practical use in 

real-life scenarios through the synthesis of these progressions. 

3. Metrics for Assessing Performance 

The assessment of the quality and effectiveness of the outputs generated by Conditional Generative Adversarial 

Networks (cGANs) heavily relies on performance evaluation metrics. Here are some commonly used metrics: 

3.1 Fréchet Inception Distance (FID) 

The comparison between the distribution of synthetic samples and authentic samples in the feature space is 

quantified by the FID score. A lower FID score suggests higher quality and variety in the generated images. The 

data distribution of these features is represented by a multivariate Gaussian distribution with a mean of µ and a 

covariance of Σ. The FID between the real images x and generated images g is computed as: 

𝐅𝐈𝐃 = ‖𝛍𝒓 − 𝛍𝒈‖
𝟐

+ 𝑻𝒓 (∑ + ∑ −𝟐 (∑ ∑ ⬚
𝒈𝒓

)

𝟏 𝟐⁄

 
𝒈𝒓

) 

Where: 

• ‖𝛍𝒓 − 𝛍𝒈‖
𝟐

 is the euclidean distance between the means of the real and generated feature distributions. 

• 𝑻𝒓 denotes the sum of the diagonal elements that is called the trace of a matrix. 

• (∑ ∑ )𝒈𝒓
𝟏/𝟐

 is the matrix square root of the product of the covariance matrices ∑ and𝒓  ∑ .𝒈  

3.2 Precision, Recall, and F1 Score for Specific Attributes 
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Attribute-specific evaluation metrics for conditional GANs, relevant to tasks like image-to-image translation 

where certain attributes need to be preserved or modified. High precision, recall, and F1 score indicate 

successful attribute preservation or modification. 

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =
𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬

𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞 +  𝐅𝐚𝐥𝐬𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬
 

𝐑𝐞𝐜𝐚𝐥𝐥 =
𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐬

𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞 +  𝐅𝐚𝐥𝐬𝐞 𝐍𝐞𝐠𝐚𝐭𝐢𝐯𝐞𝐬
 

𝐅𝐈 𝐒𝐜𝐨𝐫𝐞 = 𝟐 𝐗 
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 𝐱 𝐑𝐞𝐜𝐚𝐥𝐥

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 𝐱 𝐑𝐞𝐜𝐚𝐥𝐥
 

3.3 Peak Signal-to-Noise Ratio (PSNR) 

The quality of generated images can be assessed through the comparison of pixel values with real images. A 

higher PSNR value signifies superior image quality, as PSNR is determined by comparing the Mean Squared 

Error (MSE) of the original (reference) image with that of the generated (or reconstructed) image. 

MSE = 
𝟏

𝒎𝒏
∑ []

𝒎−𝟏

𝒊=𝟎
∑  [𝑰(𝒊, 𝒋) − 𝑲(𝒊, 𝒋)]

𝒏−𝟏

𝒋=𝟎
2 

In this context, the variables 𝐼(𝑖, 𝑗) and 𝐾(𝑖, 𝑗) denote the pixel values of the initial and produced images, 

correspondingly, while m and n stand for the dimensions of the images. 

𝐏𝐒𝐍𝐑 = 𝟏𝟎 .  𝒍𝒐𝒈𝟏𝟎  (
𝑴𝑨𝑿𝟐

𝑴𝑺𝑬
) 

The maximum pixel value of the image is denoted as MAX. In the case of an 8-bit image, MAX is set at 255. 

3.4 Structural Similarity Index (SSIM) 

SSIM is formulated to depict alterations in structural details present in an image. Structural details pertain to the 

arrangements of pixel intensities, which play a vital role in identifying the substance and texture of the image. 

The human visual system has evolved to effectively perceive structural details, while SSIM strives to replicate 

this functionality. 

𝐒𝐒𝐈𝐌(𝐱, 𝐲)⬚ =
(𝟐𝛍𝐱𝛍𝐲 + 𝐂𝟏)(𝟐𝛔𝐱𝐲 + 𝐂𝟐)

(𝛍𝐱
𝟐 + 𝛍𝐲

𝟐 + 𝐂𝟏)(𝛔𝐱
𝟐 + 𝛔𝐲

𝟐 + 𝐂𝟐)
 

Luminance Comparison Function: 

𝒍(𝒙, 𝒚)⬚ =
𝟐𝛍𝒙𝛍𝒚 + 𝑪𝟏

𝛍𝒙
𝟐 + 𝛍𝒚

𝟐 + 𝑪𝟏𝐥
 

Contrast Comparison Function: 

𝒄(𝒙, 𝒚)⬚ =
𝟐𝛔𝒙𝛔𝒚 + 𝑪𝟐

𝛔𝒙
𝟐 + 𝛔𝒚

𝟐 + 𝑪𝟐

 

Structural Comparison Function: 

𝒔(𝒙, 𝒚)⬚ =
𝛔𝒙𝒚 + 𝑪𝟑

𝛔𝒙𝛔𝒚 + 𝑪𝟑

 

3.5 Kernel Inception Distance (KID) 

Evaluates the distinction in feature representations of original and generated images through the use of 

kernelized feature spaces. Lower KID scores signify better image synthesis quality. 

Given two sets of feature representations, X (real images) and Y (generated images), the KID is computed as 

follows: 
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KID = 
𝟏

𝒎(𝒎−𝟏)
∑ []

⬚

𝒊≠𝒋
𝒌(𝒙𝒊, 𝒙𝒋) + 

𝟏

𝒏(𝒏−𝟏)
∑ []

⬚

𝒊≠𝒋
𝒌(𝒚𝒊, 𝒚𝒋) −  

𝟐

𝒎𝒏
∑ []

⬚

𝒊,𝒋
𝒌(𝒙𝒊, 𝒚𝒋) 

Where: 

• 𝑥𝑖, 𝑥𝑗 ∈ X and 𝑦𝑖 , 𝑦𝑗 ∈  Y 

• 𝑘(𝑎, 𝑏) is the polynomial kernel, typically defined as 𝑘(𝑎, 𝑏) = (
𝑎𝑇𝑏

𝑑
+ 1)

3

, where d is the 

dimensionality of the feature representations. 

3.6 Diversity Metrics (e.g., Multi-Modality Metrics) 

Metrics that assess the diversity of generated images, ensuring that the model produces a broad range of outputs. 

Higher diversity metrics indicate a more varied set of generated samples. 

3.7 User Studies and Human Evaluation 

Involves obtaining subjective opinions from human evaluators, often through surveys or comparisons. Human 

evaluation provides insights into perceptual aspects of generated images that may not be captured by 

quantitative metrics. 

3.8 Domain-Specific Metrics: 

Metrics tailored to specific application domains, such as medical imaging or art generation. These metrics 

capture domain-specific requirements and nuances in the evaluation process. 

4. Implementation 

Implementation of the work involves various steps and resources which are detailed as follows. 

4.1 Dataset 

A crucial element in any research is the dataset utilized to conduct the study. The dataset chosen for this 

research is notably diverse, encompassing a substantial number of both real and AI-generated images. A review 

of existing literature revealed that previous studies on raindrop datasets and synthetic blur models typically 

employed a combination of real objects and associated prompts to generate images. In contrast, this work 

leverages the publicly available Blur Dataset from Kaggle. This dataset consists of 1050 images (350 triplets), 

where each triplet comprises three photos of the same scene: a sharp image, a defocused-blurred image, and a 

motion-blurred image. The primary purpose of this dataset is to validate blur detection algorithms. Although it 

can also be employed for testing image deblurring techniques, the triplets are not "pixel-to-pixel" aligned, thus 

precluding direct comparison between blurred and sharp images based on PSNR (Peak Signal-to-Noise Ratio) or 

SSIM (Structural Similarity Index). Nevertheless, the sharp images can still serve as a basis for visual 

comparison. The Blur Dataset contains thousands of images categorized by different types of blur, including 

Gaussian blur, motion blur, and defocus blur. Each category includes images that replicate real-world scenarios 

where blurring commonly occurs. The dataset is meticulously labeled, facilitating researchers in training and 

testing their models on specific types of blur. 

  
(a)          (b)           (c) 

Fig. 5: Images (a) and (b) exhibit blurriness, while image (c) is characterized by sharpness. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024) 

__________________________________________________________________________________ 

1570 

4.2 Methodology Used 

The process of enhancing image clarity through the utilization of Conditional Generative Adversarial Networks 

(CGANs) encompasses a unique approach that merges the capabilities of Conditional GANs with conventional 

deblurring methods. Here’s an outline of the process: 

4.2.1 Data Preparation 

Dataset Collection: Collect a dataset of blurred and corresponding sharp (ground truth) images. 

Preprocessing: Normalize the images and perform any necessary augmentations to increase dataset diversity 

and robustness. 

4.2.2 Network Architecture 

Generator: The generator network commonly consists of a convolutional neural network (CNN) designed to 

receive a blurred image as its input and produce a deblurred image as its output. Popular architectures include 

U-Net, ResNet, or encoder-decoder networks. 

Discriminator: The discriminator is another CNN that distinguishes between real (sharp) images and fake 

(deblurred) images generated by the generator. It conditions on the input blurred image to better guide the 

deblurring process. 

4.2.3 Training Procedure 

Initialization: Initialize the generator and discriminator networks with appropriate weights. 

Adversarial Training: Train the generator and discriminator iteratively. For each batch of training data: 

o Update the discriminator by maximizing the adversarial loss. 

o Update the generator by minimizing the combined loss (adversarial + content + perceptual). 

4.2.4 Post-Processing 

Refinement: Apply additional techniques to enhance the quality of the deblurred images if necessary (e.g., 

sharpening filters, noise reduction). 

4.2.5 Evaluation 

• Qualitative Evaluation: Visually inspect the deblurred images to assess their quality. 

• Quantitative Evaluation: Employing metrics like Peak Signal-to-Noise Ratio (PSNR), Structural 

Similarity Index (SSIM), or Learned Perceptual Image Patch Similarity (LPIPS) is essential in assessing the 

effectiveness of the model. 

4.3 Workflow in Pseudocode 

# Initialize models 

gen_model = GeneratorNetwork() 

disc_model = DiscriminatorNetwork() 

# Define optimizers 

gen_opt = Adam(gen_model.parameters(), lr=learning_rate) 

disc_opt = Adam(disc_model.parameters(), lr=learning_rate) 

# Training loop 

for epoch in range(total_epochs): 

    for low_res_image, high_res_image in data_loader: 
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        # Update Discriminator 

        disc_opt.zero_grad() 

        real_pred = disc_model(low_res_image, high_res_image) 

        generated_image = gen_model(low_res_image) 

        fake_pred = disc_model(low_res_image, generated_image.detach()) 

        discriminator_loss = -torch.mean(torch.log(real_pred) + torch.log(1. - fake_pred)) 

        discriminator_loss.backward() 

        disc_opt.step() 

        # Update Generator 

        gen_opt.zero_grad() 

        fake_pred = disc_model(low_res_image, generated_image) 

        adv_loss = -torch.mean(torch.log(fake_pred)) 

        l1_content_loss = F.l1_loss(generated_image, high_res_image) 

        vgg_perceptual_loss = perceptual_loss_fn(generated_image, high_res_image) 

        generator_loss = adv_loss + l1_content_loss + vgg_perceptual_loss 

        generator_loss.backward() 

        gen_opt.step() 

    print(f"Epoch [{epoch}/{total_epochs}], Generator Loss: {generator_loss.item()}, Discriminator Loss: 

{discriminator_loss.item()}") 

4.4 Algorithm 

A dataset comprising real and AI-generated images is employed, and it is divided into separate training and 

testing sets. The training set is composed of 70% blurred images, while the testing set contains the remaining 

30% sharp images. Our methodology entails training various generator models using different loss functions, 

namely Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). These metrics are utilized 

to assess the performance of each model throughout both the training and testing stages. 

Following training, a comprehensive comparative analysis is conducted to assess the efficacy of each loss 

function in enhancing image deblurring quality. This evaluation aims to identify which approach achieves 

superior results, offering valuable insights into the effectiveness of PSNR and SSIM in the context of image 

restoration tasks. 

This research methodology not only contributes to advancing the understanding of image deblurring techniques 

but also provides practical guidance for selecting optimal loss functions in similar applications. 

4.5 Approach 

The working of the project is explained in a simplified manner using the following figure:  
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Fig. 6: Research work flow diagram 

5. Analysis of experimental results 

The analysis begins with an evaluation of how various loss functions influence image blur. Subsequently, the 

algorithm's effectiveness in removing blur is compared with that of other algorithms using both synthetic blur 

datasets and real-world blurred images. 

5.1 Evaluating the Effectiveness of Different Loss Functions 

To assess the impact of various loss functions on mitigating blur, this study evaluates different algorithms based 

on their respective loss functions. Table 1 presents the mean PSNR and SSIM values from 100 experimental 

groups subjected to iterative training. The results indicate that the LL1 loss function consistently yields higher 

PSNR values, indicative of its efficacy in reducing noise and distortion associated with blur. Conversely, the LP 

loss function demonstrates a capacity to enhance SSIM values, thereby effectively preserving the overall 

structural integrity of the images. These findings underscore the critical role of selecting appropriate loss 

functions tailored to optimize specific aspects of image restoration tasks, particularly in the context of blur 

rectification. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024) 

__________________________________________________________________________________ 

1573 

Table 1: Analysis of Loss Functions through PSNR and SSIM Measurements 

Fig. 7 depicts the contrast in processing outcomes for a sample image from the blur dataset when employing 

various sets of loss functions. Specifically, when using LCGAN alone for blur removal, significant distortions in 

image texture structure and color are observed. Introducing L1 helps mitigate some of these issues associated 

with LCGAN, resulting in fewer artifacts in the blur removal effect. However, residual fuzziness and partial image 

distortion may still occur, accompanied by oversaturation in some reconstructed images. Incorporating the 

perceptual loss function LP further enhances clarity, thereby generating clearer images with reduced blurring 

effects. Consequently, the combination of LCGAN + LL1 + LP not only eliminates artifacts but also preserves more 

image details, leading to the creation of more realistic and sharper images in the context of blur removal. 

 

Fig. 7: Performance comparison of loss function 
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6. Conclusion and Future Prospect 

After carrying out the extensive study, the following conclusion is drawn. In addition to the conclusion, some 

future advancement regarding the research are also presented in detail. 

6.1 Conclusion 

This idea behind the project is to deblur the images using various loss functions such as CGAN. The application 

of Conditional Generative Adversarial Networks (CGANs) in image deblurring has made substantial 

advancements, revolutionizing the field with its ability to produce high-fidelity, deblurred images that surpass 

traditional methods. CGANs utilize adversarial training, in which the generator and discriminator networks are 

trained to work against each other. This approach leads to the production of high-quality and detailed images 

from their blurry counterparts.  The competitive nature of this configuration motivates the generator to produce 

images that are challenging for the discriminator to differentiate from authentic, high-resolution images, 

ultimately improving the overall quality of the deblurred results. A key factor contributing to the success of 

CGANs in image deblurring is the effective design and integration of various loss functions. The adversarial 

loss, fundamental to the GAN framework, ensures that the generated images are realistic. Meanwhile, content 

loss, typically computed as the pixel-wise L1 or L2 norm between the generated and base supplied images, helps 

maintain the fidelity of the original scene by accurately reconstructing image details.  

6.2 Future Work 

The research on image deblurring using CGANs has made substantial strides, offering promising solutions to a 

long-standing problem in computer vision. By leveraging adversarial training, sophisticated loss functions, and 

advanced network architectures, CGAN-based approaches have set new benchmarks in image restoration 

quality. Future advancements will continue to refine these techniques, addressing current challenges and 

expanding the applicability of CGANs in real-world scenarios. The ongoing evolution of CGANs holds great 

promise for the future of image deblurring and broader image restoration tasks, driving forward both academic 

research and practical applications. 
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